US4263269A - Removal of organic contaminants from aqueous hydrochloric acid - Google Patents

Removal of organic contaminants from aqueous hydrochloric acid Download PDF

Info

Publication number
US4263269A
US4263269A US06/146,723 US14672380A US4263269A US 4263269 A US4263269 A US 4263269A US 14672380 A US14672380 A US 14672380A US 4263269 A US4263269 A US 4263269A
Authority
US
United States
Prior art keywords
chloral
hydrochloric acid
aqueous hydrochloric
aqueous
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/146,723
Inventor
John C. Little
Charles R. Youngson, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US06/146,723 priority Critical patent/US4263269A/en
Application granted granted Critical
Publication of US4263269A publication Critical patent/US4263269A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride

Definitions

  • the present invention relates to the removal of organic contaminants, such as chloral, from aqueous HCl.
  • organic contaminants such as chloral
  • the problems associated with the removal of chloral from aqueous HCl are well known to those skilled in the art.
  • Hydrogen chloride resulting from chlorination reactions often contains organic materials as undesirable contaminants. Since the hydrogen chloride (HCl) is generally recovered with water, the resulting aqueous hydrochloric acid typically contains such undesirable contaminants.
  • the oxychlorination of ethylene with oxygen and HCl over a copper-containing catalyst yields ethylene dichloride (EDC) and water with small amounts of organic contaminants, such as chloral and others such as ethylene chlorohydrin, ethanol, dichloracetaldehyde and the like, which must be removed from the water-EDC-unreacted HCl mixture for a variety of reasons well known in the art.
  • EDC ethylene dichloride
  • aqueous hydrochloric acid solutions contaminated with undesired organic contaminants can, surprisingly, be purified by subjecting the same to superatmospheric pressure distillation, thereby removing the organic contaminants from the aqueous acid and recovering aqueous hydrochloric acid substantially free from organic contaminants.
  • the process of the present invention is particularly adapted for the removal and dehydration of chloral from aqueous hydrochloric acid, the same being accomplished at low energy consumption rates and with little overhead loss of HCl.
  • the process is preferably carried out by countercurrently contacting the contaminated acid with steam at superatmospheric pressures in a packed column which assures efficient contact between the steam and acid.
  • the invention is a process for the removal of organic contaminants from aqueous hydrochloric acid comprising countercurrently contacting said aqueous hydrochloric acid with steam or reboiled aqueous acid vapors at superatmospheric pressures, thereby removing said organic contaminants from the aqueous acid, and recovering said aqueous hydrochloric acid substantially free from organic contaminants.
  • Steam is preferably employed, although the aqueous HCl column bottoms can be regenerated with steam and the vapors recirculated.
  • the aqueous hydrochloric acid which can be treated according to the present invention results as a by-product from a chlorination procedure, such as noted in the Background hereof, and contains one or more volatile organic contaminants such as, for example, chloral, EDC, mono- and di-chloroacetaldehyde, ethanol, ethylene chlorohydrin and the like.
  • volatile organic contaminants such as, for example, chloral, EDC, mono- and di-chloroacetaldehyde, ethanol, ethylene chlorohydrin and the like.
  • organic materials are typically present in amounts ranging from about 0.1 to about 50% by weight or more of the aqueous acid solution. The exact amount of any given contaminant will, of course, vary with the contaminant in question and the process by which the aqueous acid was produced.
  • the present process can be used to treat chloral-contaminated aqueous HCl solutions containing from up to about 25 wt. % HCl and from about 0.2 to about 50 or more wt. % chloral, preferably and more typically from about 0.2 to about 3.0 wt. % chloral (e.g., 2000 to 30,000 ppm).
  • Other contaminants such as ethanol and ethylene chlorohydrin can be present in amounts up to about 50% by weight or more; the amounts of mono- and di-chloroacetaldehyde, when present, generally range up to about 1% by weight or more while EDC usually is present in amounts up to about 4% by weight or more.
  • Treated HCl solutions can thus be obtained having less than about 0.2, preferably less than about 0.1 wt. % chloral, and most preferably less than about 0.01 wt. % chloral.
  • the temperatures and pressures of the process generally range from about 100 to about 210° C. at superatmospheric pressures of from about 1 to about 230 psig. Preferred operating temperatures range from about 130 to about 200° C. while pressures of from about 30 to about 230 psig are preferably employed.
  • a preferred aqueous HCl contaminated solution to be treated according to the process comprises from about 10 to about20 wt. % HCl and from about 0.2 to about 3 wt. % chloral.
  • the aqueous HCl stream to be treated according to the invention is derived from the oxychlorination of ethylene with oxygen and HCl and comprises from about 7 to about 20 wt. % HCl, from about 0.2 to about 3 wt. % chloral, 0 to about 0.5 wt. % EDC, from about 500 to about 10,000 ppm dichloroacetaldehyde, from about 10 to about 100 ppm monochloroacetaldehyde, from about 10 to about 1000 ppm ethanol, and from about 10 to about 1000 ppm ethylene chlorohydrin.
  • the process of the present invention is conducted so as to recover purified HCl streams containing less than 0.1, more preferably less than 0.01 wt. % chloral, and less than about 10 ppm EDC, or other organic contaminants.
  • the process of the present invention is carried out in a packed column, tray column, or other apparatus which assures efficient contact between the gas and the liquid.
  • Contact of the steam and aqueous acid is usually accomplished in a countercurrent flow so as to assure efficient operation and adequate contact of steam and acid.
  • Rates at which the aqueous hydrochloric acid may be treated and the organic contaminants removed are, of course, dependent upon the organic contaminant to be removed, the temperature and pressure employed, type and size of contacting means used, concentration of the acid and the like.
  • a nominal 2-inch diameter teflon lined pipe seven feet long, packed to a height of 5 feet with 1/4-inch ceramic saddles is used as the separating equipment. Thirty-five pounds per hour of an aqueous solution containing 2.2 wt. % chloral, 0.08 wt. % EDC, and 9.5% HCl at 139° is continuously fed to the top layer of packing, while 6.7#/hour of steam at 75 psig is piped into the column just below the lower packing support. Vapor exiting the column top (overheads) at 7#/hour, is condensed and found to contain 11 wt. % chloral, 0.35 wt. % EDC, and 2.4 wt.
  • Example 2 Utilizing the equipment and procedures of Example 1, additional runs were carried out at various column temperatures (115°-157° C.) and pressures (9-60 psig), feed flows, steam flows, and feed content (0.2-10 wt. % HCl; up to 6800 ppm EDC and 400-26,000 ppm chloral) and temperatures. As a result of such operations, purified HCl solutions were obtained, all of which had little or no EDC content and the majority of which had from 0 to 70 ppm chloral.
  • a nominal 3-inch diameter teflon lined pipe seven feet long packed with a 5-foot layer of 1/4" ceramic saddles below the feed point and with 1 foot of 1/4" ceramic saddles above the feed point is used as the separating equipment.
  • One hundred and twenty pounds per hour of an aqueous solution containing 1906 ppm chloral, 435 ppm ethylene chlorohydrin 726 ppm dichloroacetaldehyde, 403 ppm EDC, 17 ppm monochloroacetaldehyde, 198 ppm ethanol and 17.6% HCl at 140° C. is continuously fed to the top layer of the 5-foot packed section while steam (24#/hour; 80 psig) is piped into the column just below the lower packing support.
  • the best mode of practising the invention presently known to the inventors is the steam stripping of an aqueous hydrogen chloride solution resulting from the quenching of oxychlorination reactor gases and containing from about 0.2 to about 3.0 wt. % chloral.
  • the stripping is carried out in a packed column at about 60 psig and at temperatures of about 155 to about 160° C.

Abstract

Method of removing organic contaminants from aqueous hydrochloric acid comprising countercurrently contacting the aqueous acid containing the contaminants and steam at superatmospheric pressures, and recovering said aqueous acid substantially free from organic contaminants. The invention is particularly adapted for the removal of chloral from aqueous hydrochloric acid.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This is a continuation of application Ser. No. 960,377 filed Nov. 13, 1978, and now abandoned.
BACKGROUND OF THE INVENTION
The present invention relates to the removal of organic contaminants, such as chloral, from aqueous HCl. The problems associated with the removal of chloral from aqueous HCl are well known to those skilled in the art.
Hydrogen chloride resulting from chlorination reactions, either as unreacted starting material or as a by-product of such reactions, often contains organic materials as undesirable contaminants. Since the hydrogen chloride (HCl) is generally recovered with water, the resulting aqueous hydrochloric acid typically contains such undesirable contaminants. For example, the oxychlorination of ethylene with oxygen and HCl over a copper-containing catalyst yields ethylene dichloride (EDC) and water with small amounts of organic contaminants, such as chloral and others such as ethylene chlorohydrin, ethanol, dichloracetaldehyde and the like, which must be removed from the water-EDC-unreacted HCl mixture for a variety of reasons well known in the art. While a variety of methods can be employed to remove chloral from the EDC, such as, for example, as noted in U.S. Pat. Nos. 3,378,597; 3,488,398 and 3,996,300, the remaining HCl ends up either neutralized with base or contaminated with chloral and other organic contaminants if absorbed out in water before the base wash. Aqeuous HCl solutions contaminated with chloral also result from the manufacture of chloral by aqueous phase chlorination of materials such as acetaldehyde, paraldehyde, alcohol or their partially chlorinated derivatives.
The removal of chloral from aqueous HCl by distillation at atmospheric pressure is taught in Japanese Pat. No. 49 83,694, wherein the distillation is carried out in a batch still. However, a large portion of the HCl feed must be distilled off to reduce the chloral level; for example, about 50% of the feed must be distilled off in 10% HCl to reduce the chloral level to about 80 ppm. Such method is disadvantageous in that a high energy input level is required and in that large amounts of the HCl feed are lost overhead. In U.S. Pat. No. 2,746,912, HCl gas is added to concentrated chloral-water mixtures in an amount sufficient to provide 1 part HCl to 4 parts of water and the mixture is continuously distilled. While substantially water-free chloral is obtained as the overhead, the 10-36% aqueous HCl bottoms are contaminated with up to about 12% by weight chloral. Distillation of aqueous solutions of chloral, mono- and dichloroacetaldehyde at 1-5 atmospheres to remove the chloracetaldehydes is taught in German Pat. No. 1,129,942 a substantially chlorine-free residue being thus obtained.
SUMMARY OF THE INVENTION
It has been discovered that aqueous hydrochloric acid solutions contaminated with undesired organic contaminants can, surprisingly, be purified by subjecting the same to superatmospheric pressure distillation, thereby removing the organic contaminants from the aqueous acid and recovering aqueous hydrochloric acid substantially free from organic contaminants. The process of the present invention is particularly adapted for the removal and dehydration of chloral from aqueous hydrochloric acid, the same being accomplished at low energy consumption rates and with little overhead loss of HCl. The process is preferably carried out by countercurrently contacting the contaminated acid with steam at superatmospheric pressures in a packed column which assures efficient contact between the steam and acid.
DETAILED DESCRIPTION
The invention is a process for the removal of organic contaminants from aqueous hydrochloric acid comprising countercurrently contacting said aqueous hydrochloric acid with steam or reboiled aqueous acid vapors at superatmospheric pressures, thereby removing said organic contaminants from the aqueous acid, and recovering said aqueous hydrochloric acid substantially free from organic contaminants. Steam is preferably employed, although the aqueous HCl column bottoms can be regenerated with steam and the vapors recirculated.
Generally, the aqueous hydrochloric acid which can be treated according to the present invention results as a by-product from a chlorination procedure, such as noted in the Background hereof, and contains one or more volatile organic contaminants such as, for example, chloral, EDC, mono- and di-chloroacetaldehyde, ethanol, ethylene chlorohydrin and the like. These organic materials are typically present in amounts ranging from about 0.1 to about 50% by weight or more of the aqueous acid solution. The exact amount of any given contaminant will, of course, vary with the contaminant in question and the process by which the aqueous acid was produced. By say of illustration, the present process can be used to treat chloral-contaminated aqueous HCl solutions containing from up to about 25 wt. % HCl and from about 0.2 to about 50 or more wt. % chloral, preferably and more typically from about 0.2 to about 3.0 wt. % chloral (e.g., 2000 to 30,000 ppm). Other contaminants, such as ethanol and ethylene chlorohydrin can be present in amounts up to about 50% by weight or more; the amounts of mono- and di-chloroacetaldehyde, when present, generally range up to about 1% by weight or more while EDC usually is present in amounts up to about 4% by weight or more. Treated HCl solutions can thus be obtained having less than about 0.2, preferably less than about 0.1 wt. % chloral, and most preferably less than about 0.01 wt. % chloral.
The temperatures and pressures of the process generally range from about 100 to about 210° C. at superatmospheric pressures of from about 1 to about 230 psig. Preferred operating temperatures range from about 130 to about 200° C. while pressures of from about 30 to about 230 psig are preferably employed. A preferred aqueous HCl contaminated solution to be treated according to the process comprises from about 10 to about20 wt. % HCl and from about 0.2 to about 3 wt. % chloral.
In another preferred embodiment, the aqueous HCl stream to be treated according to the invention is derived from the oxychlorination of ethylene with oxygen and HCl and comprises from about 7 to about 20 wt. % HCl, from about 0.2 to about 3 wt. % chloral, 0 to about 0.5 wt. % EDC, from about 500 to about 10,000 ppm dichloroacetaldehyde, from about 10 to about 100 ppm monochloroacetaldehyde, from about 10 to about 1000 ppm ethanol, and from about 10 to about 1000 ppm ethylene chlorohydrin. Preferably, the process of the present invention is conducted so as to recover purified HCl streams containing less than 0.1, more preferably less than 0.01 wt. % chloral, and less than about 10 ppm EDC, or other organic contaminants.
Preferably, the process of the present invention is carried out in a packed column, tray column, or other apparatus which assures efficient contact between the gas and the liquid. Contact of the steam and aqueous acid is usually accomplished in a countercurrent flow so as to assure efficient operation and adequate contact of steam and acid. Rates at which the aqueous hydrochloric acid may be treated and the organic contaminants removed are, of course, dependent upon the organic contaminant to be removed, the temperature and pressure employed, type and size of contacting means used, concentration of the acid and the like.
Employment of the process of the present invention usually results in a product of aqueous hydrochloric acid which is substantially free of organic impurities.
The invention is further illustrated by the following examples. All % are by weight unless otherwise stated.
EXAMPLE 1
A nominal 2-inch diameter teflon lined pipe seven feet long, packed to a height of 5 feet with 1/4-inch ceramic saddles is used as the separating equipment. Thirty-five pounds per hour of an aqueous solution containing 2.2 wt. % chloral, 0.08 wt. % EDC, and 9.5% HCl at 139° is continuously fed to the top layer of packing, while 6.7#/hour of steam at 75 psig is piped into the column just below the lower packing support. Vapor exiting the column top (overheads) at 7#/hour, is condensed and found to contain 11 wt. % chloral, 0.35 wt. % EDC, and 2.4 wt. % HCl, while liquid exiting the column bottom (Bottoms) at 35#/hour is found to contain only 40 ppm chloral, 0 ppm EDC, and 9.1 wt. % HCl. The column operated at 156° C. and at 60 psig with pressure controlled through an N2 pad. The HCl overhead loss amounted to only about 5 %.
EXAMPLE 2
Utilizing the equipment and procedures of Example 1, additional runs were carried out at various column temperatures (115°-157° C.) and pressures (9-60 psig), feed flows, steam flows, and feed content (0.2-10 wt. % HCl; up to 6800 ppm EDC and 400-26,000 ppm chloral) and temperatures. As a result of such operations, purified HCl solutions were obtained, all of which had little or no EDC content and the majority of which had from 0 to 70 ppm chloral.
EXAMPLE 3
A nominal 3-inch diameter teflon lined pipe seven feet long packed with a 5-foot layer of 1/4" ceramic saddles below the feed point and with 1 foot of 1/4" ceramic saddles above the feed point is used as the separating equipment. One hundred and twenty pounds per hour of an aqueous solution containing 1906 ppm chloral, 435 ppm ethylene chlorohydrin 726 ppm dichloroacetaldehyde, 403 ppm EDC, 17 ppm monochloroacetaldehyde, 198 ppm ethanol and 17.6% HCl at 140° C. is continuously fed to the top layer of the 5-foot packed section while steam (24#/hour; 80 psig) is piped into the column just below the lower packing support. Water (4.3#/hour) is pumped into the top of the column above the 1-foot section of packing. The HCl liquid exits the column bottom at a rate of 134#/hour and is found to contain only 144 ppm ethylene chlorohydrin and no other organic contaminants. The column operated at 158° C. and 60 psig with pressure controlled through a nitrogen pad.
The best mode of practising the invention presently known to the inventors is the steam stripping of an aqueous hydrogen chloride solution resulting from the quenching of oxychlorination reactor gases and containing from about 0.2 to about 3.0 wt. % chloral. The stripping is carried out in a packed column at about 60 psig and at temperatures of about 155 to about 160° C.

Claims (8)

What is claimed is:
1. A method of removing organic contaminants from aqueous hydrochloric acid which comprises countercurrently contacting said aqueous acid with steam or reboiled aqueous acid vapors under superatmospheric pressure conditions of from 30 to 250 psig, thereby removing organic contaminants therefrom, and thereafter recovering a purified, aqueous hydrochloric acid solution substantially free from organic contaminants.
2. The method of claim 1 wherein the organic contaminant is chloral.
3. The method of claim 2 wherein the purified acid solution contains less than about 0.1 wt. % chloral.
4. The method of claim 2 wherein the purified acid solution contains less than about 0.01 wt. % chloral.
5. The method of claim 1 wherein the aqueous hydrochloric acid is contaminated with chloral and EDC derived from the oxychlorination of ethylene with oxygen and HCl and the purified aqueous hydrochloric acid solution contains less than about 0.1 wt. % chloral.
6. The method of claim 5 wherein the purified solution contains less than about 10 ppm EDC.
7. The method of claim 5 wherein the purified aqueous hydrochloric acid solution contains less than about 0.01 wt. % chloral.
8. The method of claim 7 wherein the purified aqueous hydrochloric acid solution contains less than about 10 ppm EDC.
US06/146,723 1978-11-13 1980-05-05 Removal of organic contaminants from aqueous hydrochloric acid Expired - Lifetime US4263269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/146,723 US4263269A (en) 1978-11-13 1980-05-05 Removal of organic contaminants from aqueous hydrochloric acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96037778A 1978-11-13 1978-11-13
US06/146,723 US4263269A (en) 1978-11-13 1980-05-05 Removal of organic contaminants from aqueous hydrochloric acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US96037778A Continuation 1978-11-13 1978-11-13

Publications (1)

Publication Number Publication Date
US4263269A true US4263269A (en) 1981-04-21

Family

ID=26844234

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/146,723 Expired - Lifetime US4263269A (en) 1978-11-13 1980-05-05 Removal of organic contaminants from aqueous hydrochloric acid

Country Status (1)

Country Link
US (1) US4263269A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088145A2 (en) * 1982-03-05 1983-09-14 Hüls Aktiengesellschaft Process for the purification of hydrochloric acids
US4628122A (en) * 1985-11-01 1986-12-09 Ppg Industries, Inc. Process for concentrating and recovering chloral
US4814528A (en) * 1985-09-26 1989-03-21 Ppg Industries, Inc. Removing water from crude 1,2-dichloroethane compositions containing chloral hydrate
US4986974A (en) * 1988-08-31 1991-01-22 Hoechst Aktiengesellschaft Process for the separation of halogenated hydrocarbons from hydrochloric acid
US5558747A (en) * 1993-06-25 1996-09-24 Amvac Chemical Corporation Process for azeotropic distillation of aqueous chloral mixtures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746912A (en) * 1951-12-15 1956-05-22 Allied Chem & Dye Corp Production of chloral of low water content
DE1129942B (en) * 1960-07-20 1962-05-24 Consortium Elektrochem Ind Process for the separation of chloroacetaldehydes from dilute aqueous solutions
US3140224A (en) * 1960-05-02 1964-07-07 Beloit Iron Works Apparatus for compaction of formed sheet for improved properties
US3378597A (en) * 1962-03-27 1968-04-16 Pittsburgh Plate Glass Co Method of recovering high purity ethylene dichloride from ethylene dichloride gas stream
US3488398A (en) * 1964-04-23 1970-01-06 Goodrich Co B F Method of preparing 1,2-dichloroethane
US3996300A (en) * 1976-03-18 1976-12-07 The Dow Chemical Company Removal of chloral from effluent gas of 1,2-dichloroethane synthesis
US4028427A (en) * 1975-08-27 1977-06-07 The Lummus Company Aqueous stream treatment in chlorinated hydrocarbon production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746912A (en) * 1951-12-15 1956-05-22 Allied Chem & Dye Corp Production of chloral of low water content
US3140224A (en) * 1960-05-02 1964-07-07 Beloit Iron Works Apparatus for compaction of formed sheet for improved properties
DE1129942B (en) * 1960-07-20 1962-05-24 Consortium Elektrochem Ind Process for the separation of chloroacetaldehydes from dilute aqueous solutions
US3378597A (en) * 1962-03-27 1968-04-16 Pittsburgh Plate Glass Co Method of recovering high purity ethylene dichloride from ethylene dichloride gas stream
US3488398A (en) * 1964-04-23 1970-01-06 Goodrich Co B F Method of preparing 1,2-dichloroethane
US4028427A (en) * 1975-08-27 1977-06-07 The Lummus Company Aqueous stream treatment in chlorinated hydrocarbon production
US3996300A (en) * 1976-03-18 1976-12-07 The Dow Chemical Company Removal of chloral from effluent gas of 1,2-dichloroethane synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088145A2 (en) * 1982-03-05 1983-09-14 Hüls Aktiengesellschaft Process for the purification of hydrochloric acids
EP0088145A3 (en) * 1982-03-05 1984-03-07 Chemische Werke Huls Ag Process for the purification of hydrochloric acids
US4814528A (en) * 1985-09-26 1989-03-21 Ppg Industries, Inc. Removing water from crude 1,2-dichloroethane compositions containing chloral hydrate
US4628122A (en) * 1985-11-01 1986-12-09 Ppg Industries, Inc. Process for concentrating and recovering chloral
US4986974A (en) * 1988-08-31 1991-01-22 Hoechst Aktiengesellschaft Process for the separation of halogenated hydrocarbons from hydrochloric acid
US5558747A (en) * 1993-06-25 1996-09-24 Amvac Chemical Corporation Process for azeotropic distillation of aqueous chloral mixtures

Similar Documents

Publication Publication Date Title
US4172099A (en) Process for chlorination of ethylene
EP0494994B1 (en) Fluorocarbon purification process
US4156633A (en) Acrylic acid purification
US4263269A (en) Removal of organic contaminants from aqueous hydrochloric acid
JPS62221639A (en) Manufacture of 1,2-dichloroethane
JPH01224348A (en) Continuous production of isobutyric acid
EP0773915B1 (en) Purification of allyl chloride
US3140244A (en) Removal of volatile organic materials from aqueous hydrochloric acid
EP1663920B1 (en) Method for reusing heavy end by-products in the manufacture of polychlorinated alkanes
US4759826A (en) Process for purifying thionyl chloride
US5367102A (en) Process for the preparation of 1,1-dichloro-1-fluoroethane
US2658088A (en) Chlorination of ethylene in dilute mixtures
US4558167A (en) Hydrogen chloride-propylene separation
US4060460A (en) Removal of chloroprenes from ethylene dichloride
JP3001020B2 (en) Acetonitrile purification method
US3995010A (en) Purification process
US2748176A (en) Purification of dichloroethane
US4886581A (en) Removal of hydrogen fluoride from 2,2,3,3-tetra-fluorooxetane
KR100838550B1 (en) Less colored trans-1,3-dichloropropene and process for producing the same
US4028427A (en) Aqueous stream treatment in chlorinated hydrocarbon production
US3454645A (en) Method of preparing ethylenediamine
EP0697388B1 (en) Process for recovery of methyl chloride
US4252749A (en) Production of 1,2-dichloroethane with purification of dichloroethane recycle
US3989601A (en) Purification of 1,1,1-trichloroethane by extractive distillation
US3980723A (en) Purging of inerts in chlorinated hydrocarbon production

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE