JPH01247092A - Production of thrombin inhibitor - Google Patents

Production of thrombin inhibitor

Info

Publication number
JPH01247092A
JPH01247092A JP63073200A JP7320088A JPH01247092A JP H01247092 A JPH01247092 A JP H01247092A JP 63073200 A JP63073200 A JP 63073200A JP 7320088 A JP7320088 A JP 7320088A JP H01247092 A JPH01247092 A JP H01247092A
Authority
JP
Japan
Prior art keywords
protein
dna
hirudin
desulfatohirudin
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073200A
Other languages
Japanese (ja)
Inventor
Yoshimasa Ike
池 祥雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63073200A priority Critical patent/JPH01247092A/en
Publication of JPH01247092A publication Critical patent/JPH01247092A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/815Protease inhibitors from leeches, e.g. hirudin, eglin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE:To efficiently produce desulfatohirudin protein, by culturing an Escherichia coli transformed with a plasmid into which the DNA coding the hirudin protein of thrombin-inhibiting activity is inserted. CONSTITUTION:A DNA sequence containing the DNA coding the hirudin protein which inhibits the thrombin is inserted into the manifestation vector to form a recombinant plasmid. The recombinant plasmid is used to transform Escherichia coli and the transformed product is cultured. The culture mixture is centrifuged to collect the cell bodies, then, the cell bodies are treated with ultrasonic waves in a buffer solution and lysozyme or dynomill to prepare the supernatant. The supernatant is fractionated using ammonium sulfate or subjected to gel filtration with Sephadex G-50 or the like to obtain the desulfatohirudin protein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デスルファトヒルジンタンパク質の製造法に
関するものであり、更に詳しくは、デスルファトヒルジ
ンIIV−1をコードする新規な合成遺伝子を含む組み
換えプラスミド、この組み換えプラスミドを形質転換し
た宿主及びこれを用いてデスルファトヒルジンタンパク
質を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing desulfatohirudin protein, and more specifically, to a method for producing a desulfatohirudin protein, and more specifically, to a method for producing a novel synthetic gene encoding desulfatohirudin IIV-1. The present invention relates to a recombinant plasmid containing the recombinant plasmid, a host transformed with the recombinant plasmid, and a method for producing desulfatohirudin protein using the same.

[従来の技術と問題点] ヒルジンは、ヒル、すなわちヒルド・メデイシナリス(
旧rudo medicinalis )中に存在する
抗凝血物質である。現在、ヒルジンには!1シー1(F
ebs。
[Prior art and problems] Hirujin is a leech, Hirudo medicinalis (
It is an anticoagulant present in the former rudo medicinalis. Currently in Hirujin! 1 Sea 1 (F
ebs.

Letters+匡(2)180〜184(1984)
)、HV−2(Proc、Na−tl、八cad、Sc
i、、11.s、A、83 1084 〜108B(1
986))  およびデス(1/al)zヒルジン(欧
州特許出願第158,986号明細書)の3種類が知ら
れている。これら3種類のヒルジンは、構造においてい
くつかのアミノ酸が異なるだけでN端が疏水性アミノ酸
、C端が極性アミノ酸、スルフヱートモノエステルとし
て存在するチロシン残基(Tyr” )及び3個のジス
ルフィドブリジ、更には抗凝血活性作用等を各々共通に
有している。ヒルジンは抗凝血治療に用いられているヘ
パリンとは対照的にアンチトロンビン■を介して作用す
るのではなく、直接トロンビンに作用するところに特徴
を有する。従来、ヒルジンはヒルの抽出液から得ており
分離、精製に時間と費用を要し、更には実際上大量の原
料入手は極めて困難であり実用的でなく、他の製造方法
が強(望まれていた。
Letters + Tadashi (2) 180-184 (1984)
), HV-2 (Proc, Na-tl, 8cad, Sc
i,,11. s, A, 83 1084 ~ 108B (1
Three types are known: 986)) and des(1/al)zhirudin (European Patent Application No. 158,986). These three types of hirudin differ only in a few amino acids in their structure, with a hydrophobic amino acid at the N-terminus, a polar amino acid at the C-terminus, a tyrosine residue (Tyr”) existing as a sulfate monoester, and three They each have disulfide bridges, anticoagulant activity, etc. In contrast to heparin, which is used for anticoagulant treatment, hirudin does not act through antithrombin■, but directly. Hirudin is unique in that it acts on thrombin. Conventionally, hirudin has been obtained from leech extract, which requires time and expense to separate and purify, and furthermore, it is extremely difficult to obtain raw materials in large quantities, making it impractical. , other manufacturing methods were strongly desired.

〔問題点を解決するための手段] ヒル以外の宿主はスルフェート転移酵素を欠いており遺
伝子組み換え技術により得られるヒルジンタンパク質は
デスルファトヒルジンであることが予想される。しかし
ながら、ヒルより3周製したヒルジンを化学的に処理し
、スルファト基を除去したデスルファトヒルジンは、ヒ
ル由来のヒルジンと変わらないトロンビン阻害活性を存
することが既に知られている(欧州特許出願第142,
860号)。このことは遺伝子組み換え技術を利用して
デスルファトヒルジンタンパク質を大量に製造しても合
目的であることを示唆している。
[Means for Solving the Problems] Hosts other than leeches lack sulfate transferase, and the hirudin protein obtained by genetic recombination technology is expected to be desulfatohirudin. However, it is already known that desulfatohirudin, which is obtained by chemically treating hirudin produced three times from leech to remove the sulfato group, has a thrombin inhibitory activity comparable to that of leech-derived hirudin (European patent application 142nd,
No. 860). This suggests that it is useful to produce large quantities of desulfatohirudin protein using genetic recombination technology.

そこで、本発明者らはヒルジン活性を有するタンパク質
を効率良く生産させる方法を鋭意研究した結果、既にア
ミノ酸配列が公知のヒルジンIIV−1をコードするD
NAを合成し、組み換え技術により発現ベクターに組み
込み大腸菌に導入することにより容易に、かつ多量のデ
スルファトヒルジンタンパク質を生産させることに成功
した。
Therefore, as a result of intensive research into a method for efficiently producing a protein with hirudin activity, the present inventors found that D.
By synthesizing NA, incorporating it into an expression vector using recombinant technology, and introducing it into E. coli, we succeeded in easily producing a large amount of desulfatohirudin protein.

すなわち、ヒルジンHV−1遺伝子を化学的、生化学的
に合成しつなぎ合わせるに当たり、ヒルジンHV−1を
コードするDNA配列に加えて停止コドン例えばTAA
を3”側に配し、5末端側と3末端側にはへフタ−への
挿入のために例えばEcoRI 、 Bam1l I付
着末端DNA配列を各々つけた。
That is, in chemically and biochemically synthesizing and joining the hirudin HV-1 gene, in addition to the DNA sequence encoding hirudin HV-1, a stop codon such as TAA is added.
was placed on the 3'' side, and for example, EcoRI and Bam1lI cohesive terminal DNA sequences were attached to the 5 and 3 ends, respectively, for insertion into the hefter.

第1図に示すようなコドンを選び7本のフラグメントに
分8りした。第2図に各DNAフラグメントのt)NA
配列の例を示す。このフラグメントの分割の仕方は自己
会合を避けるよう注意すれば、第1図のものに限定され
ることなく色々な分りIの仕方が可能である。各DNA
フラグメントは既知の合成法に従って合成し得る。各D
NAフラグメントは必要に応して5゛末端をリン酸化し
、2本または3本ずつ混合しハイブリダイズさせたのち
DNAリガーゼによって二重鎖DNAとする。あるいは
、マ木全部−度に一緒に混合しハイブリダイズさせ、D
NAリガーゼによって二重鎖DNAとすることも可能で
ある(第3図)。これをpBR322のEcoRI と
BamHTとにより消化して得たベクターと結合させ新
規プラスミドp 3010を得た(第4図)。このプラ
スミドDNAを単離し、DNA配列を検討した結果、目
的とするヒルジンHV−1遺伝子の存在が確認された。
The codons shown in Figure 1 were selected and divided into 7 fragments. Figure 2 shows the t)NA of each DNA fragment.
Here is an example of an array. As long as care is taken to avoid self-association, the method of dividing the fragments is not limited to that shown in FIG. 1, and various methods are possible. Each DNA
Fragments may be synthesized according to known synthetic methods. Each D
The 5' ends of the NA fragments are phosphorylated if necessary, two or three of them are mixed and hybridized, and then double-stranded DNA is made with DNA ligase. Alternatively, all the trees can be mixed together and hybridized, D
It is also possible to make double-stranded DNA using NA ligase (Figure 3). This was ligated with a vector obtained by digesting pBR322 with EcoRI and BamHT to obtain a new plasmid p3010 (Fig. 4). As a result of isolating this plasmid DNA and examining the DNA sequence, the presence of the target hirudin HV-1 gene was confirmed.

そして得られたプラスミドは通常の方法で容易に大腸菌
、例えばMC1061、JM107 、HBIOI 、
DE5αのような微生物に形質転換することができる。
The obtained plasmid can be easily transferred to Escherichia coli, such as MC1061, JM107, HBIOI,
It can be transformed into microorganisms such as DE5α.

また、発現用プラスミドとしては、例えばP、L。Examples of expression plasmids include P and L.

ケミカル社やファルマシア社等のカタログに記載され市
販されでいるp■223−3、pYEJOOl 、pD
R540、pDR720、pNEo等を利用することが
できる。例えば、プラスミドp3010 DNAをEc
oRI とNrulとで消化後に、ポリアクリルアミド
ゲルで分離回収したEcoRI−Nrul DNAフラ
グメントを発現用プラスミドpKK223−3をEco
RI とSmalとで消化して得たベクターに組み込み
、発現用プラスミドp 4014を得た(第5図)。こ
れをMC1061に形質転換した菌株MTE4014 
(FURM P−9924)を得た。また同様にして大
腸菌JM107 、HBIOI 、DE5αに形質転換
した菌株も得た。
p223-3, pYEJOOl, pD, which are listed in the catalogs of Chemical Co., Pharmacia Co., etc. and are commercially available.
R540, pDR720, pNEo, etc. can be used. For example, convert plasmid p3010 DNA into Ec
After digestion with oRI and Nrul, the EcoRI-Nrul DNA fragment was separated and recovered on polyacrylamide gel and the expression plasmid pKK223-3 was transformed into Eco
It was inserted into a vector obtained by digestion with RI and Smal to obtain expression plasmid p4014 (Fig. 5). Strain MTE4014 was transformed into MC1061.
(FURM P-9924) was obtained. In addition, strains transformed into Escherichia coli JM107, HBIOI, and DE5α were also obtained in the same manner.

これらの菌株は、その性質がアンピシリン耐性を獲得し
ていることと、デスルファトヒルジンタンパク質を発現
し産生ずることの他は宿主菌株と変わりなく同様の条件
で容易に培養することができる。菌体内に蓄積された目
的タンパク質は菌体を溶解させたのち、通常のタンパク
質回収方法により分離、回収することができる。例えば
、培養後、遠心分離機にかけ菌体を集菌し、緩衝液中で
超音波やリゾチームあるいはダイノミル等の処理して上
澄液を得、この上清液を硫安分画またはセファデックス
G−50のようなゲル濾過によって目的のタンパク質を
得ることができる。
These strains can be easily cultured under the same conditions as the host strain, except that they have acquired ampicillin resistance and express and produce desulfatohirudin protein. The target protein accumulated in the bacterial cells can be separated and recovered by a conventional protein recovery method after the bacterial cells are lysed. For example, after culturing, the bacterial cells are collected using a centrifuge, and treated with ultrasound, lysozyme, or Dynomil in a buffer solution to obtain a supernatant, and this supernatant is subjected to ammonium sulfate fractionation or Sephadex G- The target protein can be obtained by gel filtration such as 50.

本発明者らは、本発明の組み換え大腸菌の菌体抽出液が
極めて強いトロンビン阻害活性を存することを確認する
とともにこの抽出液から所望のデスルファトヒルジンタ
ンパク質を精製、同定し本発明を完成するに至った。
The present inventors have confirmed that the recombinant E. coli cell extract of the present invention has extremely strong thrombin inhibitory activity, and have purified and identified the desired desulfatohirudin protein from this extract, thereby completing the present invention. reached.

〔実施例〕〔Example〕

次に、本発明を実施例により説明するが、本発明はこれ
らの例により何ら限定されるものではない。
Next, the present invention will be explained by examples, but the present invention is not limited to these examples in any way.

実施例l DNAフラグメントの化学合成とその精製(第2図) 各DNAフラグメント7本はフォスホアミダイト法によ
り全自動合成機(アプライドシステム社製)で各々合成
した。原料となる保護されたモノマーは市販品(シスチ
ク社製)を用いた。合成終了後反応物を容器に移し、濃
アンモニア水1.5mを加え、密栓をして室温で1時間
、更に55°Cで一晩反応させた。濃縮乾固後80%酢
酸水1 mlを加え室温に30分間放置した後濃縮乾固
した。内容物を水ldに溶かし、−晩透析を行ない濃縮
後刊尿素含有20%ポリアクリルアミドゲル電気泳動に
かけ目的とするところのバンド部分のゲルを切り取りD
NA回収液1.5d (0,5M酢酸ナトリウム、10
mM酢酸マグネシウム、0.1%v/vドデシル硫酸ナ
トリウム(SO5) 、1 mMエチレンジアミン四酢
酸二ナトリウム(EDTA) (ρ117.5))を加
え、−晩振り混ぜた。更にセルロースDE−52(ワッ
トマン社製)の短いカラムを用いて、ON八を回収しフ
ェノール−クロロホルムで抽出後、エタノール沈殿させ
て純水なりNAフラグメントを得た。このようにして合
成、精製した[lNAフラグメントを第2図に示した。
Example 1 Chemical synthesis of DNA fragments and their purification (Fig. 2) Seven DNA fragments were each synthesized using a fully automatic synthesizer (manufactured by Applied Systems) by the phosphoramidite method. A commercially available product (manufactured by Systik) was used as a protected monomer serving as a raw material. After the synthesis was completed, the reaction product was transferred to a container, 1.5 m of concentrated ammonia water was added, the container was tightly stoppered, and the reaction was allowed to proceed at room temperature for 1 hour and then at 55° C. overnight. After concentration to dryness, 1 ml of 80% aqueous acetic acid was added, and the mixture was allowed to stand at room temperature for 30 minutes, and then concentrated to dryness. The contents were dissolved in water, dialyzed overnight, concentrated, and subjected to electrophoresis on a 20% polyacrylamide gel containing urea, and the desired band portion of the gel was cut out.
1.5 d of NA recovery solution (0.5 M sodium acetate, 10
mM magnesium acetate, 0.1% v/v sodium dodecyl sulfate (SO5), 1 mM disodium ethylenediaminetetraacetic acid (EDTA) (ρ117.5)) were added and the mixture was shaken overnight. Furthermore, ON8 was collected using a short column of cellulose DE-52 (manufactured by Whatman), extracted with phenol-chloroform, and precipitated with ethanol to obtain pure water or NA fragments. The INA fragment synthesized and purified in this manner is shown in FIG.

実施例2 リン酸化およびフラグメントの連結反応(第3図) DN^フラグメント1.2.3.4.5.6.7を各々
1μgずつ合わせ、T4ポリヌクレオチドキナーゼ7単
位(宝酒造製)、ガンマ−ATP 2μCiを含むリン
酸化溶液40p l 〔500mM Tris−CI’
(pH17゜5 ) 、100mM MgCIz 、5
mMジチオスレイトール(DTT)、0.1mM ED
TA、0.1mMスペルミジン〕を加え37℃1時間反
応させた。更に、T4ポリヌクレオチドキナーゼ7単位
を含む10mM ATP?8液10μ2を加え1時間反
応させた。
Example 2 Phosphorylation and fragment ligation reaction (Fig. 3) 1 μg each of DN^ fragments 1.2.3.4.5.6.7 were combined, and 7 units of T4 polynucleotide kinase (manufactured by Takara Shuzo), gamma- 40 pl of phosphorylation solution containing 2 μCi of ATP [500 mM Tris-CI'
(pH 17°5), 100mM MgCIz, 5
mM dithiothreitol (DTT), 0.1mM ED
TA, 0.1mM spermidine] was added and reacted at 37°C for 1 hour. Additionally, 10mM ATP? containing 7 units of T4 polynucleotide kinase? 10μ2 of the 8 solution was added and reacted for 1 hour.

3分間95°Cに加熱後、ゆっくり室温まで冷却したの
ち濃縮乾固した。これにT4リガーゼ15単位(宝酒造
製)を含む溶液50tIN (66mM Tris  
−CI(pH7,5) 、5II+M MgCl!、5
mM DTT 、 1mM ATP )を加え、6°C
で一晩反応させた。
After heating at 95°C for 3 minutes, the mixture was slowly cooled to room temperature and concentrated to dryness. Add 50tIN (66mM Tris) of this solution containing 15 units of T4 ligase (manufactured by Takara Shuzo)
-CI (pH 7,5), 5II+M MgCl! , 5
Add mM DTT, 1mM ATP) and heat at 6°C.
The mixture was allowed to react overnight.

フェノール50μlとクロロホルム50μ2とを加え、
抽出後エタノールを加えて一80″Cに1時間、−20
’Cに30分間放置後遠心機にかけ目的とする二重鎖D
NAを回収した。
Add 50μl of phenol and 50μl of chloroform,
After extraction, add ethanol and incubate at -80"C for 1 hour at -20
'C for 30 minutes, then centrifuge to obtain the desired double strand D.
NA was collected.

実施例3 合成遺伝子のクローニング(第4図) クローニングベクターには大腸菌のプラスミドpBR3
22を用いた。 [1coRI 4単位、Raw旧15
単位を含むpBR32210,c+ g溶?(150t
t l CIIIM Tris−CI (pH8)、0
.6GsM MgCh、0.6+aMメルカプトエタノ
ール、6II+M NaC1)を37°Cで3時間反応
させたのち、脱リン酸化酵素(CIPベーリンガ社製)
4単位を含むj容量、12u l (500mM Tr
is −CI(pH9,0) 、1mM MgCIz 
、1mM ZnCI、 )を加え37°Cで1時間反応
させた。フェノール抽出後エタノールで沈殿させた。回
収率80%として計算し希釈バッファー(10mM T
ris  −CI、 1mM [1DTA )を加えて
、その2μ1 (50ng相当量)に実施例2で得た二
重鎖[INAを含む溶液10μl (66mM Tri
s  −C1(pH7,6) 、5mM MgCh 、
5mM ATP 、リガーゼ5単位〕を加え、6°Cで
一晩反応させた。この反応液を用いて大腸菌!’IC1
061株を形質転換し、アンピシリン抵抗性の形質転換
体を得た。この形質転換体からプラスミドDNAを調製
し、制限酵素による分解パターンの検討更にはDNAシ
ークエンシングを行なった結果、pBR322のEco
RI とBamHI との間にヒルジンIIV−1合成
遺伝子が挿入されたプラスミドp 3010であること
を確認した。
Example 3 Cloning of synthetic gene (Fig. 4) The cloning vector was E. coli plasmid pBR3.
22 was used. [1coRI 4 units, Raw old 15
pBR32210 containing unit, c+ g solution? (150t
t l CIIIM Tris-CI (pH 8), 0
.. After reacting 6GsM MgCh, 0.6+aM mercaptoethanol, 6II+M NaCl) at 37°C for 3 hours, dephosphorylating enzyme (manufactured by CIP Boehringa) was added.
j volume containing 4 units, 12u l (500mM Tr
is-CI (pH 9,0), 1mM MgCIz
, 1mM ZnCI, ) were added and reacted at 37°C for 1 hour. After phenol extraction, it was precipitated with ethanol. Dilution buffer (10mM T
ris-CI, 1mM [1DTA] was added, and 10μl (66mM Tri
s-C1 (pH 7,6), 5mM MgCh,
5mM ATP, 5 units of ligase] was added, and the mixture was allowed to react at 6°C overnight. E. coli using this reaction solution! 'IC1
061 strain was transformed to obtain ampicillin-resistant transformants. Plasmid DNA was prepared from this transformant, the degradation pattern with restriction enzymes was examined, and DNA sequencing was performed.
It was confirmed that the plasmid p3010 had the hirudin IIV-1 synthetic gene inserted between RI and BamHI.

実施例4 発現用プラスミドの構築(第5図) 発現用プラスミドpKK223−3 (ファルマシア社
製)10.crgにEcoRI 4単位と反応液(50
mM Tris ・CI (pH7,5)、100mM
 NaCl、 10mM MgCh、1mM DTT〕
を加えて50μiとし1.37”C3時間反応させた。
Example 4 Construction of expression plasmid (Figure 5) Expression plasmid pKK223-3 (manufactured by Pharmacia) 10. 4 units of EcoRI and reaction solution (50
mM Tris・CI (pH 7,5), 100mM
NaCl, 10mM MgCh, 1mM DTT]
was added at 1.37"C for 3 hours at 50 .mu.i.

フェノール抽出後冷エタノール沈殿した。遠心分離して
得た残渣にSma Iバッファ −(20mM MCI
、10mM Tris−CI  (pH8,0)、10
mM MgC1g)とSma15単位とを加え50μ2
となし、37°C1−晩反応させた。フェノール抽出後
、冷エタノール沈殿した。
After phenol extraction, cold ethanol precipitation was performed. Sma I buffer (20mM MCI) was added to the residue obtained by centrifugation.
, 10mM Tris-CI (pH 8,0), 10
Add 1g of mM MgC) and 15 units of Sma to 50 μ2
The mixture was reacted at 37°C for one night. After phenol extraction, cold ethanol precipitation was performed.

遠心分離して得た残渣に実施例3に記載したのと同じ方
法で脱リン酸化酵素を作用させたのちフェノール抽出後
冷エタノールで沈殿させた。
The residue obtained by centrifugation was treated with a dephosphorylating enzyme in the same manner as described in Example 3, extracted with phenol, and precipitated with cold ethanol.

回収率80%として計算し希釈バッファー(10mM 
Tr−4s  −CI、 1mM EDTA)に溶かし
発現用ベクターDNAを調製した。
Dilution buffer (10mM
Expression vector DNA was prepared by dissolving it in Tr-4s-CI, 1mM EDTA).

一方、実施例3で得たプラスミドP3010 DIJA
100μg相当量にEcoRI 15単位とNrul 
24単位と反応溶液(50mM Tris  −CI 
(p)17.j) 、loOmM NaC1,10mM
 MgCh、1mM DT? )を加えて150μNと
し、37°Cで一晩反応させた。尿素を含まない5%ポ
リアクリルアミドゲル電気泳動にかけ目的とするところ
のバンド部分のゲルを切り取り実施例1と同様に処理し
て合成ヒルジン遺伝子を含むEcoR1/Nrulフラ
グメントを得た。回収率80%としてその量を計算し希
釈バッファーに溶かした。
On the other hand, plasmid P3010 DIJA obtained in Example 3
15 units of EcoRI and Nrul in an amount equivalent to 100 μg
24 units and reaction solution (50mM Tris-CI
(p)17. j) , loOmM NaCl, 10mM
MgCh, 1mM DT? ) was added to give a total pressure of 150 μN, and the reaction was allowed to proceed overnight at 37°C. The gel was subjected to urea-free 5% polyacrylamide gel electrophoresis, and the gel of the desired band was cut out and treated in the same manner as in Example 1 to obtain an EcoR1/Nrul fragment containing the synthetic hirudin gene. The amount was calculated assuming a recovery rate of 80% and dissolved in dilution buffer.

ベクターDNA 50ng相当量にDNAフラグメント
1100n相当量を合わせ、実施例3と同様にリガーゼ
を作用させた後、大腸菌MC1061株を形質転換し、
抗トロンビン活性を有する菌株MTE4014(FER
M P−9924)を得た。
An amount equivalent to 50 ng of vector DNA was combined with an amount equivalent to 1100 n of DNA fragments, and after being treated with ligase in the same manner as in Example 3, E. coli strain MC1061 was transformed.
Strain MTE4014 (FER) with antithrombin activity
MP-9924) was obtained.

実施例5 実施例4に記載した大腸菌MCl061株の代わりに大
腸菌JM107株(ヘセスダリサーチ社製)を用い、同
様の反応を行なって形質転換体(MTE4014J)を
得た。
Example 5 A transformant (MTE4014J) was obtained by performing the same reaction using E. coli strain JM107 (manufactured by Hesesda Research) in place of the E. coli MCl061 strain described in Example 4.

実施例6 実施例4に記載した大腸菌MC1061株の代わりに大
腸菌11BIOI株(宝酒造社製)を用い、同様の反応
を行なって形質転換体(?ITE40L411)を得た
Example 6 A transformant (?ITE40L411) was obtained by performing the same reaction using E. coli strain 11BIOI (manufactured by Takara Shuzo Co., Ltd.) in place of the E. coli strain MC1061 described in Example 4.

実施例7 実施例4に記載した大腸菌MC1061株の代わりに大
腸菌DE5α株(ベセスダリサーチ社製)を用い、同様
の反応を行ない形質転換体(MTE4014(1)を得
た。
Example 7 Using E. coli DE5α strain (manufactured by Bethesda Research) in place of the E. coli MC1061 strain described in Example 4, the same reaction was carried out to obtain a transformant (MTE4014(1)).

実施例8 L−broth(1%塩化ナトリウム、0.5%酵母エ
キス、1%トリプトン水?8?ff1)5dにMTE4
014株を植え、−晩37°Cで培養した。この培養液
1.5dを遠心分Naにかけ集菌後上層を除去した。得
られた菌体に2■のリゾチームを含む溶液(10mM 
Tris−CI、 1mM EDTA水溶液)  10
0.ffiを加え37°C30分加温し、遠心分離した
。得られた上層を分取した。この上層溶液50μ!と0
.25υ/Idのトロンビン溶液〔持田製薬製のウシ由
来凍結乾燥製剤を0.5%のウシ血清アルブミンを含む
50dリン酸バツフアー(pH7,5) ) 50 t
t lとをヘマトレーサー専用キュヘットにとり2分間
37°Cで加温後、フィブリノーゲン溶液(Miles
社製75%C1ottableウシ・フィブリノーゲン
を50mMリン酸バッファー(pH7゜5)iに溶解し
10■/Idに調製した)50μ!を加えて反応を開始
した。そしてヘマトレーサー■(3光バイオサイエンス
社製)を用いて抗トロンビン活性を測定した。その結果
、デスルファトヒルジンタンパク質の産生量は1.5X
103ATtl 100 (アンチトロンビンユニット
/オプチカルデンシティ−)であった。
Example 8 L-broth (1% sodium chloride, 0.5% yeast extract, 1% tryptone water?8?ff1) 5d with MTE4
014 strain was planted and cultured at 37°C overnight. 1.5 d of this culture solution was centrifuged to collect bacteria, and then the upper layer was removed. A solution containing 2μ of lysozyme (10mM
Tris-CI, 1mM EDTA aqueous solution) 10
0. ffi was added, heated at 37°C for 30 minutes, and centrifuged. The obtained upper layer was separated. This upper layer solution is 50μ! and 0
.. 25 υ/Id thrombin solution [Mochida Pharmaceutical's bovine-derived lyophilized preparation in 50 d phosphate buffer (pH 7,5) containing 0.5% bovine serum albumin] 50 t
After heating at 37°C for 2 minutes, add fibrinogen solution (Miles
75% C1ottable bovine fibrinogen manufactured by Co., Ltd. was dissolved in 50mM phosphate buffer (pH 7°5) and adjusted to 10μ/Id) 50μ! was added to start the reaction. Antithrombin activity was then measured using Hematotracer ■ (manufactured by Sanko Bioscience). As a result, the production amount of desulfatohirudin protein was 1.5X.
It was 103 ATtl 100 (antithrombin unit/optical density).

【図面の簡単な説明】[Brief explanation of the drawing]

図面はそれぞれ次の通りである。 第1図は、ヒルジンHV−1遺伝子を7個のフラグメン
トに分解した図、 第2図は、合成した7個のフラグメントのDNA配列を
示す図、 第3図は、ヒルジンI(V−1合成遺伝子を得るための
フラグメントの連続反応を示す図、 第4図は、合成遺伝子のクロニングを示す図、及び第5
図は、発現用プラスミドの構築を示す図である。 特許出願人  三井東圧化学株式会社 第3図  リン酸化およびフラグメントの連結反応↓ 
リン酸化 第2図 7   GATCCTTATTATTGTA^八TAT
TCTTCAGG八八TTへCGGACAAAATTへ
へTGTTTATGTGAΔGGATCTAATGT 
  70merCTTC八             
                        3
9第4圓   合成遺伝子のクローニングεcoRI 第5図   発現用プラスミドの構築
The drawings are as follows. Figure 1 shows the hirudin HV-1 gene broken down into seven fragments. Figure 2 shows the DNA sequence of the seven synthesized fragments. Figure 3 shows the hirudin I (V-1 synthesized Figure 4 shows the sequential reaction of fragments to obtain the gene, Figure 4 shows the cloning of the synthetic gene, and Figure 5 shows the cloning of the synthetic gene.
The figure shows the construction of an expression plasmid. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 3 Phosphorylation and fragment ligation reaction ↓
Phosphorylation Figure 2 7 GATCCTTATTATTGTA^8TAT
TCTTCAGG 88TT to CGGACAAAATT TGTTTATGTGAΔGGATCTAATGT
70merCTTC8
3
9 4th circle Cloning of synthetic gene εcoRI Figure 5 Construction of expression plasmid

Claims (1)

【特許請求の範囲】 1)トロンビン阻害活性を有するヒルジンタンパク質を
コードするDNAを含むDNA配列。 【遺伝子配列があります。】 2)請求項1記載のDNAを発現ベクターに挿入してな
る組み換えプラスミド。 3)発現ベクターがPKK223−3である請求項2記
載の組み換えプラスミド。 4)請求項2記載の組み換えプラスミドにより形質転換
された大腸菌。 5)請求項4記載の大腸菌を用いることを特徴とするデ
スルファトヒルジンタンパク質の製造方法。
[Scope of Claims] 1) A DNA sequence containing DNA encoding a hirudin protein having thrombin inhibitory activity. [There is a gene sequence. 2) A recombinant plasmid obtained by inserting the DNA according to claim 1 into an expression vector. 3) The recombinant plasmid according to claim 2, wherein the expression vector is PKK223-3. 4) E. coli transformed with the recombinant plasmid according to claim 2. 5) A method for producing desulfatohirudin protein, which comprises using the Escherichia coli according to claim 4.
JP63073200A 1988-03-29 1988-03-29 Production of thrombin inhibitor Pending JPH01247092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073200A JPH01247092A (en) 1988-03-29 1988-03-29 Production of thrombin inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073200A JPH01247092A (en) 1988-03-29 1988-03-29 Production of thrombin inhibitor

Publications (1)

Publication Number Publication Date
JPH01247092A true JPH01247092A (en) 1989-10-02

Family

ID=13511268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073200A Pending JPH01247092A (en) 1988-03-29 1988-03-29 Production of thrombin inhibitor

Country Status (1)

Country Link
JP (1) JPH01247092A (en)

Similar Documents

Publication Publication Date Title
FI90787C (en) Method for preparing desulphatohirudin
DK175337B1 (en) Method for Preparation of a Polypeptide with Hirudin Activity and DNA Sequences, Fusion Peptide, Hybrid Plasmid and Host Organism Useful in the Method
ES2067486T5 (en) INHIBITING PROTEIN OF TUMOR NECROSIS FACTOR (TNF) AND ITS PURIFICATION.
US5242810A (en) Bifunctional inhibitors of thrombin and platelet activation
NZ211666A (en) Pharmaceutical compositions comprising tumour necrosis factor and its production via recombinant techniques
JP3043764B2 (en) Mini-proinsulin, its manufacture and use
US4517294A (en) Human antithrombin III
JPS63276491A (en) Suppression of arg-serpine human plasminogen activating substance named pa1-2
US5516656A (en) Production of a new hirudin analog and anticoagulant pharmaceutical composition containing the same
US5945275A (en) Nematode-extracted anticoagulant protein
US5334532A (en) PDGF-B fusion protein, vectors, and host cells for use in production thereof
RU2186110C2 (en) Recombinant protein asp-pallidipin, method of its production and purification, vector, strain, pharmaceutical composition
IL88925A (en) Hirudin derivative and pharmaceutical composition containing same
AU708102B2 (en) Chimeric MCP and DAF proteins with cell surface localizing domain
JPH03501201A (en) 3-des-hydroxy-cystatin C polypeptide or a modification thereof produced by recombinant technology
JPS60192592A (en) Egrin gene
JP3490444B2 (en) Thrombin inhibitors from insect saliva.
US5661001A (en) High molecular weight desulphatohirudin
JPH01247092A (en) Production of thrombin inhibitor
EP0352089B1 (en) A modified human PSTI
US5328997A (en) Processes for making proteins having anticoagulant properties
US6077827A (en) Family of peptides known as xenoxins
JPH02145526A (en) Antidote for anticoagulant
JPH04500156A (en) Method for producing activated human neutrophil chemoattractant polypeptide
JP2623807B2 (en) Serine protease and serine protease gene