DK167298B1 - ALKALIC BATTERY - Google Patents

ALKALIC BATTERY Download PDF

Info

Publication number
DK167298B1
DK167298B1 DK267290A DK267290A DK167298B1 DK 167298 B1 DK167298 B1 DK 167298B1 DK 267290 A DK267290 A DK 267290A DK 267290 A DK267290 A DK 267290A DK 167298 B1 DK167298 B1 DK 167298B1
Authority
DK
Denmark
Prior art keywords
zinc
battery
inhibitor
anode
ppm
Prior art date
Application number
DK267290A
Other languages
Danish (da)
Other versions
DK267290A (en
DK267290D0 (en
Inventor
Karen Kuemmel
Original Assignee
Gn Batteries As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gn Batteries As filed Critical Gn Batteries As
Priority to DK267290A priority Critical patent/DK167298B1/en
Publication of DK267290D0 publication Critical patent/DK267290D0/en
Priority to PCT/DK1991/000336 priority patent/WO1992009113A1/en
Publication of DK267290A publication Critical patent/DK267290A/en
Application granted granted Critical
Publication of DK167298B1 publication Critical patent/DK167298B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

i DK 167298 B1in DK 167298 B1

Den foreliggende opfindelse angår et alkalisk batteri, dvs. et batteri bestående af en brunstenskatode, en zinkanode og en alkalisk elektrolyt. Et sådant batteri har været kendt i mere end 30 år som et all-round batteri med høj belastningsevne og 5 høj kapacitetsudnyttelse.The present invention relates to an alkaline battery, i.e. a battery consisting of a sulfur cathode, a zinc anode and an alkaline electrolyte. Such a battery has been known for more than 30 years as an all-round battery with high load capacity and 5 high capacity utilization.

Zink er imidlertid kemisk ustabilt i alkalisk opløsning, idet det opløses under H2~udvikl ing, og for at modvirke dette er det kendt at amalgamere zinken med op til 15% kviksølv (bereg-10 net på vægt af zink). Denne mængde kviksølv er stabiliseret i en årrække på 7% afhængig af batteridesign og anvendelse. Foruden at undertrykke H2-udviklingen tjener Hg-ti 1 sætn i ngen også til at forbedre kontakten til strømkollektoren, hvilket har betydning for kapacitets- og vibrationsstabilitet. En kvik-15 sølvmængde på 3,6% i zinken er den laveste mængde, man kan nøjes med uden at ty til andre foranstaltninger, hvis man ønsker at opretholde et acceptabelt kvalitetsniveau af batteriet med hensyn til 1 agerholdbarhed, antal brugstimer, anvendelsesmuligheder og andre egenskaber.However, zinc is chemically unstable in alkaline solution as it dissolves during H2 development, and to counteract this, it is known to amalgamate the zinc with up to 15% mercury (calculated on the basis of zinc weight). This amount of mercury has stabilized for a number of years at 7% depending on battery design and use. In addition to suppressing H2 evolution, the Hg-ti 1 phrase also improves contact with the current collector, which has a bearing on capacity and vibration stability. A mercury-15 silver amount of 3.6% in the zinc is the lowest amount that can be satisfied without resorting to other measures if you want to maintain an acceptable quality level of the battery in terms of 1 durability, number of hours of use, applications and other properties.

2020

Da miljøhensyn dikterer et stadigt lavere kviksølvindhold, har man forsøgt at erstatte det giftige Hg med andre inhibitorer, der enten har været metaller såsom In, Al, Pb og Ga, der legeres med zinken, eller organiske forbindelser, såsom tensider 25 og stoffer med polyethylenoxidkæder, der bruges til at overfladebehandle zinken, eller som sættes til elektrolytten. Herved er det lykkedes at nedbringe kviksølvmængden betydeligt (helt ned til 0,15% af zinkvægten), men ikke uden at tage andre ulemper med i købet, f.eks. mindre kapacitet, holdbar-30 hed, sikkerhed og vibrationsstabilitet.As environmental considerations dictate an ever lower mercury content, attempts have been made to replace the toxic Hg with other inhibitors that have either been metals such as In, Al, Pb and Ga alloyed with zinc, or organic compounds such as surfactants and polyethylene oxide chains. used to surface the zinc or added to the electrolyte. This has succeeded in significantly reducing the amount of mercury (down to 0.15% of the zinc weight), but not without taking other disadvantages into account, e.g. less capacity, durability, safety and vibration stability.

Nogle af de som inhibitor anvendte metaller er i øvrigt i sig selv uønskede af miljøhensyn, og for nogle af de organiske inhibitorer gælder det, at de ganske vist undertrykker H2-udvik-35 lingen men samtidig nedsætter den belastede spænd i ng.Moreover, some of the metals used as inhibitors are inherently undesirable for environmental reasons, and for some of the organic inhibitors, they do suppress H2 evolution but at the same time reduce the stressed strain in ng.

Der er derfor vedvarende et behov for et alkalisk batteri med lavt kviksølvindhold i zinken, som tilfredsstiller det kvali- DK 167298 B1 2 tetsniveau, som repræsenteres af et batteri med 3,6% kviksølv i zinken.Therefore, there is a continuing need for an alkaline battery with a low mercury content in the zinc, which satisfies the quality level represented by a battery with 3.6% mercury in the zinc.

Den foreliggende opfindelse angår et sådant batteri, der er 5 ejendommeligt ved, at det indeholder et inhibitorkompleks bestående af 1) inhibitorer, som er tensider med et HLB-tal større end 10 og mindre end 20, og 10 2) inhibitorer af typen naphthyl ami nsul fonsyrer og disses radikaler.The present invention relates to such a battery which is characterized in that it contains an inhibitor complex consisting of 1) inhibitors which are surfactants having an HLB number greater than 10 and less than 20, and 2) inhibitors of the naphthyl amine type. nsul phonic acids and their radicals.

Den første type inhibitor har den virkning at reducere H2-ud-15 viklingen fra zinkanoden, men den virksomme mængde vil ofte resultere i, at batteriets belastede spænding nedsættes til ugunst for batteriets ydelse. Den anden type inhibitor har den virkning, at forhindre den første type inhibitor i at blokere zinkens overflade så meget, at den belastede spænding påvii— 20 kes.The first type of inhibitor has the effect of reducing the H2 evolution of the zinc anode, but the effective amount will often result in the battery's charged voltage being reduced to the detriment of the battery's performance. The second type of inhibitor has the effect of preventing the first type of inhibitor from blocking the surface of the zinc so much that the loaded voltage is detected.

Med et sådant batteri ifølge opfindelsen kan med et kviksølvindhold så lavt som 0,15% opnås en tilfredsstillende kvalitet uden ulemperne ved de kendte batterier.With such a battery according to the invention, with a mercury content as low as 0.15%, a satisfactory quality can be obtained without the disadvantages of the known batteries.

2525

Et batteri ifølge opfindelsen kan imidlertid frembyde et nyt problem med hensyn til kontakten til strømkilden på grund af anodens lave kviksølvindhold.However, a battery according to the invention may present a new problem with regard to contact with the power source due to the low mercury content of the anode.

30 Strømkollektoren i et alkalisk brunstensbatteri består oftest af et messingsøm eller formessinget søm eller et kobberrør eller forkobret søm. Der kræves et materiale med en vis styrke, svejselighed og amalgamerbar overflade for at undgå spændingsforskel til anoden og samtidig god kontakt til denne.The current collector in an alkaline bronze battery usually consists of a brass or pre-seamed seam or a copper pipe or copper seam. A material with a certain strength, weldability and amalgamable surface is required to avoid voltage difference to the anode and at the same time good contact with it.

Amalgameringen af strømkollektoren sker sædvanligvis ved berøring med anodezinken og tilendebringes i løbet af kort tid.The amalgamation of the current collector usually occurs by contact with the anode zinc and is completed within a short time.

35 DK 167298 B1 335 DK 167298 B1 3

Jo mere Hg-indholdet reduceres, des vanskeligere bliver en tilstrækkelig amalgamering, og dette medfører en forøget H2-udvikling på grund af potentialforskel mellem anode og kollek-tor. En ufuldstændig amalgamering medfører også dårlig kontakt 5 mellem anode og strømkollektor og deraf følgende vibrationsfølsomhed og dårlig kapacitet.The more the Hg content is reduced, the more difficult amalgamation becomes, and this results in increased H2 evolution due to potential difference between anode and collector. Incomplete amalgamation also results in poor contact 5 between anode and current collector and consequent vibration sensitivity and poor capacity.

Dette problem overvindes ifølge opfindelsen ved, at anode-strømkollektoren er udformet med et porefrit overtræk af zink 10 af samme sammensætning som anodezinken.This problem is overcome according to the invention in that the anode current collector is designed with a pore-free coating of zinc 10 of the same composition as the anode zinc.

Inhibitorerne, der anvendes i batteriet ifølge opfindelsen, sættes til anodegelen og bruges i mængder af størrelsesordenen 25-100 ppm og udgør derfor en forsvindende miljøforurening 15 sammenlignet med den mængde kviksølv, de erstatter.The inhibitors used in the battery of the invention are added to the anode gel and used in amounts of the order of 25-100 ppm and therefore constitute a vanishing environmental contaminant 15 compared to the amount of mercury they replace.

Opfindelsen anskueliggøres nærmere af følgende eksempler.The invention is further illustrated by the following examples.

Eksempel 1 20Example 1 20

Der fremstilles et 6 LF 22 batteri med følgende opbygning.A 6 LF 22 battery is manufactured with the following structure.

Batteriet består af 6 seriforbundne celler, som er identiske med hensyn til den indre opbygning, og som indeholder en ano-25 degel bestående af 0,79 g zinkpulver legeret med 0,15% Hg og 0,62 g KOH-opløsning (40%) geleret med CMC og tilsat 50 ppm alkylphenolethy lenoxid som inhibitor af type 1) og 50 ppm (eller 25 ppm) 2-naphthylamin-l-sulfonsyre som inhibitor af type 2), en katode bestående af 2,19 g elektrolytisk Mn02 og 30 0,29 g kulstof tilsat et bindemiddel af størrelsesordenen 1,8-2%.The battery consists of 6 serially connected cells which are identical in internal structure and contain an ano-crucible consisting of 0.79 g zinc powder alloyed with 0.15% Hg and 0.62 g KOH solution (40% ) gelled with CMC and added 50 ppm alkyl phenolethylene oxide as a type 1 inhibitor and 50 ppm (or 25 ppm) 2-naphthylamine-1-sulfonic acid as type 2 inhibitor, a cathode consisting of 2.19 g electrolytic MnO 2 and 30 0.29 g of carbon added with a binder of the order of 1.8-2%.

Elektroderne er adskilt af 3 lag separator.The electrodes are separated by 3 layers of separator.

35 Uden tilsætning af inhibitor vil et batteri med 0,15% Hg i zinken udvikle mere brint end tilladeligt, hvilket kan medføre en ustabil funktion og eventuel oplukning af batteriet.Without the addition of an inhibitor, a battery with 0.15% Hg in the zinc will develop more hydrogen than allowable, which may cause unstable operation and possible battery opening.

DK 167298 B1 4DK 167298 B1 4

Størrelseordenen af H2_udvikl i ngen fremgår af nedenstående tabel, hvor batteriet ifølge opfindelsen er sammenlignet med lignende batterier, der har henholdsvis ingen inhibitor, kun en af de to typer inhibitorer, og et batteri, hvori anodezin-5 ken indeholder 3,6% Hg men ingen inhibitor. Målingen blev foretaget på zinkgelen alene.The order of magnitude of H2 evolution is shown in the table below, where the battery of the invention is compared to similar batteries having no inhibitor, respectively, only one of the two types of inhibitors, and a battery in which the anode zinc contains 3.6% Hg but no inhibitor. The measurement was done on the zinc gel alone.

Tabel 1 10 Brintudvikling i 25 g zinkanode efter 8 døgn ved 40eC.Table 1 10 Hydrogen evolution in 25 g zinc anode after 8 days at 40 ° C.

~~-~--^H2-udvikl ing Total brintud- Daglig brint- Reduktion vikling i 8 udvikling i brintud-~~ - ~ - ^ H2 Development Total hydrogen output- Daily hydrogen- Reduction winding in 8 development in hydrogen evolution

Batteri '—døgn (ml)__(ml)__vikling (%) -- zink (0,15% Hq) 1,50__0,19__ zink + 3,6% Hg__0,10__0,013__93_ zink (0,15% Hg) + 50 ppm inhibitor 1) 0,20__0,025__87_ zink (0,15% Hg) + 50 ppm inhibitor 2) 1,50__0,19__0_ zink (0,15% Hg) + 50 ppm inhibitor 1) 0,24 0,030 84 20 og 2)_Battery - 24 hours (ml) __ (ml) __ winding (%) - zinc (0.15% Hq) 1.50__0.19__ zinc + 3.6% Hg__0.10__0.013__93_ zinc (0.15% Hg) + 50 ppm inhibitor 1) 0.20__0.025__87 zinc (0.15% Hg) + 50 ppm inhibitor 2) 1.50__0.19__0 zinc (0.15% Hg) + 50 ppm inhibitor 1) 0.24 0.030 84 20 and 2) _

Det vil altså ses, at inhibitoren af type 2) alene ikke har nogen indflydelse på H2-udvikl i ngen, men at anvendelse af begge typer inhibitor giver en reduktion i H2~udviklingen af samme størrelsesorden som et batteri, hvor anodezinken indeholder 25 3,6% Hg. Anvendelse af inhibitor 1) alene giver et resultat, der er en smule bedre end ved anvendelse af begge typer inhibitor, men begge typer inhibitorer er nødvendige af hensyn til batteriets belastede spænding, således som det fremgår af følgende tabel 2.Thus, it will be seen that the type 2 inhibitor alone has no influence on H2 evolution, but the use of both types of inhibitor results in a reduction in H2 evolution of the same magnitude as a battery containing the anode zinc 25 3. 6% Hg. Use of inhibitor 1) alone gives a result that is slightly better than using both types of inhibitor, but both types of inhibitors are necessary in view of the charged voltage of the battery, as shown in the following Table 2.

30 35 5 DK 167298 B1 530 35 5 DK 167298 B1 5

Tabel 2Table 2

Belastet spænding af 6 LF 22 alkaliske batterier ved 900 ohm og 180 ohm ~----Belastet spænding 900 ohm i Reduktion 180 ohm ReduktionLoaded voltage of 6 LF 22 alkaline batteries at 900 ohms and 180 ohms ~ ---- Loaded voltage 900 ohms in Reduction 180 ohms Reduction

Batteri ' —----V__%__y__%_ zink + 3,6% Hq___9,481__-__9,180__=_ zink (0,15% Hg) + 50 ppm inhibtor 1)__9,280__2,12__9,114__0,72 10 zink (0,15% Hg) + 50 ppm inhibitor 1) + 9,449 0,34 9,189 +0,10 25 ppm inhibtor 2)_____ zink (0,15% Hg) + 50 ppm inhibitor 1) + 9,435 0,49 9,171 0,10 50 ppm inhibitor 2)____ 15 Eksempel 2Battery '------ V __% __ y __% _ zinc + 3.6% Hq ___ 9,481 __-__ 9,180 __ = _ zinc (0.15% Hg) + 50 ppm inhibitor 1) __ 9,280__2,12__9,114__0.72 10 zinc (0.15% Hg) + 50 ppm inhibitor 1) + 9.449 0.34 9.189 +0.10 25 ppm inhibitor 2) _____ zinc (0.15% Hg) + 50 ppm inhibitor 1) + 9.435 0.49 9,171 0.10 50 ppm inhibitor 2) Example 2

Batteriet er opbygget som i eksempel i. Forskellen er inhibitorkomplekset, som i dette tilfælde er 50 ppm polyethylen-glycol (HLB-tal ca. 13) (inhibitor 1) og 50 ppm (eller 25 ppm) 20 2-naphthylamin-l-sulfonsyre (inhibitor 2).The battery is constructed as in Example I. The difference is the inhibitor complex, which in this case is 50 ppm polyethylene glycol (HLB number about 13) (inhibitor 1) and 50 ppm (or 25 ppm) of 2-naphthylamine-1-sulfonic acid (inhibitor 2).

Tabel 3Table 3

Brintudvikling i 25 g zinkanode efter 8 døgn ved 40°C.Hydrogen evolution in 25 g zinc anode after 8 days at 40 ° C.

25 ''~~-\Ji£-udvikl ing Total brintud- Daglig brint- Reduktion i vikling i 8 udvikling brintudvik-25 '' ~~ - \ Ji £ Development Total Hydrogen Development - Daily Hydrogen- Reduction in Winding in 8 Development Hydrogen Development-

Batteri døgn (ml)__(ml)__ling (%)_ zink (0,15% Hal__1,50_ 0.19 - zink + 3,6% Ha__0,10__0,013__93_ 30 zink (0,15% Hg) + 50 ppm inhibitor 1 0r18__0,023_ 88_ zink (0,15% Hg) + 50 ppm inhibitor 2 1.50__0,19__0_ zink (0,15% Hg) + ; 50 ppm inhibitor 1 + 0,19 0,024 87 1 50 ppm inhibitor 21___ 3 5 som det vil ses opnås der med batteriet ifølge opfindelsen, hvor zi nanoden kun indeholder 0,15% Hg, en reduktion i brintudviklingen af samme størrelsesorden som med et batteri, hvor DK 167298 B1 6 zinkanoden indeholder 3,6% Hg. Også i dette eksempel giver anvendelse af inhibitor 1) alene et lidt bedre resultat end anvendelse af inhibitorkomplekset, men begge typer inhibitorer er nødvendige af hensyn til batteriets belastede spænding, så-5 ledes som det fremgår af følgende tabel 4.Battery 24 hours (ml) __ (ml) __ ling (%) _ zinc (0.15% Hal__1.50_ 0.19 - zinc + 3.6% Ha__0.10__0.013__93_ 30 zinc (0.15% Hg) + 50 ppm inhibitor 1 Zinc (0.15% Hg) + 50 ppm inhibitor 2 1.50__0.19__0 zinc (0.15% Hg) +; 50 ppm inhibitor 1 + 0.19 0.024 87 1 50 ppm inhibitor 21___ will be seen with the battery according to the invention where the zi nanode contains only 0.15% Hg, a reduction in the hydrogen evolution of the same order of magnitude as with a battery where DK 167298 B1 6 zinc anode contains 3.6% Hg. Use of Inhibitor 1) alone results in a slightly better result than using the inhibitor complex, but both types of inhibitors are necessary for the charged voltage of the battery, as shown in the following Table 4.

Tabel 4Table 4

Belastet spænding af 6 LF 22 alkaliske batterier 10 ved 900 ohm og 180 ohm -~&tj_astet spænding 900 ohm Reduktion 180 ohm ReduktionLoaded voltage of 6 LF 22 alkaline batteries 10 at 900 ohms and 180 ohms - ~ & tj_stased voltage 900 ohms Reduction 180 ohms Reduction

BatterT ^__V__%__V__%_ zink + 3,6% Hq__9,481__=__9,180__=_ 15 zink (0,15% Hg) + 50 ppm inhibitor 1__9,274__2,18__9,040__1,525 zink (0,15% Hg) + 50 ppm inhibitor 1 + 9,437 0,464 9,108 0,78 25 ppm inhibitor 2_____ zink (0,15% Hg) + 50 ppm inhibitor 1 + 9,453 0,295 9,174 0,065 50 ppm inhibitor 2____ 20 — : Når zinkanoden kommer i berøring med strømkollektoren i batteriet, vil brintudviklingen i zinkanoden med lavt Hg-indhold forstærkes. Dette kan afhjælpes ifølge opfindelsen ved at belægge strømkollektoren med et porefrit overtræk af zink af 25 samme sammensætning som anodezinken som vist i følgende eksempel .BatterT ^ __ V __% __ V __% _ zinc + 3.6% Hq__9,481 __ = __ 9,180 __ = _ 15 zinc (0.15% Hg) + 50 ppm inhibitor 1__9,274__2,18__9,040__1,525 zinc (0.15% Hg) + 50 ppm inhibitor 1 + 9,437 0.464 9.108 0.78 25 ppm inhibitor 2_____ zinc (0.15% Hg) + 50 ppm inhibitor 1 + 9,453 0.295 9.174 0.065 50 ppm inhibitor 2____ 20 -: When the zinc anode comes into contact with the current collector in the battery, the hydrogen evolution in the low Hg zinc anode will be enhanced. This can be remedied according to the invention by coating the current collector with a pore-free zinc coating of the same composition as the anode zinc as shown in the following example.

Eksempel 3 30 Der frerosti11es et batteri som i eksempel 2, hvori anoden er zink + 0,15 Hg, og hvor inhibitoren er 50 ppm polyethylengly-col (inhibitor 1), og måles brintudviklingen i 13 g zinkanode ved 40°C efter 9 døgn uden strømkollektor og med sædvanlig strømkollektor belagt med messing og med strømkollektor belagt 25 med zinkpulver med 0,15% Hg. Resultaterne er vist i følgende tabel 5.Example 3 A battery is prepared as in Example 2 wherein the anode is zinc + 0.15 Hg and where the inhibitor is 50 ppm polyethylene glycol (inhibitor 1) and the hydrogen evolution in 13 g of zinc anode is measured at 40 ° C after 9 days. without current collector and with usual current collector coated with brass and with current collector coated with zinc powder with 0.15% Hg. The results are shown in the following Table 5.

7 DK 167298 B17 DK 167298 B1

Tabel STable S

--—ntudvikl 1 ng jTotal brint-'Dagiig brint- Forøgelse i ludvikling j udvikling brintudvik- 5 Batteri_ ~~~~~~— I (ml)_S (ml)__ling %_ zinkanode + 0,15¾ Hg i + 50 ppm inhibitor 1 0,08_; 0,009__-_ zinkanode + 0,15% Hg + 50 ppm inhibitor 1 0,21 0,023 163 + strømkollektor be- laqt med messing__j__--— Develop 1 ng jTotal Hydrogen -Daily Hydrogen- Increase in Fluid Development j Development Hydrogen Development- 5 Battery_ ~~~~~~ - I (ml) _S (ml) __ ling% _ zinc anode + 0.15¾ Hg i + 50 ppm inhibitor 1 0.08 0.009 __-Zinc Anode + 0.15% Hg + 50 ppm Inhibitor 1 0.21 0.023 163 + Current Collector Coated with Brass__j__

zinkanode + 0,15% Hg j + 50 ppm inhibitor 1 | Izinc anode + 0.15% Hg j + 50 ppm inhibitor 1 | IN

+ strømkollektor be- ! 0,08 0,009 0 lagt med zinkpu1 ver j j+ power collector be-! 0.08 0.009 0 added with zincpu1 ver j j

med 0,15% Hq_!_I_Iwith 0.15% Hq _! _ I_I

Som det vil ses, medfører anvendelse af en sædvanlig strømkol-15 lektor belagt med messing en betydligt forøget brintudvikling, hvorimod anvendelse af en strømkollektor belagt med zink af samme sammensætning som anoden ikke giver forøget brintudvik-- ling.As will be seen, the use of a conventional brass-coated current collector results in significantly increased hydrogen evolution, whereas the use of a zinc-coated current collector of the same composition as the anode does not produce increased hydrogen evolution.

20 25 30 3520 25 30 35

Claims (3)

1. Alkalisk batteri bestående af en brunstenskatode, en zink-5 node og en alkalisk elektrolyt, kendetegnet ved, at det med et lavt indhold af Hg i zinkanoden indeholder et inhibitorkompleks bestående af 1. inhibitorer, som er tensider med et HLB-tal større end 10 10 og mindre end 20, og 2. inhibitorer af typen naphthylaminsulfonsyrer og disses radikaler.An alkaline battery consisting of a bronze cathode, a zinc node and an alkaline electrolyte, characterized in that it contains a low content of Hg in the zinc anode, an inhibitor complex consisting of 1. inhibitors which are surfactants with an HLB number greater than 10 10 and less than 20, and 2. naphthylamine sulfonic acid inhibitors and their radicals. 2. Alkalisk batteri ifølge krav 1, kendetegnet ved, at inhibitorerne findes i en mængde af størrelsesordenen 25-100 ppm.Alkaline battery according to claim 1, characterized in that the inhibitors are present in an amount of the order of 25-100 ppm. 3. Alkalisk batteri ifølge krav 1 og 2, kendetegnet 20 ved, at anodestrømkol1ektoren er udformet med et porefrit overtræk af zink og samme sammensætning som anodezinken. 25 30 35Alkaline battery according to claims 1 and 2, characterized in that the anode current collector is formed with a pore-free zinc coating and the same composition as the anode zinc. 25 30 35
DK267290A 1990-11-07 1990-11-07 ALKALIC BATTERY DK167298B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK267290A DK167298B1 (en) 1990-11-07 1990-11-07 ALKALIC BATTERY
PCT/DK1991/000336 WO1992009113A1 (en) 1990-11-07 1991-11-07 An alkaline battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK267290 1990-11-07
DK267290A DK167298B1 (en) 1990-11-07 1990-11-07 ALKALIC BATTERY

Publications (3)

Publication Number Publication Date
DK267290D0 DK267290D0 (en) 1990-11-07
DK267290A DK267290A (en) 1992-05-08
DK167298B1 true DK167298B1 (en) 1993-10-04

Family

ID=8114486

Family Applications (1)

Application Number Title Priority Date Filing Date
DK267290A DK167298B1 (en) 1990-11-07 1990-11-07 ALKALIC BATTERY

Country Status (2)

Country Link
DK (1) DK167298B1 (en)
WO (1) WO1992009113A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778498B1 (en) * 1998-05-07 2000-06-09 Alsthom Cge Alcatel ALKALINE ELECTROLYTE BATTERY CONTAINING A ZINC NEGATIVE ELECTRODE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900434A (en) * 1956-01-03 1959-08-18 Union Carbide Corp Corrosion inhibitors
US3847669A (en) * 1971-10-01 1974-11-12 Union Carbide Corp Reduced mercury containing zinc alkaline cells
JPS559150B2 (en) * 1973-07-27 1980-03-07
US4195120A (en) * 1978-11-03 1980-03-25 P. R. Mallory & Co. Inc. Hydrogen evolution inhibitors for cells having zinc anodes

Also Published As

Publication number Publication date
WO1992009113A1 (en) 1992-05-29
DK267290A (en) 1992-05-08
DK267290D0 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0474382B1 (en) Substantially mercury-free electrochemical cells
US3660170A (en) Dendrite-inhibiting additive for battery cell having zinc electrode
US4994333A (en) Galvanic primary cell
AU2018202919B2 (en) Lead-acid battery positive plate and alloy therefore
DK167298B1 (en) ALKALIC BATTERY
JP3952483B2 (en) Sealed lead acid battery
JP4133701B2 (en) Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
US3672996A (en) Rechargeable alkaline galvanic cell and electrolyte therefor
KR101812350B1 (en) Molten salt battery case, and molten salt battery
US2333072A (en) Electric storage battery
EP1293002B1 (en) Electrochemical cells with an anode containing sulfur
US3281281A (en) Corrosion inhibitors
US2905739A (en) Alkaline storage battery
JP2589150B2 (en) Alkaline zinc storage battery
US2994626A (en) Low loss battery
WO2002103826A2 (en) Zinc anode for electrochemical cells
EP0070349B1 (en) Electrolyte for electro-chemical cells
CA1174728A (en) Electrolyte for electro-chemical cells
CN115764003A (en) Zinc-silver storage battery used for multiple times in microgravity environment
KR890004989B1 (en) Zinc-alkaline battery
JP3498920B6 (en) Alkaline electrochemical cell substantially free of mercury
JPS61264663A (en) Silver oxide battery
CN110010979A (en) Electrolyte suitable for zinc polyaniline secondary battery
JPH01117279A (en) Lead-acid battery
JPH01117272A (en) Lead-acid battery

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired