DK163425B - Process for preparing a raw material for optical fibres - Google Patents

Process for preparing a raw material for optical fibres Download PDF

Info

Publication number
DK163425B
DK163425B DK593384A DK593384A DK163425B DK 163425 B DK163425 B DK 163425B DK 593384 A DK593384 A DK 593384A DK 593384 A DK593384 A DK 593384A DK 163425 B DK163425 B DK 163425B
Authority
DK
Denmark
Prior art keywords
nozzle
fluorine
sec
containing material
blank
Prior art date
Application number
DK593384A
Other languages
Danish (da)
Other versions
DK163425C (en
DK593384A (en
DK593384D0 (en
Inventor
Hiroo Kanamori
Gotaro Tanaka
Kazunori Chida
Original Assignee
Sumitomo Electric Industries
Nippon Telegraph & Telephone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Nippon Telegraph & Telephone filed Critical Sumitomo Electric Industries
Priority to DK593384A priority Critical patent/DK163425C/en
Publication of DK593384D0 publication Critical patent/DK593384D0/en
Publication of DK593384A publication Critical patent/DK593384A/en
Publication of DK163425B publication Critical patent/DK163425B/en
Application granted granted Critical
Publication of DK163425C publication Critical patent/DK163425C/en

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

DK 163425BDK 163425B

iin

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af et råemne til optiske fibre. Mere specifikt angår det en fremgangsmåde til fremstilling af et optisk fiberråemne, der indeholder fluor.The present invention relates to a process for producing a blank for optical fibers. More specifically, it relates to a process for producing an optical fiber blank containing fluorine.

5 Fluor i silicaglas sænker dets brydningsindex og gør det muligt at fremstille optiske fibre med forskellige fordelinger af brydnings-indexer og forbedrede lystransmissionsegenskaber, fx en optisk fiber, der har en stor forskel i brydningsindex mellem en kerne og en beklædning og således har et stort åbningstal, og en optisk fiber, der 10 omfatter en kerne fremstillet af rent silicaglas, og med forbedret modstandsevne mod bestråling.5 Fluoride in silica glass lowers its refractive index and makes it possible to produce optical fibers with different distributions of refractive indices and improved light transmission properties, e.g., an optical fiber having a large difference in refractive index between a core and a cladding and thus has a large opening number and an optical fiber comprising a core made of pure silica glass, and with improved irradiation resistance.

Der kendes adskillige metoder til fremstilling af et råemne indeholdende fluor til optiske fibre af silicaglastypen, deriblandt en modificeret kemisk dampafsætningsmetode (MCVD) og en ydre plasmadamp-15 afsætningsmetode (POVD). Ud fra et råemne fremstillet ved disse metoder kan der i almindelighed kun trækkes ca. 10 km optisk fiber.Several methods are known for producing a blank containing fluorine for silica glass optical fibers, including a modified chemical vapor deposition method (MCVD) and an outer plasma vapor deposition method (POVD). In general, from a blank prepared by these methods, only approx. 10 km of optical fiber.

Eftersom fremstillingshastighederne ved disse metoder endvidere er lav, er de ikke egnede til masseproduktion af det optiske fiberråemne og således den optiske fiber.Furthermore, since the manufacturing rates of these methods are low, they are not suitable for mass production of the optical fiber blank and thus the optical fiber.

20 Den aksiale dampfaseafsætningsmetode (i det følgende betegnet "VAD"-metoden) kan give et optisk fiberråemne, ud fra hvilket der kan trækkes en optisk fiber med større længde. Et optisk fiberråemne indeholdende fluor fremstilles imidlertid sjældent ved VAD-metoden, eftersom hvis et fluorholdigt materiale simpelthen blandes med gas-25 formigt SiCl^, der er råmaterialet for Si02, opstår der mange ulemper, fx at fluor ikke effektivt sættes til silicaglasset, at det dannede råemne har tendens til at revne, og at afsætningshastigheden af fine glaspartikler nedsættes.The axial vapor phase deposition method (hereinafter referred to as the "VAD" method) can provide an optical fiber blank from which a larger length optical fiber can be drawn. However, an optical fiber blank containing fluorine is rarely produced by the VAD method, since if a fluorine-containing material is simply mixed with gaseous SiCl 2, which is the raw material for SiO 2, there are many disadvantages, e.g. formed blanks tend to crack and the deposition rate of fine glass particles decreases.

FR Bl 2.399.978 beskriver en fremgangsmåde til fremstilling af et 30 silicaglasråemne til anvendelse ved fremstilling af en optisk fiber.FR Bl 2,399,978 discloses a process for producing a silica glass blank for use in producing an optical fiber.

Til dette formål anvendes der en multidysebrænder til at tilføre glasdannende råmateriale, som kan omfatte fluorforbindelser.For this purpose, a multi-nozzle burner is used to supply glass-forming feedstock which may comprise fluorine compounds.

DK 163425 BDK 163425 B

22

Endvidere beskriver britisk patentskrift nr. 2.059.944 en fremgangsmåde til fremstilling af råemner til optiske fibre, ved hvilken fremgangsmåde en syntetiseringsbrænder er anbragt med en hældning på fra 10° til 60° i forhold til en podestavs omdrejningsakse. Der 5 tilsættes ikke fluor til råemnet.Further, British Patent No. 2,059,944 discloses a method of producing optical fiber blanks wherein a synthetic burner is disposed at a slope of from 10 ° to 60 ° relative to the axis of rotation of a pod. Fluorine is not added to the blank.

Formålet med den foreliggende opfindelse er at tilvejebringe en forbedret fremgangsmåde til fremstilling af en stav, der kan anvendes ved fremstilling af et optisk fiberråemne, indeholdende fluor ved VAD-metoden.The object of the present invention is to provide an improved method of producing a rod which can be used in the manufacture of an optical fiber blank containing fluorine by the VAD method.

10 Ved den foreliggende opfindelse tilvejebringes således en fremgangsmåde til fremstilling af et råemne til optiske fibre, hvilket råemne indeholder fluor, ved hvilken fremgangsmåde et glasdannende råmateriale flammehydrolyseres ved hjælp af en oxygen/hydrogen-flamme i nærværelse af et gasformigt fluorholdigt materiale til syntetisering 15 af fine glaspartikler, de fine glaspartikler afsættes på spidsen af en roterende podestav til dannelse af et porøst råemne, og det porøse råemne sintres for at omdanne det til et transparent råemne indeholdende fluor, og der til tilføring af det glasdannende råmateriale . og det gasformige fluorholdige materiale anvendes en multidysebræn-20 der, hvilken fremgangsmåde er ejendommelig ved, at det glasdannende råmateriale og oxygengas injiceres fra den første (eller midterste) dyse, det gasformige fluorholdige materiale og oxygengas injiceres fra den anden dyse, der omgiver den første dyse, inaktiv gas injiceres fra den tredje dyse, der omgiver den anden dyse, og hydrogengas 25 injiceres fra den fjerde dyse, der omgiver den tredje dyse. Ved fremgangsmåden ifølge opfindelsen opnås det, at afsætningshastigheden af de fine glaspartikler øges kraftigt, hvorved fremstillingshastigheden for råemnet øges.Thus, the present invention provides a process for producing an optical fiber blank which contains fluorine, wherein a glass-forming raw material is flame hydrolyzed by an oxygen / hydrogen flame in the presence of a gaseous fluorine-containing material for synthesizing 15 fine glass particles, the fine glass particles are deposited on the tip of a rotating graft rod to form a porous blank, and the porous blank is sintered to convert it into a transparent blank containing fluorine and there to feed the glass-forming feedstock. and the gaseous fluorine-containing material is used a multi-nozzle burner, the method being characterized by injecting the glass-forming feedstock and oxygen gas from the first (or middle) nozzle, the gaseous fluorine-containing material and oxygen gas from the second nozzle surrounding the first nozzle. nozzle, inert gas is injected from the third nozzle surrounding the second nozzle, and hydrogen gas 25 is injected from the fourth nozzle surrounding the third nozzle. By the method according to the invention it is obtained that the deposition rate of the fine glass particles is greatly increased, thereby increasing the production rate of the blank.

Opfindelsen illustreres yderligere under henvisning til tegningen, 30 hvor fig. 1 viser en skematisk fremstilling, der illustrerer VAD-metoden; og fig. 2 (I) og (II) viser eksempler på arrangering af dyserne i en brænder. Arrangementet i fig. 2 (II) anvendes ved fremgangsmåden 35 ifølge opfindelsen.The invention is further illustrated with reference to the drawing, in which fig. 1 is a schematic representation illustrating the VAD method; and FIG. 2 (I) and (II) show examples of arranging the nozzles in a burner. The arrangement of FIG. 2 (II) is used in the method 35 of the invention.

DK 163425 BDK 163425 B

33

Ved den foreliggende opfindelse injiceres det fluorholdige materiale sammen med et gasformigt glasråmateriale (fx SiCl^, GeCl^, etc.)» hydrogengas, oxygengas og inaktiv gas fra en multidysebrænder (i det følgende benævnt "brænder") til syntetisering af fine glaspartikler, 5 og materialerne flammehydrolyseres i en oxygen/hydrogenflamme til dannelse af et porøst råemne indeholdende fluor.In the present invention, the fluorine-containing material is injected together with a gaseous glass raw material (e.g. SiCl 2, GeCl 2, etc.) hydrogen gas, oxygen gas and inert gas from a multi-nozzle burner (hereinafter referred to as "burner") for synthesizing fine glass particles. and the materials are flame hydrolyzed in an oxygen / hydrogen flame to form a porous blank containing fluorine.

Det er kendt, at når de fine glaspartikler syntetiseres under et højt oxygenpartialtryk, sønderdeles det fluorholdige materiale grundigt, og der syntetiseres tilstrækkeligt med fine glaspartikler, og der 10 tilsættes effektivt yderligere fluor til det dannede råemne.It is known that when the fine glass particles are synthesized under a high oxygen partial pressure, the fluorine-containing material is thoroughly decomposed and sufficiently fine glass particles are synthesized and additional fluorine is effectively added to the formed blank.

Hvis oxygenpartialtrykket reduceres ved at sænke oxygengassens strømningshastighed, bliver komponentatomer i det fluorholdige materiale såsom carbonatomer ikke oxideret fuldstændigt under sønderdelingen af det fluorholdige materiale og afsætning på det porøse råemne. Endvi-15 dere nedsættes syntetiseringshastigheden af de fine glaspartikler.If the oxygen partial pressure is reduced by lowering the flow rate of the oxygen gas, component atoms in the fluorine-containing material such as carbon atoms are not completely oxidized during the decomposition of the fluorine-containing material and deposition on the porous blank. Furthermore, the rate of synthesis of the fine glass particles is decreased.

Ved at injicere glasråmaterialerne og det fluorholdige materiale separat, forbedres afsætningshastigheden af de fine glaspartikler kraftigt, hvilket er tydeligt ud fra de i tabel I viste resultater.By injecting the glass raw materials and the fluorine-containing material separately, the deposition rate of the fine glass particles is greatly improved, which is evident from the results shown in Table I.

Tabel ITable I

20 Eksperiment Dysearran- Brydningsindex- Forhold af afsætnings- nr. gement forskel hastighed af fine glas-20 Experiment Nozzle Arrangement- Refractive Index- Ratio of outlet no. Gement difference speed of fine glass

Fig. 2 partikler 1 [I] -0,13 1,0 25 2 [II] -0,13 1,2 I arrangement [I] af dyserne i fig. 2 er en dyse 3' til SiCl^, CCI2F2 og oxygengas, en dyse 6 er til oxygengas, en dyse 5 er til inaktiv gas, og en dyse 4 er til hydrogengas.FIG. 2 particles 1 [I] -0.13 1.0 25 2 [II] -0.13 1.2 In arrangement [I] of the nozzles of FIG. 2 is a nozzle 3 'to SiCl 2, CCl 2 F 2 and oxygen gas, a nozzle 6 is to oxygen gas, a nozzle 5 is to inert gas, and a nozzle 4 is to hydrogen gas.

DK 163425 BDK 163425 B

4 I arrangement [II] af dyserne i fig. 2 er en dyse 3" til S1CI4 og oxygengas, og en dyse 6' er til CCI2F2 og oxygengas. I eksperiment 1 er strømningshastighederne af gasserne som følger: Første dyse: S1CI4, 250 ml/sek 5 - CC12F2, 250 ml/sek O2, 200 ml/sek4 In arrangement [II] of the nozzles of FIG. 2 is a nozzle 3 "for S1Cl4 and oxygen gas, and a nozzle 6 'is for CCI2F2 and oxygen gas. In Experiment 1, the flow rates of the gases are as follows: First nozzle: S1Cl4, 250 ml / sec 5 - CC12F2, 250 ml / sec O2 , 200 ml / sec

Anden dyse: O2, 1800 ml/sekSecond nozzle: O2, 1800 ml / sec

Tredje dyse: N2, 1500 ml/sekThird nozzle: N2, 1500 ml / sec

Fjerde dyse: 1¾. 4000 ml/sek 10 I eksperiment 2, som er ifølge opfindelsen, er strømningshastigheden af gasserne som følger: Første dyse: S1CI4, 250 ml/sek O2, 200 ml/sek 15 Anden dyse: O2, 1800 ml/sek GCI2F2, 250 ml/sekFourth nozzle: 1¾. 4000 ml / sec 10 In Experiment 2, according to the invention, the flow rate of the gases is as follows: First nozzle: S1Cl4, 250 ml / sec O2, 200 ml / sec 15 Second nozzle: O2, 1800 ml / sec GCI2F2, 250 ml /SEC

Tredje dyse: N2, 1500 ml/sekThird nozzle: N2, 1500 ml / sec

Fjerde dyse: H2, 4000 ml/sekFourth nozzle: H2, 4000 ml / sec

Disse resultater kan forklares ved, at når S1CI4 og CCI2F2 injiceres 20 samtidigt, begrænses dannelsen af Si02-kerner på grund af dannelse af S1F4 og lignende, medens når de injiceres separat, dannes Si02-ker-nerne på hensigtsmæssig måde, således at afsætningen af fast fase lettes.These results can be explained by the fact that when S1Cl4 and CCl2F2 are injected simultaneously, the formation of SiO2 nuclei due to formation of S1F4 and the like is restricted, while when injected separately, the SiO2 nuclei are formed appropriately so that the deposition of solid phase is facilitated.

Specifikke eksempler på det fluorholdige materiale er CCI2F2, CF4, 25 SFg, C2Fg, S1F4, etc. Mængden af tilsat fluor forøges, når strømningshastigheden af det fluorholdige materiale forøges. Den maksimale strømningshastighed kan være begrænset, eftersom for høj en strømningshastighed forårsager adskillige vanskeligheder såsom revnedannelse i det dannede råemne, asymmetri i råemnet omkring dets akse 30 etc. Der foretrækkes derfor især et fluorholdigt materiale indeholdende flere fluoratomer pr. molekyle, og S1F4, C2Fg, CF4 og SFg foretrækkes.Specific examples of the fluorine-containing material are CCI2F2, CF4, SFG, C2Fg, S1F4, etc. The amount of fluorine added increases as the flow rate of the fluorine-containing material increases. The maximum flow rate can be limited since too high a flow rate causes several difficulties such as cracking in the formed blank, asymmetry in the blank around its axis 30, etc. Therefore, a fluorine-containing material containing more than one fluorine atom is preferred. molecule, and S1F4, C2Fg, CF4 and SFg are preferred.

Claims (2)

5 GIbsråmateriale 200-500 ml/sek fortrinsvis 300-400 ml/sek Fluorholdigt materiale 200-500 ml/sek 10 fortrinsvis 300-400 ml/sek Oxygengas 4.000-12.000 ml/sek fortrinsvis 6.000-8000 ml/sek Hydrogengas 15 4.000-15.000 ml/sek fortrinsvis 5.000-8.000 ml/sek. Forholdet mellem oxygenstrømningshastigheden og hydrogenstrømningshastigheden er sædvanligvis fra 0,5-2, fortrinsvis fra 0,5-1. Forholdet mellem strømningshastighederne af det fluorholdige materiale og 20 glasråmaterialet er fra 0,5-1,5, fortrinsvis fra 0,7-1. Diameteren for hver dyse varierer som funktion af andre betingelser såsom strørnninghastighedeme af gasserne. Figurerne viser typiske diametre for dyserne, men den foreliggende opfindelse er ikke begrænset til disse diametre. 25 PATENTKRAVLiquid-containing material 200-500 ml / sec 10 preferably 300-400 ml / sec Oxygen gas 4,000-12,000 ml / sec preferably 6,000-8000 ml / sec Hydrogen gas 4,000-15,000 ml / sec preferably 5,000-8,000 ml / sec. The ratio of the oxygen flow rate to the hydrogen flow rate is usually from 0.5-2, preferably from 0.5-1. The ratio of the flow rates of the fluorine-containing material to the glass raw material is from 0.5-1.5, preferably from 0.7-1. The diameter of each nozzle varies as a function of other conditions such as the gas flow rates. The figures show typical diameters of the nozzles, but the present invention is not limited to these diameters. 25 PATENT REQUIREMENTS 1. Fremgangsmåde til fremstilling af et råemne til optiske fibre, hvilket råemne indeholder fluor, ved hvilken fremgangsmåde et glas-dannende råmateriale flammehydrolyseres ved hjælp af en oxygen/hydro- DK 163425 B gen-flamme i narværelse af et gasformigt fluorholdigt materiale til syntetisering af fine glaspartikler, de fine glaspartikler afsættes på spidsen af en roterende podestav til dannelse af et porøst råemne (1), og det porøse råemne (1) sintres for at omdanne det til et 5 transparent råemne indeholdende fluor, og der til tilføring af det glasdannende råmateriale og det gasformige fluorholdige materiale anvendes en multidysebrænder (2), kendetegnet ved, at det glasdannende råmateriale og oxygengas injiceres fra den første (eller midterste) dyse (3"), det 10 gasformige fluorholdige materiale og oxygengas injiceres fra den anden dyse (6'), der omgiver den første dyse (3"), inaktiv gas injiceres fra den tredje dyse (5), der omgiver den anden dyse, og hydrogengas inj iceres fra den fj erde dyse (4), der omgiver den tredj e dyse.A process for producing a blank for optical fibers which contains fluorine, wherein a glass-forming raw material is flame hydrolyzed by an oxygen / hydro-flame in the presence of a gaseous fluorine-containing material for synthesizing fine glass particles, the fine glass particles are deposited on the tip of a rotating graft rod to form a porous blank (1), and the porous blank (1) sintered to convert it into a transparent blank containing fluorine and to supply the glass forming raw material and the gaseous fluorine-containing material are used a multi-nozzle burner (2), characterized in that the glass-forming raw material and oxygen gas are injected from the first (or middle) nozzle (3 "), the gaseous fluorine-containing material and oxygen gas are injected from the second nozzle (6). ') surrounding the first nozzle (3 "), inert gas is injected from the third nozzle (5) surrounding the second nozzle, and hydrogen gas is injected from the fourth nozzle (4) surrounding the third nozzle. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det fluorholdige materiale er mindst ét materiale valgt fra klassen bestående af SFg, CF4, C2Fg, S1F4 og CCI2F2.Process according to claim 1, characterized in that the fluorine-containing material is at least one material selected from the class consisting of SFg, CF4, C2Fg, S1F4 and CCI2F2.
DK593384A 1984-12-11 1984-12-11 PROCEDURE FOR MANUFACTURING A FRAME FOR OPTICAL FIBERS DK163425C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK593384A DK163425C (en) 1984-12-11 1984-12-11 PROCEDURE FOR MANUFACTURING A FRAME FOR OPTICAL FIBERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK593384A DK163425C (en) 1984-12-11 1984-12-11 PROCEDURE FOR MANUFACTURING A FRAME FOR OPTICAL FIBERS
DK593384 1984-12-11

Publications (4)

Publication Number Publication Date
DK593384D0 DK593384D0 (en) 1984-12-11
DK593384A DK593384A (en) 1986-06-12
DK163425B true DK163425B (en) 1992-03-02
DK163425C DK163425C (en) 1992-07-20

Family

ID=8146267

Family Applications (1)

Application Number Title Priority Date Filing Date
DK593384A DK163425C (en) 1984-12-11 1984-12-11 PROCEDURE FOR MANUFACTURING A FRAME FOR OPTICAL FIBERS

Country Status (1)

Country Link
DK (1) DK163425C (en)

Also Published As

Publication number Publication date
DK163425C (en) 1992-07-20
DK593384A (en) 1986-06-12
DK593384D0 (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US4627866A (en) Method for producing optical fiber preform
US4486212A (en) Devitrification resistant flame hydrolysis process
US4165223A (en) Method of making dry optical waveguides
US4157906A (en) Method of drawing glass optical waveguides
US4413882A (en) Low viscosity core glass optical fiber
DE69028300T2 (en) GLASS-LIKE SILICONE DIOXIDE PRODUCTS
US4846867A (en) Method for producing glass preform for optical fiber
JPS61155225A (en) Manufacture of optical wave guide tube
EP0043712A1 (en) A method of making a high purity glass article such as a soot preform, a soot preform and an optical waveguide fibre formed therefrom
JPH11209141A (en) Production of segment core optical waveguide preform
EP0100174B1 (en) Method of making glass optical fiber
JP4879019B2 (en) Method of manufacturing optical fiber and its preform
CN101066834A (en) Process of preparing fiber preformrod
JP4104558B2 (en) Manufacturing method of glass tube
DK163425B (en) Process for preparing a raw material for optical fibres
EP0251312B1 (en) Method of manufacturing fiber preform for single-mode fibers
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JPS60264338A (en) Manufacture of optical fiber preform
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPH0476936B2 (en)
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS63139028A (en) Production of optical fiber glass base material
JPH0324415B2 (en)
FI91146C (en) A method of making a porous glass preform for optical fibers
US4804393A (en) Methods for producing optical fiber preform and optical fiber

Legal Events

Date Code Title Description
PUP Patent expired