DK164009B - ROOF POWER SUPPLY FOR A MULTIMICROComputer SYSTEM IN RAILWAYS - Google Patents

ROOF POWER SUPPLY FOR A MULTIMICROComputer SYSTEM IN RAILWAYS Download PDF

Info

Publication number
DK164009B
DK164009B DK509883A DK509883A DK164009B DK 164009 B DK164009 B DK 164009B DK 509883 A DK509883 A DK 509883A DK 509883 A DK509883 A DK 509883A DK 164009 B DK164009 B DK 164009B
Authority
DK
Denmark
Prior art keywords
clock
microcomputer
microcomputers
phase
supply
Prior art date
Application number
DK509883A
Other languages
Danish (da)
Other versions
DK164009C (en
DK509883A (en
DK509883D0 (en
Inventor
Michael Gronemeyer
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of DK509883D0 publication Critical patent/DK509883D0/en
Publication of DK509883A publication Critical patent/DK509883A/en
Publication of DK164009B publication Critical patent/DK164009B/en
Application granted granted Critical
Publication of DK164009C publication Critical patent/DK164009C/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1675Temporal synchronisation or re-synchronisation of redundant processing components
    • G06F11/1679Temporal synchronisation or re-synchronisation of redundant processing components at clock signal level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware

Abstract

1. Clock current supply for a multimicro computer system in railways safety equipments, in which the micro computers process the same data for safety reasons, a separate clock supply chip with its own time standard being provided for generating a system clock for each micro computer and all clock supply chips being connected to a common crystal clock generator, characterised in that the clock supply chips are constructed as phase controllers (PR1, TP1, O1 and PR2, TP2, O2, respectively), at least a part of the assemblies of each micro computer (MC1, MC2) being included in the associated phase controller (PR1, TP1, O1 and PR2, TP2, O2, respectively), in such a manner that an assembly output (A1 and A2, respectively) of the micro computer (MC1 and MC2, respectively) is connected to the input of a phase detector (PR1 and PR2, respectively) of the phase controller, which is also connected to the crystal clock generator (QR).

Description

DK 164009 BDK 164009 B

Opfindelsen angår en taktstrømforsyning til et multimikrocomputersystem i jernbanesikringsanlæg/ hvor mikrocomputerne af sikkerhedsgrunde bearbejder de samme data, hvorhos der for hver mikrocomputer til frem-5 bringelse af en systemtakt findes en separat taktforsyningskomponent med egen tidsnormal, og alle taktforsyningskomponenter er tilsluttet en fælles krystalgenerator, og at taktforsyningskcmponenterne er udført son faseregulatorer.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a clock power supply for a multimicrocomputer system in railway safety systems / where the microcomputers process the same data for each microcomputer to produce a system clock, there is a separate clock supply component with its own time norm, and all clock supply components are a single supply component. that the clock supply components are made of phase controllers.

. I multimikrocomputersysterner med sikkerhedsansvar, 10 eksempelvis ved anvendelse i jernbanesikringsanlæg, er det nødvendigt, at flere samtidigt ensartede databearbejdende koblingsværker styres således i fællesskab ved hjælp af en speciel taktstrømforsyning, at der sluttelig på udgangssiden står data til rådighed, som er kon-15 trollerbare med hensyn til overensstemmelse. Et multi-mikrocomputersystem kan være organiseret således, at alle sikkerhedsrelevante procesdata kun afgives til processen, hvis det har kunnet konstateres, at flertallet af mikrocomputere i multimikrocomputersystemet har be-20 stemt de samme udgangsinformationer. Med henblik på at holde fejlafsløringstiden så kort som muligt, kan der også allerede foretages en indbyrdes sammenligning af ensartede mellemresultater og derudover af andre ensartede data og/eller adresser i de enkelte mikrocompute-25 re i multimikrocomputersystemet, således at en eventuel fejl i en af mikrocomputerne kan konstateres på så tidligt et tidspunkt som muligt. Den tidlige konstatering af en fejl har desuden den fordel, at en under visse omstændigheder med nogen sandsynlighed indtrædende anden 30 fejl i en af de andre mikrocomputere ikke fører til en sådan dobbeltfejl, at en konstatering af fejlen ved en sammenligningsproces ikke længere er mulig.. In multi-microcomputer systems with security responsibilities, 10 for example when used in railway security systems, it is necessary that several simultaneous data-processing switchgear be jointly controlled by means of a special clock power supply that finally available on the output side which is controllable with compliance. A multi-microcomputer system may be organized such that all security-relevant process data is output to the process only if it has been established that the majority of microcomputers in the multimicrocomputer system have determined the same output information. In order to keep the error detection time as short as possible, a similar comparison of uniform intermediate results and in addition of other uniform data and / or addresses in the individual microcomputers of the multi-microcomputer system can already be made, so that any error in one of the the microcomputers can be detected as early as possible. Furthermore, the early detection of an error has the advantage that, under certain circumstances, another 30 errors occurring in one of the other microcomputers are unlikely to result in such a double error that a finding of the error in a comparison process is no longer possible.

En forudsætning for udførelsen af de for et mul-timikrocomputersystem i jernbanesikringsanlæg nødvendi-35 ge sammenligninger er en speciel taktstrømforsyning, som gør det muligt at lade multimikrocomputersystemets enkelte mikrocomputere arbejde taktsynkront. Der kendes en 2A prerequisite for the performance of the comparisons necessary for a multi-microcomputer system in railway safety systems is a special clock power supply which allows the single microcomputer system's single microcomputers to operate in a synchronous manner. A 2 is known

DK 164009 BDK 164009 B

taktstrømforsyning af den indledningsvis omhandlede art, jf. SIEMENS-Zeitschrift 48 (1974), hæfte 7, siderne 503-506, "Taktstromversorgung und Uberwachung im URTL-Schaltkreissystem U1"). I denne kendte kobling afgiver 5 en krystalstabiliseret generator impulser, som styrer flere taktforsyningskomponenter. Hver taktforsynings-komponent forsyner de tilknyttede koblingsværk med de nødvendige taktinpulser. Hver taktforsyningskomponent omfatter flere seriekoblede monostabile kiptrin. Disse 10 er koblet således, at der i hvert enkelt tilfælde efter tilbagefald til den stabile tilstand sker aktivering af det næstfølgende monostabile kiptrin i den pågældende seriekobling, som efter sit tilbagefald til den stabile tilstand aktiverer et yderligere monostabilt kiptrin osv. Det i 15 hver seriekobling på den sidste plads forhåndenværende monostabile kiptrin frembringer en meget smal vinduesimpuls, indenfor hvilken den næste af den krystalstabiliserede generator afgivne impuls skal falde tidsmæssigt, således at det i hver seriekobling på den første plads forhåndenværende 20 monostabile kiptrin igen aktiveres, og den forklarede proces kan forløbe påny. Por disse taktforsyningskomponenter er det væsentligt, at de kun afgiver dynamiske signaler så længe, som de seriekoblede monostabile kiptrin danner en art dynamisk selvholdekreds. Så snart den 25 krystalstabiliserede generators periodevarighed som følge af en defekt ikke længere stemmer overens med totalløbetiden for de seriekoblede monostabile kiptrin, bryder den nævnte selvholdekreds sammen, og den pågældende taktforsyningskomponent afgiver nu kun statiske signaler, 30 der imidlertid ikke er brugbare til databearbejdnings-formål for det efterfølgende udstyr, som skal styres. En sådan frakoblingsproces fremkommer også, hvis eksempelvis en taktkomponents totalløbetid ændrer sig som følge af en defekt. Således kan de af styreimpulsfrembringeren 35 drevne koblingsværk i forstyrrelsestilfælde ikke afgive informationer, som er farlige for driften.current supply of the kind referred to in the preamble, cf. SIEMENS-Zeitschrift 48 (1974), booklet 7, pages 503-506, "Taktstromversorgung und Uberwachung im URTL-Schaltkreissystem U1"). In this known coupling 5, a crystal stabilized generator emits pulses which control multiple clock supply components. Each clock supply component supplies the associated switchgear with the necessary clock pulses. Each clock supply component comprises several series-coupled monostable tilt steps. These 10 are coupled so that in each case after relapse to the stable state, activation of the next monostable tipping step in the respective series coupling occurs, which after its relapse to the stable state activates an additional monostable tipping step, etc. in the last place available monostable tipping steps produce a very narrow window pulse, within which the next pulse emitted by the crystal stabilized generator must decrease in time, so that in each of the series couplings in the first place, 20 monostable tipping steps are activated again and the explained process can proceed. again. For these clock supply components, it is essential that they only emit dynamic signals as long as the series-coupled monostable tilt steps form a kind of dynamic self-holding circuit. As soon as the period of the 25 crystal stabilized generator due to a defect no longer corresponds to the total running time of the series-coupled monostable tilting stages, the said self-holding circuit breaks down, and the relevant clock supply component now emits only static signals 30 which are not usable for data processing purposes. for the subsequent equipment to be controlled. Such a disconnection process also occurs if, for example, the total running time of a clock component changes as a result of a defect. Thus, in the event of a disturbance, the switchgear operated by the control pulse generator 35 cannot provide information which is dangerous to the operation.

33

DK 164009 BDK 164009 B

De kendte taktstrømforsyninger har i princippet fungeret godt, nemlig allerede af den årsag, at i tilfælde af en fejlbehæftet taktforsyningskomponent fører den anden henholdsvis de øvrige taktforsyningskomponen-5 ter ikke til et samtidigt fejlløb af de tilsluttede koblingsværker.The known clock power supplies have, in principle, worked well, namely for the reason that in the event of a faulty clock supply component, the other or the other clock supply components, respectively, do not lead to a simultaneous failure of the connected switching plants.

Imidlertid kan den kendte taktstrømforsyning ikke uden videre anvendes med det samme resultat i multimik-rocomputersystemer, der fortrinsvis arbejder med en for-10 holdsvis høj systemtakt. Det skyldes, at der mellem de enkelte taktforsyningskomponenter kan optræde faseforskelle i henseende til de frembragte impulser. Dette gør sig navnlig ved høje bearbejdningsfrekvenser negativt bemærkbart med hensyn til sammenligningen af udgangs-15 signaler.However, the known rate power supply cannot be readily used with the same result in multimicrocomputer systems which preferably operate at a relatively high system rate. This is because phase differences can occur between the individual clock supply components with respect to the pulses produced. This is particularly noticeable with regard to the comparison of output signals, especially at high processing frequencies.

Fra US-A-4 239 982 kendes en fejltolerant taktstrømforsyning, hvor taktgeneratoren er udformet som en faseregulator. Denne almindelige forholdsregel er ikke tilstrækkelig for taktstrømforsyning af et multimikro-20 computersystem af den i indledningen nævnte art, eftersom der mellem de udgangssignaler, der skal sammenlignes alligevel kan forekomme uønskede tidsmæssige forskydninger. Dette kan føre til for tidlige udkoblinger af multimikrocomputersystemet.From US-A-4 239 982 there is known a fault tolerant clock current supply, the clock generator being designed as a phase controller. This general precaution is not sufficient for clock power supply of a multi-microcomputer system of the kind mentioned in the introduction, since undesired temporal offsets may nevertheless occur. This can lead to premature shutdown of the multi-microcomputer system.

25 Opfindelsen tager sigte på at videreudvikle en taktstrømforsyning til et multimikrocomputersystem af den forannævnte art på en sådan måde, at de af taktforsyningskomponenterne til de tilknyttede mikrocomputere afgivne systemtakter ved korrekt drift af taktstrømfor-30 syningen har indbyrdes fasebeliggenheder med snævre tolerancer. I den forbindelse skal de enkelte taktforsyningskomponenter være indbyrdes så meget afkoblede, at der ved en defekt i en af taktforsyningskomponenterne ikke på samme måde skal ske en falsk reaktion i den el-35 ler de andre taktforsyningskomponenter.The invention aims to further develop a clock flow supply to a multimicrocomputer system of the aforementioned kind in such a way that the clock speeds delivered by the clock supply components to the associated microcomputers upon proper operation of the clock supply have phase tolerances with narrow tolerances. In this connection, the individual clock supply components must be so much decoupled from each other that in the event of a defect in one of the clock supply components, a false reaction in the same or the other clock supply components must not be effected.

44

DK 164009 BDK 164009 B

Ifølge opfindelsen løses opgaven ved, at i det mindste en del af hver mikrocomputers komponentgrupper er medinddraget i den tilknyttede faseregulator på en sådan måde,at en komponentgruppeudgang på mikrocompute-5 ren er tilsluttet indgangen på en desuden med krystalgeneratoren forbundet fasedetektor i faseregulatoren.En sådan udformning af taktstrømforsyningen har den store fordel, at også eventuelle ændringer af fasebeliggenheden melisn den af en taktforsyningskomponent til den tilknyttede mikro-1 o computer afgivne systemtakt og dennes mikrocomputers udgangssignaler udlignes, således at der fremkommer særlig gode forudsætninger for sammenligningen af udgangssignalerne fra multimikrocomputersystemets mikrocomputere.According to the invention, the task is solved by the fact that at least a part of each microcomputer's component groups is included in the associated phase controller in such a way that a component group output of the microcomputer is connected to the input of a phase detector connected to the crystal generator in such a phase. The design of the clock power supply has the great advantage that any changes in the phase location also match the system rate supplied by a clock supply component to the associated micro-computer and the output of its microcomputer, so that good comparisons are made for the comparison of the output signals from the microcomputer microcomputer.

Ifølge en videreudvikling af opfindelsen indehol-15 der faseregulatoren foruden en digital fasedetektor en efter denne indkoblet, som lavpasfilter udformet filterkobling og en denne tilsluttet spændingsstyret oscillatorkobling med et udstyringsområde, som ligger inden for mikrocomputerens tilladelige frekvenstolerancer. Denne 20 udformning af taktstrømforsyningen giver yderligere en særlig sikkerhedsfordel ved, at i tilfælde af en utilladelig frekvensdrift af den fælles krystalgenerator udsættes de efter denne indkoblede taktforsyningskomponenter omgående for en fejlregulering, fordi de ikke længe-25 re arbejder i det forudgivne frekvensområde. Fejlreguleringerne har til følge, at de enkelte taktforsyningskomponenter til de tilknyttede mikrocomputere afgiver systemtakter med forskellig frekvens, således at der med sikkerhed sker en sådan forfalskning af den normale com-30 putersynkronisme, at dette straks fører til en ønsket frakoblingsproces, således at der ikke afgives fare medførende informationer til den proces, der skal sikres.According to a further development of the invention, the phase controller comprises, in addition to a digital phase detector, a filter coupling formed after this, which is coupled as a low-pass filter and a voltage controlled oscillator coupling with an equipment range which is within the permissible frequency tolerances of the microcomputer. This design of the clock power supply further provides a special security advantage in that in the event of an unauthorized frequency operation of the common crystal generator, after this switched on the clock supply components are immediately subjected to an error control because they no longer operate in the predicted frequency range. The error controls result in the individual clock supply components of the associated microcomputers delivering system rates of different frequency, so that there is certainly such a forgery of the normal computer synchronism that this immediately leads to a desired disconnection process so that no output is delivered. danger leading information to the process to be secured.

Et udførelseseksempel ifølge opfindelsen er i det følgende forklaret nærmere under henvisning til det 35 på tegningen viste blokdiagram.An embodiment of the invention is explained in more detail below with reference to the block diagram shown in the drawing.

55

DK 164009 BDK 164009 B

Tegningen viser i blokdiagrammet væsentlige komponentgrupper i et tokanalet multimikrocomputersystem; det indeholder således kun to mikrocomputere MC1 og MC2. Disse modtager over indgangsledninger henholds-5 vis E1 og E2, der symbolsk er vist stedfortrædende for et stort antal indgange, samtidigt ensartede informationer fra en proces, der skal styres, og hvis proceselementer ikke er vist nærmere. De er ikke af betydning for forklaringen af det tokanalede mikrocomputersystems 10 taktstrømforsyning. Det er yderligere væsentligt at vide, at ved anvendelse af dette tokanalede mikrocomputer-system til sikringsformål, specielt til jernbanesikringsanlæg, er systemet opbygget således, at der i tilfælde af en forstyrrelse i en af de to mikrocomputere hen-15 holdsvis MC1 og MC2 indledes en frakoblingsproces på en sådan måde, at der ikke fra nogen af de to kanaler kan afgives farebringende informationer til processen. Dette kan eksempelvis ske ved, at begge mikrocomputere MC1 og MC2 frakobles, eller at i det mindste 20 deres (ikke viste) udlæsningskoblinger gøres uvirksomme.The drawing shows in the block diagram essential component groups in a two-channel multimicrocomputer system; thus, it contains only two microcomputers MC1 and MC2. These receive over input lines E1 and E2, respectively, symbolically shown as substitute for a large number of inputs, at the same time uniform information from a process to be controlled and whose process elements are not shown further. They are not relevant to the explanation of the two-channel microcomputer system's 10-stream power supply. It is further important to know that by using this two-channel microcomputer system for security purposes, especially for railway security systems, the system is constructed so that in the event of a disturbance in one of the two microcomputers MC1 and MC2 respectively, a disconnection process in such a way that no hazardous information can be provided from either channel for the process. This can be done, for example, by disconnecting both microcomputers MC1 and MC2, or by disabling at least 20 their (not shown) readout connections.

En anden mulighed er en frakoblingsproces med hensyn til systemtakterne.Another option is a disconnection process with respect to the system strokes.

Til udvindelse af et frakoblingskriterium er en enkelt komparator VG stedfortrædende for et stort an-25 tal komparatorer på indgangen forbundet med hver udgangsledning henholdsvis A1 og A2 fra de to mikrocomputere MC1 og MC2. Det skal bemærkes, at hver af mikrocomputerne henholdsvis MC1 og MC2 disponerer over et stort antal udgangsledninger, der imidlertid af 30 hensyn til overskueligheden ikke er vist. Komparatoren VG har en udgangsledning L1, over hvilken det nævnte frakoblingskriterium afgives.To extract a disconnection criterion, a single comparator VG is the substitute for a large number of comparators at the input connected to each output line A1 and A2, respectively, of the two microcomputers MC1 and MC2. It should be noted that each of the microcomputers MC1 and MC2, respectively, has a large number of output lines, which, for reasons of clarity, are not shown. The comparator VG has an output line L1, above which said disconnection criterion is output.

Til taktstrømforsyning af det tokanalede mikrocomputersystem findes der en enkelt krystalgenerator 35 QR med en taktfrekvens, som stemmer overens med frekvensen af de systemtakter, der tilføres mikrocomputerne 6For clock current supply of the two-channel microcomputer system, there is a single crystal generator 35 QR with a clock frequency that corresponds to the frequency of the system rates applied to the microcomputers 6

DK 164009 BDK 164009 B

MC1 og MC2 over ledningerne L2 og L3 og afgives over udgangene A1 og A2. Med krystalgeneratoren QR er der forbundet to taktforsyningskomponenter i form af faseregulatorer. Mere detaljeret omfatter taktforsyningskom-5 ponenterne en fasedetektor PR1 henholdsvis PR2f et efter denne indkoblet lavpasfilter TPI henholdsvis TP2 .og en lavpasfiltret tilsluttet spændingsstyret oscillator 01 henholdsvis 02. Oscillatorerne 01 henholdsvis Ό2 er fritsvingende indenfor forudgivne græn-1 o ser, idet de dog ved hjælp af -en styrespænding er forsynet med et udstyringsområde, son ligger indenfor de tilladelige frekvenstolerancer for de efterfølgende mikrocomputere MC1 henholdsvis MC2. I udførelseseksemplet er fasereguleringskredsen ikke sluttet ved tilbageføring af signalerne fra de 15 spændingsstyrede oscillatorer 01 henholdsvis 02 til de tilknyttede digitale fasedetektorer PR1 henholdsvis PR2, men under inddragelse af de pågældende mikrocomputere MC1 henholdsvis MC2. Således er eksempelvis udgangen A1 henholdsvis A2 forbundet med en 20 indgang på den digitale fasedetektor PR1 henholdsvis PR2. Dette har den fordel, at ved anvendelse af mikroprocessorer, ved hvilke fasebeliggenheden mellem den tilførte systemtakt og udgangssignalerne ikke er specificeret eller kun er utilstrækkeligt specificeret, får 25 udgangssignalerne fra mikrocomputerne MC1 og MC2 alligevel en defineret indbyrdes fasebeliggenhed. Herved lettes den synkrone sammenligning af de to kanalers procesdata.MC1 and MC2 over lines L2 and L3 and are output across outputs A1 and A2. The crystal generator QR connects two clock supply components in the form of phase controllers. In more detail, the clock supply components comprise a phase detector PR1 and PR2f, respectively, a low-pass filter TPI and TP2, respectively, and a low-pass filter connected to voltage-controlled oscillator 01 and 02, respectively. Oscillators 01 and er2, respectively, are free-swinging within predetermined limits. of a control voltage is provided with an equipment area which is within the permissible frequency tolerances for the subsequent microcomputers MC1 and MC2, respectively. In the embodiment, the phase control circuit is not terminated by transmitting the signals from the 15 voltage controlled oscillators 01 and 02, respectively, to the associated digital phase detectors PR1 and PR2, respectively, but with the involvement of the respective microcomputers MC1 and MC2, respectively. Thus, for example, the output A1 and A2 are respectively connected to an input of the digital phase detector PR1 and PR2 respectively. This has the advantage that by using microprocessors in which the phase location between the applied system clock and the output signals is not specified or only insufficiently specified, the output signals of the microcomputers MC1 and MC2 are nevertheless given a defined phase location. This facilitates the synchronous comparison of the process data of the two channels.

Ud fra signalerne, der tilføres fasedetektor PR1 30 henholdsvis PR2, danner fasedetektor PR1 henholdsvis PR2 en reguleringsspænding, der føres til indgange på den spændingsstyrede oscillator 01 henholdsvis 02, for at styre frekvensen og fasen således, at en mulig faseforskel mellem krystalgeneratoren QR's signaler og 35 signalerne på udgangsledningen A1 henholdsvis A2 sluttelig reguleres til nul.From the signals applied to phase detector PR1 and PR2, respectively, phase detector PR1 and PR2 respectively generate a regulating voltage which is applied to the inputs of the voltage controlled oscillator 01 and 02, respectively, to control the frequency and phase such that a possible phase difference between the crystal generator QR signals and 35 the signals on the output line A1 and A2 are finally adjusted to zero.

Claims (2)

7 DK 164009 B Forfalskninger af de af krystalgeneratoren QR afgivne signaler har et asynkront løb af de spændingsstyrede oscillatorer 01 og 02 til følge på en sådan måde, at der over ledningerne L2 og L3 afgives for-5 skellige systemtakter. Dette medfører i de to mikrocomputere MC1 og MC2 sådanne bearbejdningsforskelle, at der uvægerligt ved hjælp af komparatoren VG foretages en af de forannævnte frakoblingsprocesser. Den' beskrevne taktstrømforsyning kan uden videre 10 udstrækkes til mere end 2 mikrocomputere MC1 og MC2; der skal blot forefindes yderligere taktforsyningskomponenter i form af faseregulatorer, nemlig i et antal, som svarer til antallet af nødvendige mikrocomputere i det pågældende multmikrocomputersystem. 157 DK 164009 B Counterfeiting of the signals generated by the crystal generator QR results in an asynchronous flow of the voltage controlled oscillators 01 and 02 in such a way that different system rates are transmitted over the lines L2 and L3. This results in the processing differences in the two microcomputers MC1 and MC2 such that one of the aforementioned disconnection processes is invariably carried out by means of the comparator VG. The described clock power supply can easily be extended to more than 2 microcomputers MC1 and MC2; there are only additional clock supply components in the form of phase controllers, namely in a number corresponding to the number of required microcomputers in the multi-microcomputer system concerned. 15 1. Taktstrømforsyning til et multimikrocomputer-system i jernbanesikringsanlæg, hvor mikrocomputerne af sikkerhedsgrunde bearbejder de samme data, hvorhos der 20 for hver mikrocomputer til frembringelse af en systemtakt findes en separat taktforsyningskomponent, og alle taktforsyningskomponenter er tilsluttet en fælles krystalgenerator, og hvor taktforsyningskomponenterne er udført som faseregulatorer (PR1, TP1, 01 hhv. PR2, TP2, 25 02), kendetegnet ved, at i det mindste en del af hver mikrocomputers (MC1, MC2) komponentgrupper er medinddraget i den tilknyttede faseregulator (PR1, TPI, 01 hhv. PR2, TP2, 02) på en sådan måde, at en komponent-gruppeudgang på mikrocomputeren (MC1 hhv. MC2) er til-30 sluttet indgangen på en desuden med krystalgeneratoren (QR) forbundet fasedetektor (PR1 hhv. PR2) i faseregulatoren.1. Power supply for a multi-microcomputer system in railway security systems, for which the microcomputers process the same data, for which, for each microcomputer to produce a system rate, there is a separate rate supply component and all rate supply components are connected to a common cryptor and a common cryptor. as phase controllers (PR1, TP1, 01 and PR2, TP2, 02, respectively), characterized in that at least a portion of each microcomputer (MC1, MC2) component group is included in the associated phase controller (PR1, TPI, 01, respectively). PR2, TP2, 02) in such a way that a component group output of the microcomputer (MC1 and MC2) is connected to the input of a phase detector (PR1 and PR2, respectively,) connected to the crystal generator (QR) in the phase controller. 2. Taktstrømforsyning ifølge krav 1, kendetegnet ved, at faseregulatoren foruden en digital 35 fasedetektor (PR1 hhv. PR2) indeholder en efter denne indkoblet, som lavpasfilter udformet filterkobling 8 DK 164009 B (TP1 hhv. TP2) og en denne tilsluttet spændingsstyret oscillatorkobling (01 hhv. 02) med et udstyringsområde, som ligger inden for mikrocomputerens (MC1 hhv. MC2) tilladelige frekvenstolerancer.A clock current supply according to claim 1, characterized in that the phase controller contains, in addition to a digital phase detector (PR1 and PR2), a filter coupling formed thereafter, as a low pass filter 8 DK 164009 B (TP1 and TP2) and a voltage controlled oscillator coupling ( 01 and 02), respectively, with an equipment area within the permissible frequency tolerances of the microcomputer (MC1 and MC2).
DK509883A 1982-11-08 1983-11-07 ROOF POWER SUPPLY FOR A MULTIMICROComputer SYSTEM IN RAILWAYS DK164009C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241189 1982-11-08
DE19823241189 DE3241189A1 (en) 1982-11-08 1982-11-08 CLOCK POWER SUPPLY FOR A MULTIMICROCOMPUTER SYSTEM IN RAILWAY LOCKING SYSTEMS

Publications (4)

Publication Number Publication Date
DK509883D0 DK509883D0 (en) 1983-11-07
DK509883A DK509883A (en) 1984-05-09
DK164009B true DK164009B (en) 1992-04-27
DK164009C DK164009C (en) 1992-09-21

Family

ID=6177573

Family Applications (1)

Application Number Title Priority Date Filing Date
DK509883A DK164009C (en) 1982-11-08 1983-11-07 ROOF POWER SUPPLY FOR A MULTIMICROComputer SYSTEM IN RAILWAYS

Country Status (5)

Country Link
EP (1) EP0108284B1 (en)
AT (1) ATE45432T1 (en)
DE (2) DE3241189A1 (en)
DK (1) DK164009C (en)
ZA (1) ZA838260B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239628A (en) * 1985-11-13 1993-08-24 Sony Corporation System for asynchronously generating data block processing start signal upon the occurrence of processing end signal block start signal
CA1283738C (en) * 1985-11-13 1991-04-30 Atsushi Hasebe Data processor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7707260A (en) * 1977-06-30 1979-01-03 Bell Telephone Mfg MOTHER CLOCK DEVICE.
US4239982A (en) * 1978-06-14 1980-12-16 The Charles Stark Draper Laboratory, Inc. Fault-tolerant clock system
JPS5789170A (en) * 1980-11-25 1982-06-03 Hitachi Ltd Duplex computer controlling system

Also Published As

Publication number Publication date
EP0108284A2 (en) 1984-05-16
DK164009C (en) 1992-09-21
DK509883A (en) 1984-05-09
EP0108284A3 (en) 1987-04-08
ATE45432T1 (en) 1989-08-15
DE3380371D1 (en) 1989-09-14
DK509883D0 (en) 1983-11-07
ZA838260B (en) 1984-06-27
EP0108284B1 (en) 1989-08-09
DE3241189A1 (en) 1984-05-10

Similar Documents

Publication Publication Date Title
US4616312A (en) 2-out-of-3 Selecting facility in a 3-computer system
US4198678A (en) Vehicle control unit
EP0077179A2 (en) Computer-based interlocking system
US4305556A (en) Railway control signal dynamic output interlocking systems
JPS626263B2 (en)
KR100701886B1 (en) Uninterruptible power supply system by multi-parallel driving method
US5357491A (en) Clock selection control device
DK164009B (en) ROOF POWER SUPPLY FOR A MULTIMICROComputer SYSTEM IN RAILWAYS
CA2053368C (en) Bypass-pair control apparatus for thyristor bridge
JP2983319B2 (en) Communication device
DK163753B (en) CIRCUIT FOR CHECKING THE CORRECT START OF A TWO-CHANNEL FAIL-SAFE MICRO-DATA CABLE, NAME FOR RAILWAY INSTALLATION
US6999546B2 (en) System and method for timing references for line interfaces
JPS629442A (en) Error detecting circuit
JPS60214048A (en) Data processor quaranteed in signal technology
CA2232864C (en) Method for reading out error statistics data
JP2596318B2 (en) Transmission equipment
JP2569892B2 (en) Switching control monitoring circuit
JP3681807B2 (en) Clock distribution method
KR0183949B1 (en) Fault detecting device of fault tolerant systems
JPH02193427A (en) Mismounting recognizing system
SU1269140A2 (en) Device for checking interface
JPS61267810A (en) Deciding circuit for detection of service interruption
WO1990016132A1 (en) A method and arrangement for detecting and localizing errors of faults in a multi-plane unit incorporated in a digital time switch
JPH0423153A (en) Abnormality detector for interface signal
JPH0683167B2 (en) Digital data transmission device

Legal Events

Date Code Title Description
PBP Patent lapsed