DK172880B1 - Process for the treatment of inert residual gases containing ethylene and CO - Google Patents

Process for the treatment of inert residual gases containing ethylene and CO Download PDF

Info

Publication number
DK172880B1
DK172880B1 DK198104851A DK485181A DK172880B1 DK 172880 B1 DK172880 B1 DK 172880B1 DK 198104851 A DK198104851 A DK 198104851A DK 485181 A DK485181 A DK 485181A DK 172880 B1 DK172880 B1 DK 172880B1
Authority
DK
Denmark
Prior art keywords
ethylene
chlorine
treatment
residual gases
catalyst
Prior art date
Application number
DK198104851A
Other languages
Danish (da)
Other versions
DK485181A (en
Inventor
Bernard Simon Jean-Marie Gorny
Henri Mathais
Original Assignee
Ugine Kuhlmann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9247651&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK172880(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ugine Kuhlmann filed Critical Ugine Kuhlmann
Publication of DK485181A publication Critical patent/DK485181A/en
Application granted granted Critical
Publication of DK172880B1 publication Critical patent/DK172880B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

i DK 172880 B1 r Den foreliggende opfindelse angår en fremgangsmåde til behandling af inerte restgasser indeholdende ethylen og CO, * der stammer fra fremstillingen af dichlorethan ved oxychlorering af ethylen.The present invention relates to a process for treating inert residual gases containing ethylene and CO resulting from the preparation of dichloroethane by oxychlorination of ethylene.

55

Industrielle fremgangsmåder til fremstilling af dichlorethan ved indvirkning af oxygen på en blanding af saltsyre og af ethylen fører aldrig til en fuldstændig omsætning, og de gasarter, der kommer fra oxychloreringsreaktoren, indeholder 10 altid ikke-omdannet ethylen. Denne ethylenmængde udgør et ikke ubetydeligt tab, og man har udviklet flere fremgangsmåder til reduktion af dette tab ved omdannelse af rest-ethylenen til dichlorethan ved hjælp af en kompletterende chlorering.Industrial processes for the preparation of dichloroethane by the action of oxygen on a mixture of hydrochloric acid and ethylene never lead to a complete reaction, and the gases coming from the oxychlorination reactor always contain unreacted ethylene. This amount of ethylene represents a not insignificant loss and several methods have been developed to reduce this loss by converting the residual ethylene to dichloroethane by means of a supplementary chlorination.

15 I FR patentskrift nr. 1 421 903 omtales, at man behandler den fra oxychloreringen stammende gas efter afkøling til kompensering af den dannede dichlorethan i dampfase med chlor over en katalysator, der er baseret på jern. Denne behandling 20 foregår ved høj temperatur - fra 80 - 250 ‘C - hvilket udgør en ulempe, eftersom gasformige blandinger indeholdende fugtig chlor er særdeles korroderende, hvilket medfører enten anvendelse af kostbare konstruktionsmaterialer eller en forøgelse af vedligeholdelsesomkostningerne. Derudover er det 25 nødvendigt at genopvarme gasstrømmen til en tilstrækkelig høj temperatur til, at reaktionen kan afvikles forholdsvis hurtigt, hvilket medfører et betydeligt energiforbrug.15 In FR patent specification No. 1,421,903, it is disclosed that the gas derived from the oxychlorination is treated after cooling to compensate the resulting dichloroethane in vapor phase with chlorine over an iron-based catalyst. This treatment 20 is carried out at high temperature - from 80 to 250 ° C - which is a disadvantage, since gaseous mixtures containing damp chlorine are highly corrosive, resulting in either the use of expensive construction materials or an increase in maintenance costs. In addition, it is necessary to reheat the gas stream to a sufficiently high temperature to allow the reaction to proceed relatively quickly, resulting in considerable energy consumption.

Samme kritik kan rettes mod FR patent nr. 1 575 262 og 30 mod DE patentansøgning 2 733 502 som under lignende betingelser beskriver anvendelsen af aluminium som katalysator.The same criticism may be directed to FR Patent Nos. 1 575 262 and 30 to DE Patent Application 2 733 502 which, under similar conditions, describe the use of aluminum as a catalyst.

Man har for at undgå disse ulemper foreslået at gennemføre chloreringen i flydende fase i et ikke-reaktionsdygtigt 35 opløsningsmiddel. I GB patentskrift nr. 1 364 610 omtales således en fremgangsmåde, hvori restgasserne fra DK 172880 B1 2 oxychloreringen efter tørring passerer igennem en reaktor, 1 som gennemstrømmes af en strøm af inert væske, fortrinsvis af 1.2- dichlorethan, samtidig med at chlor indføres i tilstrækkelig stor mængde til at omdanne en stor del af det 5 resterende ethylen. Chloreringsomsætningen finder sted mellem 35 og 85 'C i nærvær af ferrichlorid. På grund af den store fortyndingsgrad af ethylenen i restgassen nødvendiggør denne fremgangsmåde imidlertid, at man til kontakt anvender en meget kraftig strøm af dichlorethan, hvilket fører til 10 reaktorer med meget betydelige dimensioner og således til en kostbar investering i forhold til den forventede produktion af dichlorethan.To avoid these drawbacks, it has been proposed to carry out the liquid phase chlorination in a non-reactive solvent. Thus, GB Patent No. 1,364,610 discloses a process in which the residual gases from DK 172880 B1 2, after drying, pass through a reactor 1 which is flowed by a stream of inert liquid, preferably of 1,2-dichloroethane, while introducing chlorine into the sufficient amount to convert a large portion of the remaining ethylene. The chlorination reaction takes place between 35 and 85 ° C in the presence of ferric chloride. However, due to the high degree of dilution of the ethylene in the residual gas, this process requires the use of a very powerful stream of dichloroethane for contact, which leads to 10 reactors with very significant dimensions and thus a costly investment in relation to the expected production of dichloroethane. .

FR patent 491 792 citerer en fremgangsmåde til 15 fremstilling af dichlorethan ved reaktion mellem ethylen og chlor ved mindst 90 °C i nærvær af trækul eller sort benkul, uden yderligere præcisering af reaktionsbetingelserne. I henhold til Pascal, Vol. VIII, s. 768-769, reagerer chlor med CO i nærvær af aktivt kul 20 til dannelse af phosgen, hvorfor teknikken beskrevet i det franske patent ikke er tilrådelig ved behandlingen af inerte restgasser, som stammer fra fremstillingen af dichlorethan ved oxychlorering af ethylen - restgasser, som per definition indeholder CO.FR patent 491 792 cites a process for the preparation of dichloroethane by reaction between ethylene and chlorine at least 90 ° C in the presence of charcoal or black bone charcoal, without further clarifying the reaction conditions. According to Pascal, Vol. VIII, pp. 768-769, chlorine reacts with CO in the presence of activated carbon 20 to form phosgene, so the technique described in the French patent is not advisable in the treatment of inert residual gases resulting from the production of dichloroethane by the oxychlorination of ethylene - residual gases, which by definition contain CO.

25 Ved fremgangsmåden ifølge den foreliggende opfindelse undgås disse ulemper. Herved tillades, at man omdanner den i restgasser fra oxychlorering indeholdte ethylen til 1.2- dichlorethan med et fremragende udbytte, og at man arbejder ved en tilstrækkelig lav temperatur, således at man 30 begrænser energiomkostningerne nødvendiggjort af genopvarmningen af gassen og formindsker korrosionsrisikoen, uden at man behøver at anvende en meget kraftig cirkulation af opløsningsmidlet.In the process of the present invention, these disadvantages are avoided. This allows conversion of the ethylene residual gases from oxychlorination to 1.2-dichloroethane in excellent yield, and to operate at a sufficiently low temperature, thus reducing the energy costs necessitated by the re-heating of the gas and reducing the risk of corrosion. need to use a very vigorous circulation of the solvent.

DK 172880 B1 3 rDK 172880 B1 3 r

Opfindelsen angår således en fremgangsmåde til behandling . af inerte restgasser indeholdende ethylen og CO, som stammer fra fremstillingen af dichlorethan ved 5 oxychlorering af ethylen, ved at man i gasfase chlorerer restgassen med chlor i nærvær af en katalysator, hvilken fremgangsmåde er ejendommelig ved, at reaktionen udføres 'ved en temperatur på 15 - 80 °C i nærvær af en katalysator baseret på aktivt kul, hvor kontakttiden med 10 katalysatoren er på 0,1 - 10 sekunder.Thus, the invention relates to a method of treatment. of inert residual gases containing ethylene and CO arising from the preparation of dichloroethane by oxychlorination of ethylene by chlorinating in gas phase the residual gas with chlorine in the presence of a catalyst, the process being characterized in that the reaction is carried out at a temperature of 15 - 80 ° C in the presence of a catalyst based on activated charcoal, where the contact time with the catalyst is 0.1 - 10 seconds.

Til dette formål tilsætter man den ethylenholdige restgas chlor i et molforhold CLj/CjH* på mellem 0,5 og 1,5, i særdeleshed på mellem 0,8 og 1,1. Den således opnåede 15 blanding føres over en katalysator med en kontakttid på mellem 0,1 og 10 sekunder, fortrinsvis mellem 0,2 og 5 sekunder (idet kontakttiden er defineret som forholdet mellem katalysatorens rumfang (ml) og rumhastigheden (ml/s). Omsætningstemperaturen er på mellem 0 og 150 'C, fortrinsvis 20 mellem 15 og 80 'C. Katalysatoren kan f.eks. være aktivkul eller aluminiumoxid i form af kugler.To this end, the ethylene-containing residual chlorine in a molar ratio CL₂ / C₂H * of between 0.5 and 1.5 is added, in particular between 0.8 and 1.1. The mixture thus obtained is passed over a catalyst with a contact time of between 0.1 and 10 seconds, preferably between 0.2 and 5 seconds (the contact time being defined as the ratio of the catalyst volume (ml) to the space velocity (ml / s). The reaction temperature is between 0 and 150 ° C, preferably 20 between 15 and 80 ° C. The catalyst may be, for example, activated carbon or alumina in the form of spheres.

Omdannelsesgraden for ethylen er på mellem 90 og 100%, idet udbyttet af dichlorethan praktisk talt er kvantitativt.The degree of conversion of ethylene is between 90 and 100%, with the yield of dichloroethane practically quantitative.

2525

De efterfølgende eksempler belyser opfindelsen. De er i særdeleshed blevet gennemført på restgasser fra oxychlorering af ethylen; men en hvilken som helst inert restgas, der indeholder ethylen eller et andet umættet carbonhydrid, kan 30 blive behandlet på samme måde til opnåelse af en lettere genvinding af et produkt med højere molekylvægt.The following examples illustrate the invention. In particular, they have been carried out on residual gases from oxychlorination of ethylene; but any inert residual gas containing ethylene or other unsaturated hydrocarbon may be treated in the same manner to obtain easier recovery of a higher molecular weight product.

* DK 172880 B1 4 EKSEMPEL 1* Example 172880 B1 4 EXAMPLE 1

Man behandler en gasformig spildstrøm på 191 1/time stammende fra oxychlorering af ethylen, og hvis sammensætning er 5 følgende: C02 2,1% CO 1,2% C2H4 1,2% ! 10 HCl 0,1% I CHzCl-CHzCl 0,03% I 02 6,0% Ϊ N2 89,37% ! 15 med 2,23 1/time chlor i dampfase (dvs. et molforhold Cl^/Cjl^ ' på 0,973) ved en temperatur på 70 ‘C over 175 ml aktivkul ("Acticarbone AC 40" fra firmaet CECA S.A.). Kontakttiden er således 2,6 sekunder.A gaseous waste stream of 191 l / h derived from oxychlorination of ethylene is treated and the composition of which is as follows: CO 2 2.1% CO 1.2% C 2 H 4 1.2%! HCl 0.1% I CH 2 Cl-CH 2 Cl 0.03% I O 2 6.0% Ϊ N 2 89.37%! 15 with 2.23 l / hour of chlorine in vapor phase (i.e., a molar ratio C1 / C220 of 0.973) at a temperature of 70 ° C over 175 ml of activated charcoal ("Acticarbone AC 40" from CECA S.A.). Thus, the contact time is 2.6 seconds.

" 20 Z Under disse reaktionsbetingelser er omdannelsesgraden for « ethylen 97,5% EKSEMPEL 2 7 25"20 Z Under these reaction conditions the conversion rate of" ethylene is 97.5% EXAMPLE 2 7 25

Man behandler en strøm på 600 1/time af den i eks, 1 beskrevne gasspildstrøm med 6,9 1/time chlor (molforhold Cl;/C:H4 = 0,958) ved en temperatur på 70 'C over 88 ml aktivkul, hvilket svarer til en kontakttid på 0,4 sekunder.A flow of 600 l / h of the gas waste stream described in Example 1 is treated with 6.9 l / h of chlorine (molar ratio Cl; / C: H 4 = 0.958) at a temperature of 70 ° C over 88 ml of activated charcoal. for a contact time of 0.4 seconds.

3030

Omdannelsesgraden for ethylen er 96%.The conversion rate of ethylene is 96%.

EKSEMPEL 3 35 Man behandler 600 1/time af en gasstrøm som beskrevet i eks.EXAMPLE 3 35 600 l / h of a gas stream is treated as described in Ex.

1 med 7,9 1/time chlor (molforhold Cl2/C;H4 = 1,097) under de i. - m M — DK 172880 B1 5 samme reaktionsbetingelser som i eks. 2, dvs. ved en temperatur på 70 Ό og over 88 ml aktivkul (kontakttid: 0,4 sekunder).1 with 7.9 l / hr of chlorine (molar ratio Cl 2 / C; H 4 = 1.097) under the same reaction conditions as in Example 2, ie. at a temperature of 70 Ό and over 88 ml of activated charcoal (contact time: 0.4 seconds).

5 Omdannelsesgraden for ethylen er 96% som i eks. 2. Derimod genfinder man i gassen efter behandling et overskud af chlor, som ikke har omsat sig, dvs. 1,02 1/time; men dette overskud kan let fjernes ved klassiske fremgangsmåder.5 The conversion rate of ethylene is 96% as in Example 2. In contrast, after treatment, an excess of chlorine which has not reacted, is found in the gas, ie. 1.02 l / h; but this excess can be easily removed by classical methods.

10 EKSEMPEL 4EXAMPLE 4

Man behandler 180 1/time af en spildgasstrøm fra oxy- chlorering af ethylen, hvis sammensætning er som følger: 15 CO* 2,5% CO 1,0% C2H4 1,27% CHj.Cl-CHjCl 0,12% 20 Oz 6,0%180 l / h of a waste gas stream is treated from the oxychlorination of ethylene, the composition of which is as follows: 15 CO * 2.5% CO 1.0% C 2 H 4 1.27% CH 2 6.0%

Nz 89,11% med 2,35 1/time chlor (molforhold C12/C2H4 = 0, 984) ved en temperatur på 20 -c over 170 ml aktivkul. Kontakttiden er 25 således 3,5 sekunder.Nz 89.11% with 2.35 l / h chlorine (molar ratio C12 / C2H4 = 0.984) at a temperature of 20 ° C over 170 ml of activated carbon. Thus, the contact time is 25 seconds.

Under disse betingelser er omdannelsesgraden for ethylen 97,5%.Under these conditions, the conversion rate of ethylene is 97.5%.

30 EKSEMPEL 5EXAMPLE 5

Man behandler 216 1/time af en spildgasstrøm, som har følgende sammensætning: 35 CO* 1,9¾ CO 0,8%216 l / h of a waste gas stream having the following composition is treated: 35 CO * 1.9¾ CO 0.8%

MWMW

CC

DK 172880 B1 6 C2H4 0,7% 02 6,0% N2 90,6%DK 172880 B1 6 C2H4 0.7% 02 6.0% N2 90.6%

5 med 1,38 1/time chlor i dampfase ved en temperatur på 50 'C5 with 1.38 l / hour chlorine in vapor phase at a temperature of 50 ° C

over 175 ml aktivkul, dvs. med en kontakttid på 2,9 sekunder.over 175 ml of activated charcoal, ie with a contact time of 2.9 seconds.

! I Under disse reaktionsbetingelser, hvorved molforholdet chlor/ethylen kun er 0,913, er omdannelsesgraden for ethylen j 10 89%.! Under these reaction conditions, where the chlorine / ethylene molar ratio is only 0.913, the degree of conversion of ethylene is 10 89%.

i EKSEMPEL 6in Example 6

Man behandler 168 1/time af den i eks. 5 beskrevne 15 spildgasstrøm med 1,18 1/time chlor (molforhold C12/C2H4 * 1,003) ved en temperatur på 90 'C over 175 ml aluminiumoxid i kugleform, hvilket udgør en kontakttid på 2,8 sekunder.168 liters per hour of the 15 waste gas stream described in Example 5 are treated with 1.18 liters per hour chlorine (molar ratio C12 / C2H4 * 1.003) at a temperature of 90 ° C over 175 ml of spherical alumina, which provides a contact time of 2.8 seconds.

Omdannelsesgraden for ethylen er 97,2%.The conversion rate of ethylene is 97.2%.

20 I EKSEMPEL 7In Example 7

Man behandler 189 1/time af den i eks. 5 beskrevne spildgasstrøm med 1,8 1/time chlor (molforhold C12/C2H4 « 25 1,360) ved en temperatur på 50 'Cover 175 ml aluminiumoxid i form af kugler, dvs. en kontakttid på 2,5 sekunder.189 l / hr of the waste gas stream described in Example 5 is treated with 1.8 l / hr of chlorine (molar ratio C12 / C2H4 «25 1.360) at a temperature of 50 'Cover 175 ml of alumina in the form of spheres, ie. a contact time of 2.5 seconds.

Omdannelsesgraden for ethylen er 100%. Man genfinder i gassen efter behandling overskud af chlor, som ikke er omsat, dvs.The degree of conversion of ethylene is 100%. You find in the gas after treatment excess chlorine which is not reacted, ie.

30 0,5 1/time.0.5 l / hr.

EKSEMPEL 8 i iEXAMPLE 8 i

Man behandler 1140 1/time af en spildgasstrøm fra oxy- 35 chloreringen af ethylen, hvis sammensætning er følgende: t: a Ψ'^Ψί DK 172880 B1 7 C02 1,6% CO 0,7% C2H, 0,59% CHjCl-CHjCl 0,11% 5 02 6,0% N2 91% med 12,6 1/tlme chlor (molforhold Cl2/C2H, = 1,873) ved en temperatur på 90 ‘Cover 175 ml aluminiumoxid. Kontakttiden 10 er således 0,4 sekunder.1140 l / h of a waste gas stream is treated from the oxychlorination of ethylene, the composition of which is as follows: t: a Ψ ^ Ψί DK 172880 B1 7 CO 2 1.6% CO 0.7% C 2 H, 0.59% CH 2 Cl -CH 2 Cl 0.11% 5.02 6.0% N 2 91% with 12.6 l / h chlorine (molar ratio Cl 2 / C 2 H, = 1.873) at a temperature of 90 'Cover 175 ml alumina. Thus, the contact time 10 is 0.4 seconds.

Omdannelsesgraden for ethylen er 96,6 %. Man genfinder i gassen efter behandlingen overskuddet af chlor, som ikke har omsat sig, dvs. 6,1 1/time.The conversion rate of ethylene is 96.6%. The gas is recovered after the treatment of the excess chlorine which has not reacted, ie. 6.1 l / hr.

Claims (2)

1. Fremgangsmåde til behandling af inerte restgasser indeholdende ethylen og CO, som stammer fra 5 fremstillingen af dichlorethan ved oxychlorering af ethylen, ved at man i gasfase chlorerer restgassen med chlor i nærvær af en katalysator, kendetegnet ved, at reaktionen udføres ved en temperatur på 15 - 80 °C i nærvær af en katalysator baseret på aktivt kul, hvor 10 kontakttiden med katalysatoren er på 0,1 - 10 sekunder.A process for treating inert residual gases containing ethylene and CO resulting from the preparation of dichloroethane by oxychlorination of ethylene by chlorinating the residual gas with chlorine in the presence of a catalyst, characterized in that the reaction is carried out at a temperature of 15 - 80 ° C in the presence of an activated charcoal catalyst, with the contact time with the catalyst being 0.1 - 10 seconds. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at molforholdet chlor/umættet ethylen er på 0,5 - 1,5, fortrinsvis på 0,8 - 1,1. I 1 iProcess according to claim 1, characterized in that the chlorine / unsaturated ethylene molar ratio is 0.5 - 1.5, preferably 0.8 - 1.1. I 1 i
DK198104851A 1980-11-04 1981-11-03 Process for the treatment of inert residual gases containing ethylene and CO DK172880B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8023510A FR2493307A1 (en) 1980-11-04 1980-11-04 PROCESS FOR TREATING INERT RESIDUAL GAS CONTAINING UNSATURATED HYDROCARBONS
FR8023510 1980-11-04

Publications (2)

Publication Number Publication Date
DK485181A DK485181A (en) 1982-05-05
DK172880B1 true DK172880B1 (en) 1999-09-06

Family

ID=9247651

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198104851A DK172880B1 (en) 1980-11-04 1981-11-03 Process for the treatment of inert residual gases containing ethylene and CO

Country Status (15)

Country Link
EP (1) EP0051524B1 (en)
JP (1) JPS57106628A (en)
KR (1) KR850001546B1 (en)
AR (1) AR227206A1 (en)
AT (1) AT379374B (en)
BE (1) BE890813A (en)
BR (1) BR8107121A (en)
CH (1) CH651004A5 (en)
DE (1) DE3167745D1 (en)
DK (1) DK172880B1 (en)
FR (1) FR2493307A1 (en)
GB (1) GB2086898B (en)
IL (1) IL63941A (en)
IT (1) IT1210613B (en)
SE (1) SE442194B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356149B2 (en) * 1999-08-23 2009-11-04 旭硝子株式会社 Method for treating 1,1,1,3,3-pentafluoropropane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR491792A (en) * 1918-09-16 1919-06-17 Georges Charles Hugues Le Floc Manufacturing process of ethylene chloride and trichloroethane
DE1793835C3 (en) * 1967-07-31 1979-06-21 Stauffer Chemical Co Process for the simultaneous production of 1,2-dichloroethane and chlorine-free hydrogen chloride from ethylene and chlorine-containing hydrogen chloride
DE2400417C3 (en) * 1974-01-05 1979-05-03 Basf Ag, 6700 Ludwigshafen Process for the elimination of the air-polluting exhaust gas in the large-scale synthesis of dichloroethane by oxychlorination of ethylene
US4029714A (en) * 1975-11-05 1977-06-14 Stauffer Chemical Company Ethylene/chlorine elimination process
DE2556521B1 (en) * 1975-12-16 1977-03-24 Hoechst Ag PROCESS FOR PURIFICATION OF HYDROGEN CHLORINE FOR THE PRODUCTION OF 1,2-DICHLORAETHANE
DE2733502C3 (en) * 1977-07-25 1980-09-25 Wacker-Chemie Gmbh, 8000 Muenchen Process for the production of 1,2-dichloroethane from ethylene-containing residual gases which originate from an oxychlorination

Also Published As

Publication number Publication date
FR2493307A1 (en) 1982-05-07
IL63941A0 (en) 1981-12-31
GB2086898A (en) 1982-05-19
KR830007473A (en) 1983-10-21
ATA460981A (en) 1985-05-15
FR2493307B1 (en) 1984-08-10
EP0051524A1 (en) 1982-05-12
AT379374B (en) 1985-12-27
AR227206A1 (en) 1982-09-30
DK485181A (en) 1982-05-05
IT1210613B (en) 1989-09-14
IL63941A (en) 1984-12-31
DE3167745D1 (en) 1985-01-24
CH651004A5 (en) 1985-08-30
SE8106500L (en) 1982-05-05
BE890813A (en) 1982-04-21
JPH0134206B2 (en) 1989-07-18
EP0051524B1 (en) 1984-12-12
GB2086898B (en) 1984-10-10
KR850001546B1 (en) 1985-10-17
BR8107121A (en) 1982-07-20
SE442194B (en) 1985-12-09
JPS57106628A (en) 1982-07-02
IT8168270A0 (en) 1981-10-01

Similar Documents

Publication Publication Date Title
US4129604A (en) Reactor effluent quench system
US4172099A (en) Process for chlorination of ethylene
CA1123170A (en) Process for the combined manufacture of chlorinated hydrocarbons and sodium bicarbonate
DK172880B1 (en) Process for the treatment of inert residual gases containing ethylene and CO
JPH0240049B2 (en)
NO148739B (en) SEMI-FLOATING PLATFORM CONSTRUCTION.
Calingaert et al. The partial additive chlorination of the benzene ring. I. Alpha benzene tetrachloride
US3948622A (en) Separation of aqueous hydrogen chloride from gaseous chlorinated hydrocarbons
JPH08291087A (en) Preparation of 1,1-difluoroethane
HU191194B (en) Process for producing of 1,2 diclore-ethan
McBee et al. Utilization of polychloropropanes and hexachloroethane
KR790001615B1 (en) Oxychlorination of methane
US4263269A (en) Removal of organic contaminants from aqueous hydrochloric acid
SU1110379A3 (en) Process for purifying 1,2-dichloroethane unreacted in pyrolysis process
GB916407A (en) Production of methyl chloroform
US4028427A (en) Aqueous stream treatment in chlorinated hydrocarbon production
US4207267A (en) Dehydrochlorination of 1,2-dichloroethane
HU181498B (en) Process for preparing monochloro-acetyl-chloride and monochloro-acetic acid by means the hydration of trichloro-ethylene
FI101790B (en) Method of drying hydrocarbons and its application to the production of chloromethanes
KR19990087896A (en) Process for the continuous preparation of mono- and/or bis(mono- and/or di- and/or trichloromethyl)benzenes
US4264530A (en) Process for preparing high purity tetrafluoromethane
SU386890A1 (en) METHOD OF PREPARING N-OR ISODIHLORALKANE
US3065161A (en) Process for the manufacture of chlorosuccinic acid dichlorides
JPS5535010A (en) Production of polychlorinated ethane
RU2051891C1 (en) Process for preparing dichloroethane