DK161266B - METHOD AND APPLICATION FOR POSITIONING OF A MARINE HYDROPHONE CABLE - Google Patents
METHOD AND APPLICATION FOR POSITIONING OF A MARINE HYDROPHONE CABLE Download PDFInfo
- Publication number
- DK161266B DK161266B DK545781A DK545781A DK161266B DK 161266 B DK161266 B DK 161266B DK 545781 A DK545781 A DK 545781A DK 545781 A DK545781 A DK 545781A DK 161266 B DK161266 B DK 161266B
- Authority
- DK
- Denmark
- Prior art keywords
- vessel
- transponders
- acoustic
- receiver
- transponder
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3817—Positioning of seismic devices
- G01V1/3835—Positioning of seismic devices measuring position, e.g. by GPS or acoustically
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/87—Combinations of sonar systems
- G01S15/874—Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Geophysics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Geophysics And Detection Of Objects (AREA)
Description
DK 161266 BDK 161266 B
Opfindelsen angår i hovedsagen marine seismiske undersøgelser, og nærmere betegnet en fremgangsmåde til bestemmelse af positionen af et neddykket marint hydro-fonkabel, der slæbes af et undersøgelsesfartøj, ved 5 hvilken der anbringes mindst tre transpondere på kendte, indbyrdes adskilte steder på havbunden, hvor et marint seismisk hydrofonkabel slæbes af et undersøgelsesfartøj i søen hovedsageligt over de nævnte transpondere, hvor der frembringes et akustisk kommandosignal fra 10 fartøjet på periodisk basis, hvor det akustiske kommandosignal modtages af hver af de mindst tre transpondere, og hvor der som reaktion på det akustiske kommandosignal frembringes et tydeligt skelneligt akustisk signal fra hver af transponderne, hvor hvert af transpon-15 dernes akustiske svarsignaler detekteres i fartøjets modtager, hvor hvert af transpondernes akustiske svarsignaler detekteres i et antal modtagere, som er anbragt indbyrdes adskilt langs hydrofonkablet, hvor der videresendes et tydeligt signal langs hydrofonkab-,20 let som reaktion på hvert af de detekterede signaler til registrering af dette på fartøjet, og hvor der foretages en separat registrering af hvert af transpondernes akustiske signaler på fartøjet, og hvor der foretages en måling af tidsintervallerne fra frembringel-25 se af kommandosignalet til modtagelse af hvert af transpondernes akustiske signaler i mindst én modtager på fartøjet.The invention relates mainly to marine seismic surveys, and more particularly to a method for determining the position of a submerged marine hydrophone cable towed by a survey vessel at which at least three transponders are placed at known, mutually spaced locations on the seabed. marine seismic hydrophone cable is towed by a survey vessel in the lake mainly over said transponders, producing an acoustic command signal from the vessel on a periodic basis, where the acoustic command signal is received by each of the at least three transponders and where in response to the acoustic command signal a clearly distinguishable acoustic signal is generated from each of the transponders, each of the transponder's acoustic response signals being detected in the vessel receiver, each of the transponders acoustic response signals being detected in a plurality of receivers spaced apart along the hydrophone cable transmitting a clear signal along the hydrophone cable 20 in response to each of the detected signals for recording it on the vessel, and where a separate recording of each of the transponder acoustic signals is made on the vessel, and measuring the time intervals from -25 view of the command signal for receiving each of the transponder acoustic signals in at least one receiver on the vessel.
Ved marin seismisk prospektering slæber et undersøgelsesfartøj et seismisk hydrofonkabel med et an-30 tal trykfølsomme detektorer, der i almindelighed benævnes hydrofoner. En seismisk energikilde, såsom en luftkanon eller en sprængladning anvendes til at frembringe trykbølger gennem vandet og ned i den underliggende havbund. En del af energien vil blive reflekteret af 35 geologiske diskontinuiteter under bunden og detekteres derefter af hydrofonerne som trykvariationer i det om-In marine seismic exploration, a survey vessel tows a seismic hydrophone cable with a number of pressure-sensitive detectors, commonly referred to as hydrophones. A seismic energy source, such as an air cannon or explosive charge, is used to generate pressure waves through the water and into the underlying seabed. Part of the energy will be reflected by 35 geological discontinuities below the bottom and then detected by the hydrophones as pressure variations in the surrounding area.
2 DK 161266 B2 DK 161266 B
givende vand. Disse trykvariationers mekaniske energi omdannes til et elektrisk signal af hydrofonerne og transmitteres gennem hydrofonkablet til et registreringsapparat om bord på fartøjet. De opsamlede data kan 5 derefter fortolkes af fagfolk til at give oplysninger om geologiske formationer under vandet.giving water. The mechanical energy of these pressure variations is converted into an electrical signal by the hydrophones and transmitted through the hydrophone cable to a recording device on board the vessel. The data collected can then be interpreted by those skilled in the art to provide information on geological formations underwater.
For at signalerne skal have mening, er det nødvendigt at kende placeringen af de individuelle hydro-foner på det tidspunkt, hvor trykbølgerne detekteres.In order for the signals to make sense, it is necessary to know the location of the individual hydrophones at the time the pressure waves are detected.
10 Eftersom fartøjet bevæger sig kontinuerligt, og eftersom hydrofonkablet kan strække sig tusinder af fod efter fartøjet, er nøjagtig positionsbestemmelse af hydrof onerne vanskelig.10 Since the vessel is moving continuously and since the hydrophone cable can extend thousands of feet after the vessel, accurate positioning of the hydrophones is difficult.
Der er blevet udviklet forskellige systemer til 15 at give nøjagtige informationer om fartøjets position.Various systems have been developed to provide accurate information on the vessel's position.
Ved et almindeligt anvendt system frembringer et antal undervandstranspondere signaler med en særlig udgangsfrekvens som svar på et spørgesignal fra skibet. Transporttiden for spørgesignalet og transponderens svarsi'g-20 nal måles, og afstanden eller området fra hver transponder beregnes. Fartøjets position i forhold til transponderne kan derefter trianguleres, såfremt transpondernes position er kendt.In a commonly used system, a number of underwater transponders produce signals with a particular output frequency in response to a ship's interrogation signal. The transport time of the question signal and the transponder response signal is measured and the distance or area from each transponder is calculated. The position of the vessel relative to the transponders can then be triangulated, if the position of the transponders is known.
Det er imidlertid sjældent, at hydrofonkablet 25 føres direkte langs med fartøjets vej. Selvom hydrofonkablet er fastgjort til fartøjets agterstavn, er det meste af hydrofonkablet nedsænket under vandoverfladen under påvirkning fra dybderegulatorer langs med hydro-fonkablets længde. Som et resultat heraf kan tvær-30 strømshastigheden ved hydrofonkabeldybden adskille sig fra den tværstrøm, der påvirker fartøjet, og derved få hydrofonkablet til at strække sig ud i en vinkel fra fartøjets kurs. Andre faktorer, som det ikke skulle være nødvendigt at opremse, kan også skabe en variation i 35 hydrofonkablets vej i forhold til fartøjets kurs.However, it is rare for hydrophone cable 25 to be routed directly along the vessel's path. Although the hydrophone cable is attached to the stern of the vessel, most of the hydrophone cable is submerged under the water surface under the influence of depth regulators along the length of the hydrophone cable. As a result, the transverse current velocity at the hydrophone cable depth may differ from the transverse current affecting the vessel, thereby causing the hydrophone cable to extend at an angle from the vessel's course. Other factors that need not be noted may also create a variation in the hydrophone cable path relative to the vessel's course.
En kendt fremgangsmåde til at skønne positionen af hydrofonkablet beror på udsætning af en halebøje- 3 radar-reflektor, der er anbragt ved hydrofonkablets ende. Radarsystemer om bord kan derefter under optimale søbetingelser anvendes til at finde hydrofonkablets ende, og positionen af de enkelte hydrofoner interpolere-5 res. Sådanne systemer er imidlertid i almindelighed upålidelige og gør de fornødne data tvivlsomme.A known method for estimating the position of the hydrophone cable is due to the release of a tail-bending radar reflector located at the end of the hydrophone cable. On-board radar systems can then be used to find the end of the hydrophone cable under optimal sea conditions and the position of the individual hydrophones interpolated. However, such systems are generally unreliable and make the necessary data questionable.
En anden kendt metode anvender et meget følsomt og kostbart apparatur til at måle girings- og duvnings-vinklerne for den ende af hydrofonkablet, der er op til 10 fartøjet. Disse data gør det sammen med magnetkompasaflæsninger taget langs med hydrofonkablet og hydrofonkablets kendte dybde muligt at beregne hydrofonpositio-nerne empirisk.Another known method uses a very sensitive and expensive apparatus to measure the yaw and push angles of the end of the hydrophone cable up to the vessel. These data, together with magnetic compass readings taken along the hydrophone cable and the known depth of the hydrophone cable, make it possible to calculate the hydrophone positions empirically.
Fra amerikansk patentskrift nr. 4 229 809 kendes 15 et apparat til bestemmelse af positionen af en neddykket enhed, der er tøjret til et overfladefartøj, i forhold til dette. Dette sker ved, at en kalde-modtagerenhed på overfladefartøjet udsender en akustisk impuls, der fremkalder svarimpuler med skelnelige bære-•20 bølger fra to bundplacerede respondere og fra en transponder-modtager på den tøjrede enhed. Svarimpulser modtages dels fra alle transponderne af fartøjets akustiske modtager og dels fra bundtransponderne af den tøjrede enheds modtager. Derpå beregnes den neddykkede 25 enheds position udfra en række målinger på grundlag af tidsforskellen mellem impulserne fra: (1) fartøjet til bundtransponderne, (2) fartøjet til den neddykkede enhed, (3) bundtransponderne til den neddykkede enhed og (4) alle disse signalers tilbagekomst.US Patent No. 4,229,809 discloses an apparatus for determining the position of a submerged unit tethered to a surface vessel relative thereto. This is accomplished by a cold receiver unit on the surface vessel emitting an acoustic pulse that produces response pulses with discernible carrier waves from two bottom responders and from a transponder receiver on the tethered unit. Response pulses are received partly from all the transponders of the vessel's acoustic receiver and partly from the bottom transponders of the tethered unit's receiver. Then, the submerged 25 unit position is calculated from a series of measurements based on the time difference between the pulses from: (1) the vessel to the bottom transponder, (2) the vessel to the submerged unit, (3) the bottom transponder to the submerged unit and (4) to all of these signals. return.
30 Den foreliggende opfindelse har til formål at tilvejebringe en fremgangsmåde og et apparat til nøjagtig lokalisering af et neddykket hydrofonkabel, som trækkes af et undersøgelsesfartøj, på enkel og økonomisk måde og med en hurtig reaktionstid.The present invention has for its object to provide a method and apparatus for accurately locating a submerged hydrophone cable pulled by a survey vessel in a simple and economical manner and with a fast reaction time.
35 Dette opnås med en fremgangsmåde af den indled ningsvis omhandlede art, som ifølge opfindelsen erThis is accomplished by a method of the present invention which is according to the invention
4 DK 161266 B4 DK 161266 B
ejendommelig ved, at afstanden mellem hver af hydrofon-kabelmodtagerne og hver af de kendte positioner af transponderne beregnes ved, at hastigheden af den nævnte mindst ene fartøjsmodtager i forhold til hver af 5 transponderne bestemmes ved beregning af afstands-ændringshastigheden fra en akustisk respons fra transponderne, og at tidsintervallerne fra frembringelsen af transpondernes akustiske svarsignaler til modtagelse af hvert af de nævnte svarsignaler, som videresendes fra 10 de adskilte modtagere langs hydrofonkablet, måles.peculiar in that the distance between each of the hydrophone cable receivers and each of the known positions of the transponders is calculated by determining the speed of said at least one vessel receiver relative to each of the 5 transponders in calculating the distance change rate from an acoustic response of the transponders. and that the time intervals from generating the acoustic response signals of the transponders to receive each of said response signals forwarded from the separated receivers along the hydrophone cable are measured.
Ved fremgangsmåden ifølge opfindelsen opnås en enkel og præcis positionsbestemmelse ved fra en akustisk kilde at kalde et sæt på mindst tre fast placerede transpondere. Disse svarer hver især med et signal 15 med sin egen frekvens, som opfanges af en modtager på hydrofonkablet. Der sendes kun én impuls til og modtages kun én impuls fra hver af bundtransponderne i modsætning til ved systemet ifølge US patentskrift nr.In the method of the invention, a simple and accurate position determination is obtained by calling from acoustic source a set of at least three fixed transponders. These each respond to a signal 15 of its own frequency which is intercepted by a receiver on the hydrophone cable. Only one pulse is sent to and only one pulse is received from each of the bottom transponders, as opposed to the system of U.S. Pat.
4 229 809, der anvender en kompleks række signaludsen-20 delser.No. 4,229,809 using a complex series of signal transmissions.
Endvidere beregnes ved fremgangsmåden ifølge opfindelsen hastigheden og positionsændringen mellem den akustiske kilde og transponderne på havbunden. I systemet ifølge opfindelsen kan der benyttes et seismisk un-25 dersøgelsesfartøj', som sejler med en hastighed på 4-5 knob til at trække hydrofonkablet. Ved denne hastighed er kablets positionsforskel mere udpræget, og det skal tages i betragtning til tilvejebringelse af meget nøjagtige målinger. Ved den kendte teknik beregnes ha-30 stigheden eller positionsændringen af hydrofonkablet af forskellige praktiske grunde ikke. F.eks. bevæger træk-fartøjet sig med lavere hastigheder, hvilket indebærer, at korrektionsfaktoren er mindre betydende, og målenøj-agtigheden er ikke så nødvendig ved den type arbejde, 35 dvs. rekognosceringsinspektioner, ikke lokalisering af potentielle olieboresteder eller detaljerede struktur- 5Furthermore, the method according to the invention calculates the speed and position change between the acoustic source and the transponders on the seabed. In the system according to the invention, a seismic survey vessel 'which sails at a rate of 4-5 knots can be used to pull the hydrophone cable. At this speed the position difference of the cable is more pronounced and it must be taken into account to provide very accurate measurements. In the prior art, for various practical reasons, the speed or position change of the hydrophone cable is not calculated. Eg. For example, the towing vessel moves at lower speeds, which means that the correction factor is less significant and the measurement accuracy is not so necessary in the type of work, ie. reconnaissance inspections, not location of potential oil drilling sites or detailed structure 5
DK 161266 BDK 161266 B
kortlægninger med høj opløsning. Endvidere udsættes trækfartøjet for en mere tilfældig og mindre retlinjet manøvrering, således at en beregning af hastighed og positionsændring ikke ville være gennemførlig.high resolution mappings. Furthermore, the towing vessel is subjected to a more random and less straight-line maneuver, so that a calculation of speed and position change would not be feasible.
5 Derudover indebærer det kendte system en mere komplex målemetode, men ikke en beregning af et hydro-fonkabels hastighed og positionsændringer, hvilket er væsentligt for den foreliggende opfindelse.In addition, the known system involves a more complex measurement method, but not a calculation of the speed and position changes of a hydrophone cable, which is essential for the present invention.
Denne angår også et apparat til brug ved bestem-10 melse af positionen af et nedsænket marint hydrofonka-bel, som slæbes gennem søen af et undersøgelsesfartøj, i forhold til et antal kendte geografiske steder på havbunden, omfattende midler til initiering af et akustisk kommandosignal fra fartøjet, mens det bevæger sig 15 gennem søen, mindst tre transpondere, som er rumligt placeret på kendte positioner på havbunden til tilvejebringelse af tydelige akustiske baner til fartøjet og hydrofonkablet, som slæbes af fartøjet, idet hver af transponderne er i stand til at reagere på et eneste 20 kommandosignal fra fartøjet ved udsendelse af akustiske signaler med en frekvens, der er tydeligt forskellig i forhold til hver af de andre transpondere, et antal indbyrdes adskilte modtagere, som bæres af hydrofonkablet, og som hver især er i stand til at modtage de 25 forskellige frekvenser for akustiske signaler, som udsendes af hver transponder, og som hver især individuelt videresender et tydeligt signal langs hydrofonkablet til fartøjet, som er repræsentativt for hvert af de modtagne signaler, mindst én fartøjsmodtager, som er i 30 stand til at modtage og skelne mellem de forskellige frekvenser, som udsendes fra transponderne, midler til registrering af tidsintervallet mellem initieringen af kommandosignalet til modtagelse af et signal fra hver af transponderne i fartøjsmodtageren, hvilket apparat 35 til muliggørelse af de forannævnte tekniske fordele på en enkel måde er ejendommeligt ved, at der findes et 6This also relates to an apparatus for use in determining the position of a submerged marine hydrophone cable towed through the sea by a survey vessel, relative to a number of known geographical locations on the seabed, comprising means for initiating an acoustic command signal from the vessel as it travels through the lake, at least three transponders which are spatially located at known positions on the seabed to provide clear acoustic trajectories for the vessel and the hydrophone cable towed by the vessel, each of the transponders being able to respond to a single 20 command signal from the vessel upon transmission of acoustic signals at a frequency distinctly different from each of the other transponders, a number of mutually spaced receivers carried by the hydrophone cable and each capable of receiving the 25 different frequencies for acoustic signals emitted by each transponder and each individually known transmits a clear signal along the hydrophone cable to the vessel representative of each of the received signals, at least one vessel receiver capable of receiving and distinguishing the various frequencies emitted by the transponders, means for recording the time interval between the initiation of the command signal for receiving a signal from each of the transponders of the vessel receiver, which apparatus 35 for enabling the aforementioned technical advantages is simply characterized by the existence of a 6
DK 161266 BDK 161266 B
organ til bestemmelse af fartøjsmodtagerens hastighed i forhold til hver af transponderne, således at afstanden mellem hver af hydrofonkabelmodtagerne og hver af transpondernes kendte positioner kan beregnes.means for determining the speed of the vessel receiver relative to each of the transponders so that the distance between each of the hydrophone cable receivers and each of the known positions of the transponders can be calculated.
5 Opfindelsen beskrives nærmere under henvisning til de medfølgende tegninger, hvori fig. 1 viser en transponderrække sammen med et undersøgelsesfartøj, der slæber en marin slæbewire, og fig. 2 virkningen af fartøjsbevægelser på de 10 akustiske veje mellem fartøj og transponder.The invention is described in more detail with reference to the accompanying drawings, in which 1 shows a transponder row together with a survey vessel tugging a marine tow wire; and FIG. 2 the effect of vessel movements on the 10 acoustic paths between vessel and transponder.
Den omhandlede opfindelse kræver anbringelse af et antal akustiske transpondere på eller tæt ved havbunden. Transponderne vil fortrinsvis være anbragt på havbunden i ikke-lineære mønstre med mindst tre tran-15 spondere pr. mønster. Hver transponder i en given triplet er fortrinsvis anbragt i en tilstrækkelig afstand fra de cindre til opnåelse af en passende afstand til skibet og slæbewiremodtagerne i en given vanddybde. Den omhandlede opfindelse angår positionsbestemmelse af far-20 tøjet og slæbewiren i forhold til et givet mønster og ikke i forhold til den faktiske geografiske position, idet denne sidste kan etableres ud fra kendskab til transponderpositionen. Velkendte fremgangsmåder er beskrevet i litteraturen til bestemmelse af transponder-25 positionen og kalibreringen og omtales derfor ikke her.The present invention requires the placement of a number of acoustic transponders on or near the seabed. The transponders will preferably be arranged on the seabed in non-linear patterns with at least three transponders per second. pattern. Each transponder in a given triplet is preferably spaced a sufficient distance from the culverts to obtain a suitable distance to the ship and tow receivers at a given water depth. The present invention relates to position determination of the vessel and tow wire in relation to a given pattern and not in relation to the actual geographical position, the latter being established from knowledge of the transponder position. Well known methods are described in the literature for determining the transponder position and calibration and are therefore not mentioned here.
X fig. 1 i tegningerne vises et enkelt mønster af tre akustiske transpondere, der er betegnet 10, 12 og 14, og som er anbragt på havbunden 16. Et undersøgelsesskib 18 er vist på overfladen slæbende en slæ-30 bewire 20.X fig. 1 of the drawings, a single pattern of three acoustic transponders, designated 10, 12 and 14, is shown on the seabed 16. An examination ship 18 is shown on the surface towing a tow 20.
Transpondere af den type, der kræves, er kommercielt tilgængelige og omfatter normalten bundplade 22, der hviler på havbunden, og et kabel 24, der er fæstnet mellem bundpladen 22 og et transponderhus 26.Transponders of the type required are commercially available and normally comprise bottom plate 22 resting on the seabed and a cable 24 attached between the bottom plate 22 and a transponder housing 26.
35 En flyder 28 er forbundet til transponderhuset 26 ved hjælp af et kabel 30 og holder transponderhuset i en højde over havbunden, der bestemmes af længden af kablet 24. Flyderen 28 giver også mulighed for bjergning, såfremt kablet 24 brydes.A float 28 is connected to the transponder housing 26 by means of a cable 30 and holds the transponder housing at a height above the seabed, which is determined by the length of the cable 24. The float 28 also allows for salvage if the cable 24 is broken.
77
DK 161266 BDK 161266 B
Fartøjet 18 er udstyret med en akustisk transceiver 32 til afsendelse af akustiske kalde- eller spørgesignaler gennem vandet til transponderne og modtagelse af svarsignaler derfra. Transponderne i mønstret 5 vil fortrinsvis reagere på et enkelt frekvenssignal, der afsendes af fartøjets transceiver. Imidlertid kan der om ønsket frembringes kodede signaler fra fartøjet til at aktivere de enkelte transpondere.The vessel 18 is equipped with an acoustic transceiver 32 for transmitting acoustic call or question signals through the water to the transponders and receiving response signals therefrom. The transponders of the pattern 5 will preferably respond to a single frequency signal transmitted by the vessel transceiver. However, if desired, encoded signals can be generated from the vessel to activate the individual transponders.
Den marine slæbewire 20 er nedsænket under hav-10 overfladen af et antal konventionelle dybderegulatorer (ikke vist) og vil normalt indeholde hydrofoner (ikke vist) og dybdemålere (ikke vist), der kan opkaldes fra fartøjet til opnåelse af oplysninger.The marine tow 20 is submerged beneath the sea surface by a number of conventional depth regulators (not shown) and will usually contain hydrophones (not shown) and depth gauges (not shown) that can be called from the vessel for information.
Derudover vil slæbewiren også indeholde et antal 15 akustiske modtagere 34, der er anbragt i afstand langs med slæbewirens længde. Modtagerne 34 er i stand til at detektere de signaler, der frembringes af transponderne, og transmittere identificerbare svar langs med slæbeviren til fartøjet. Normalt vil slæbeviren have sær-,20 lige kanaler, der fører fra hver modtager til fartøjet, til at transmittere informationen. Skønt modtagerne kan være aktive eller strømfødede, foretrækkes det dog, at modtagerne er passive.In addition, the tow wire will also contain a plurality of 15 acoustic receivers 34 spaced along the length of the tow wire. The receivers 34 are capable of detecting the signals generated by the transponders and transmitting identifiable responses along with the towing vessel to the vessel. Normally, the tow wire will have separate, 20 equal channels leading from each receiver to the vessel to transmit the information. However, although the receivers may be active or powered, the receivers are preferred to be passive.
Til bestemmelse af positionen af modtagerne 34 25 og således slæbewirepositionen bringes fartøjets akustiske transceiver 32 til at sende et akustisk kaldesig-nal. Ved modtagelse af signalet efter forsinkelsen i transmissionstid gennem vandet transmitterer hver transponder en akustisk puls med en skelnelig frekvens. Disse 30 pulser detekteres af transceiveren 32 og af de akustiske modtagere 34 i slæbewiren. Af hensyn til overskueligheden er de akustiske gennemløbsveje i fig. 1 vist som punkterede linier for fartøj stransceiveren, transponderne og en enkelt modtager i slæbewiren. Det er klart, 35 at tilsvarende veje kunne tegnes for hver af modtagerne i slæbewiren. Pilene 1^, I2 og I3 angiver kaldepulsen, der bevæger sig langs med de punkterede linier fra ski- 8To determine the position of the receivers 34 and thus the tow position, the acoustic transceiver 32 of the vessel is caused to transmit an acoustic call signal. Upon receiving the signal after the delay in transmission time through the water, each transponder transmits an acoustic pulse at a discernible frequency. These 30 pulses are detected by the transceiver 32 and by the acoustic receivers 34 of the tow wire. For the sake of clarity, the acoustic passageways in FIG. 1 is a dotted line for the vessel transceiver, transponders and a single receiver in the tow wire. It is clear that similar paths could be drawn for each of the recipients in the tow wire. Arrows 1 ^, I2 and I3 indicate the cold pulse moving along the dashed lines from the sky 8
DK 161266 BDK 161266 B
bet til transponderne. Pilene R^, R2 og viser svar-pulserne fra transponderne til fartøjet, og pilene R* R'2 og R'2 viser pulsernes gennemløbsveje til modtageren i slæbewiren. Eftersom de rumlige positioner af trans-5 ponderne på havbunden og lydens hastighed gennem vandet er kendt, kan modtagerpositionen trianguleres ud fra kendskab til gennemløbstiden for hver puls fra deres respektive transpondere.bet to the transponders. Arrows R 1, R 2 and show the response pulses from the transponders to the vessel, and arrows R * R 2 and R 2 show the paths of the pulses to the receiver in the tow wire. Since the spatial positions of the transponders on the seabed and the velocity of sound through the water are known, the receiver position can be triangulated based on knowledge of the passage time of each pulse from their respective transponders.
Om bord på fartøjet findes passende organer til 10 at måle tidsintervallet mellem afsendelsen af kaldesig-nalet og modtagelsen af pulserne fra transponderne og modtagerne.On board the vessel, there are suitable means for measuring the time interval between the transmission of the call signal and the reception of the pulses from the transponders and the receivers.
I fig. 2 vises et enkelt fartøj, der bevæger sig på vandoverfladen til et tidspunkt Tg og et efterfølgen-15 de tidspunkt T^. Som vist afsender fartøjets transceiver en puls til tidspunktet Tg, hvilken puls bevæger sig i en ret linie langs den angivne vej til trandponderen.In FIG. 2 shows a single vessel moving on the water surface to a point Tg and a subsequent time T1. As shown, the vessel transceiver sends a pulse to time Tg, which pulse moves in a straight line along the indicated path to the transponder.
Ved modtagelse af signalet på tidspunktet transmitterer transponderen en pulse, der detekteres af fartøjs-20 transceiveren til tidspunktet . Af figuren kan det udledes, at tidspunktet T^ er givet ved formlen:Upon receiving the signal at the time, the transponder transmits a pulse detected by the vessel transceiver at the time. From the figure it can be deduced that the time T ^ is given by the formula:
Td = Tg + - Tg) (1 - v) -2- c hvori Ir er fartøjets fart i forhold til transponderen, 25 og c er udbredelseshastighéden af de akustiske pulser.Td = Tg + - Tg) (1 - v) -2- c wherein Ir is the speed of the vessel relative to the transponder, 25 and c are the propagation velocity of the acoustic pulses.
Forholdet ^ kan bestemmes på et antal måder. En foretrukken metode beror imidlertid på måling af Dopp-lerskiftet i den modtagne frekvens fra transponderen. Naturligvis skal trandponderne,for at det er muligt at 30 bestemme farten på denne måde, være i stand til at frembringe pulser med meget stabile frekvenser, og fartøjsmodtageren skal være i stand til at måle det apparente frekvensskift.The ratio ^ can be determined in a number of ways. However, a preferred method depends on measuring the Doppler change in the received frequency from the transponder. Of course, in order to determine the speed in this way, the transponders must be able to produce pulses of very stable frequencies and the vessel receiver must be able to measure the approximate frequency shift.
Forholdet kan også beregnes ud fra den hastighed, 35 hvormed afstanden ændrer sig i retning mellem transponderne og fartøjet. Denne afstandshastighed kan bestemmes let ud fra kendskab til fartøjets position og fart i forhold til transponderne.The ratio can also be calculated from the speed at which the distance changes in the direction between the transponders and the vessel. This distance velocity can be easily determined from knowledge of the vessel's position and speed relative to the transponders.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21519580A | 1980-12-10 | 1980-12-10 | |
US21519580 | 1980-12-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK545781A DK545781A (en) | 1982-06-11 |
DK161266B true DK161266B (en) | 1991-06-17 |
DK161266C DK161266C (en) | 1991-12-02 |
Family
ID=22802047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK545781A DK161266C (en) | 1980-12-10 | 1981-12-09 | METHOD AND APPLICATION FOR POSITIONING OF A MARINE HYDROPHONE CABLE |
Country Status (15)
Country | Link |
---|---|
JP (2) | JPS57141571A (en) |
AU (1) | AU545131B2 (en) |
BR (1) | BR8107971A (en) |
CA (1) | CA1195762A (en) |
DE (1) | DE3149162A1 (en) |
DK (1) | DK161266C (en) |
ES (1) | ES8301032A1 (en) |
FR (1) | FR2495783B1 (en) |
GB (1) | GB2089043B (en) |
IT (1) | IT1139931B (en) |
NL (1) | NL8105493A (en) |
NO (1) | NO156627C (en) |
NZ (1) | NZ199066A (en) |
YU (1) | YU42748B (en) |
ZA (1) | ZA818225B (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2530823B1 (en) * | 1982-07-21 | 1985-12-06 | Sintra Alcatel Sa | ACOUSTIC ECARTOMETRY MEASURING DEVICE AND METHOD FOR ITS IMPLEMENTATION |
US4532617A (en) * | 1982-09-29 | 1985-07-30 | Baecker Donald Ray | System for locating a towed marine object |
NO161090C (en) * | 1983-04-29 | 1989-06-28 | Norske Stats Oljeselskap | PROCEDURE FOR POSITION DETERMINATION OF MARINE SEISMIC RECEIVER CABLE. |
US4641287A (en) * | 1984-04-30 | 1987-02-03 | Mobil Oil Corporation | Method for locating an on-bottom seismic cable |
JPS61228371A (en) * | 1985-04-01 | 1986-10-11 | Unyusho Daiyon Kowan Kensetsu Kyokucho | Apparatus for detecting position in water |
USH549H (en) * | 1985-04-22 | 1988-12-06 | Shell Oil Company | Apparatus and method for locating towed seismic apparatus |
GB8531952D0 (en) * | 1985-12-31 | 1986-02-05 | Sar Plc | Stereo balance adjuster |
FR2601143B1 (en) * | 1986-07-01 | 1988-12-02 | Geophysique Cie Gle | METHOD AND SYSTEM FOR LOCATING AND CORRECTING ORIENTATION OF A SELF-CONTAINED MOBILE OBJECT AND OF A NON-SELF-CONTAINED MOBILE OBJECT |
GB2209602A (en) * | 1987-09-09 | 1989-05-17 | Michael Owen | Phased arrays of ultrasonic emitters used with a mobile receiver |
FR2643463B1 (en) * | 1989-02-17 | 1991-09-27 | Software Based Systems | METHOD AND DEVICE FOR POSITIONING AN UNDERWATER OBJECT IN RELATION TO AN ABSOLUTE REFERENTIAL, AND USING A SURFACE RELAY REFERENTIAL |
DE9108370U1 (en) * | 1991-07-02 | 1992-11-05 | Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung, 2850 Bremerhaven | Arrangement for anchoring measuring instruments in water currents |
AU2002238304B2 (en) * | 2001-03-22 | 2004-11-11 | Nautronix (Holdings) Plc | Improved underwater station |
EP1379895B1 (en) | 2001-03-22 | 2017-03-22 | Nautronix (Holdings) Limited | Improved underwater station |
AU2002238303B2 (en) * | 2001-03-22 | 2004-11-11 | Nautronix (Holdings) Plc | Positioning system |
JP2003019999A (en) * | 2001-07-09 | 2003-01-21 | Mitsui Eng & Shipbuild Co Ltd | Sea bottom stratum exploration system |
GB2394045B (en) * | 2002-10-11 | 2006-07-26 | Westerngeco Seismic Holdings | Method and apparatus for positioning of seismic sensing cables |
GB2409900B (en) | 2004-01-09 | 2006-05-24 | Statoil Asa | Processing seismic data representing a physical system |
GB2435693A (en) | 2006-02-09 | 2007-09-05 | Electromagnetic Geoservices As | Seabed electromagnetic surveying |
GB2439378B (en) | 2006-06-09 | 2011-03-16 | Electromagnetic Geoservices As | Instrument for measuring electromagnetic signals |
GB2442749B (en) * | 2006-10-12 | 2010-05-19 | Electromagnetic Geoservices As | Positioning system |
GB2445582A (en) | 2007-01-09 | 2008-07-16 | Statoil Asa | Method for analysing data from an electromagnetic survey |
CN102854217B (en) * | 2012-09-11 | 2014-07-16 | 西安近代化学研究所 | Assembling and disassembling device of calorimetric cover used in explosion heat measurement |
WO2018151723A1 (en) * | 2017-02-15 | 2018-08-23 | Halliburton Energy Services, Inc. | Evaluating subsea geodetic data |
CN106990431B (en) * | 2017-05-18 | 2023-08-15 | 国家海洋局第一海洋研究所 | Offshore bottom hydrate detection system |
CN108535751A (en) * | 2018-03-06 | 2018-09-14 | 上海瑞洋船舶科技有限公司 | Underwater positioning device and localization method |
CN112433218B (en) * | 2020-11-17 | 2024-02-13 | 海鹰企业集团有限责任公司 | Method for realizing ship conformal array virtual baffle |
DE102022205472A1 (en) | 2022-05-31 | 2023-11-30 | Atlas Elektronik Gmbh | Hydroacoustic sound transmitter array |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2123049B1 (en) * | 1970-08-07 | 1974-02-01 | Electronique Appliquee | |
FR2218571B1 (en) * | 1973-02-21 | 1976-05-14 | Erap | |
US3860900A (en) * | 1973-02-21 | 1975-01-14 | Western Electric Co | Method of monitoring the position of towed underwater apparatus |
JPS5646110B2 (en) * | 1973-07-07 | 1981-10-30 | ||
US4037189A (en) * | 1975-10-20 | 1977-07-19 | Western Gear Corporation | Method and apparatus for determining the profile of an underwater pipeline |
JPS52140357A (en) * | 1976-05-15 | 1977-11-22 | Sanders Associates Inc | Selffdriven array system |
NO147618L (en) * | 1976-11-18 | |||
DE2750942A1 (en) * | 1977-11-15 | 1979-05-17 | Texaco Development Corp | Offshore marine seismic source tow system - maintain a predetermined distance between a paravane and a geophone streamer cable |
US4229809A (en) * | 1979-01-29 | 1980-10-21 | Sperry Corporation | Acoustic under sea position measurement system |
-
1981
- 1981-11-25 NZ NZ199066A patent/NZ199066A/en unknown
- 1981-11-26 ZA ZA818225A patent/ZA818225B/en unknown
- 1981-12-02 FR FR8122573A patent/FR2495783B1/en not_active Expired
- 1981-12-04 IT IT25479/81A patent/IT1139931B/en active
- 1981-12-07 NL NL8105493A patent/NL8105493A/en not_active Application Discontinuation
- 1981-12-08 DE DE19813149162 patent/DE3149162A1/en active Granted
- 1981-12-08 BR BR8107971A patent/BR8107971A/en unknown
- 1981-12-08 GB GB8136899A patent/GB2089043B/en not_active Expired
- 1981-12-09 DK DK545781A patent/DK161266C/en not_active IP Right Cessation
- 1981-12-09 AU AU78415/81A patent/AU545131B2/en not_active Ceased
- 1981-12-09 YU YU2893/81A patent/YU42748B/en unknown
- 1981-12-09 CA CA000391897A patent/CA1195762A/en not_active Expired
- 1981-12-09 NO NO814197A patent/NO156627C/en unknown
- 1981-12-10 ES ES507851A patent/ES8301032A1/en not_active Expired
- 1981-12-10 JP JP56199459A patent/JPS57141571A/en active Pending
-
1990
- 1990-01-22 JP JP1990004561U patent/JPH0339742Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
YU289381A (en) | 1983-12-31 |
NL8105493A (en) | 1982-07-01 |
NO814197L (en) | 1982-06-11 |
IT1139931B (en) | 1986-09-24 |
GB2089043B (en) | 1984-05-31 |
GB2089043A (en) | 1982-06-16 |
ZA818225B (en) | 1982-10-27 |
AU7841581A (en) | 1982-09-23 |
FR2495783A1 (en) | 1982-06-11 |
AU545131B2 (en) | 1985-07-04 |
JPS57141571A (en) | 1982-09-01 |
NZ199066A (en) | 1985-08-30 |
ES507851A0 (en) | 1982-11-01 |
JPH02105176U (en) | 1990-08-21 |
DE3149162C2 (en) | 1990-02-15 |
CA1195762A (en) | 1985-10-22 |
DK545781A (en) | 1982-06-11 |
DE3149162A1 (en) | 1982-08-12 |
NO156627B (en) | 1987-07-13 |
FR2495783B1 (en) | 1986-05-23 |
IT8125479A0 (en) | 1981-12-04 |
DK161266C (en) | 1991-12-02 |
ES8301032A1 (en) | 1982-11-01 |
NO156627C (en) | 1987-10-21 |
YU42748B (en) | 1988-12-31 |
JPH0339742Y2 (en) | 1991-08-21 |
BR8107971A (en) | 1982-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK161266B (en) | METHOD AND APPLICATION FOR POSITIONING OF A MARINE HYDROPHONE CABLE | |
US4635236A (en) | Submerged marine streamer locator | |
US4376301A (en) | Seismic streamer locator | |
US7660189B2 (en) | Apparatus, systems and methods for determining position of marine seismic acoustic receivers | |
US4532617A (en) | System for locating a towed marine object | |
US4669067A (en) | Method and apparatus for locating a submerged marine streamer | |
US5497356A (en) | Method and apparatus for verifying the location of a seismic bottom cable in real time | |
US20100061187A1 (en) | Positioning system | |
US4446538A (en) | Marine cable location system | |
EP0680615A1 (en) | Methods for determining the position of seismic equipment, and applications of the methods | |
US4555779A (en) | Submerged marine streamer locator | |
CA1240782A (en) | Method for locating an on-bottom seismic cable | |
JPS60500383A (en) | Device in hydrophone cable for marine seismic exploration | |
US3992923A (en) | Underwater pipelines | |
CA1207882A (en) | Marine cable location method | |
US4558437A (en) | Seafloor velocity and amplitude measurement apparatus and method therefor | |
JPH04501316A (en) | sonar exploration system | |
Boegeman et al. | Precise positioning for near-bottom equipment using a relay transponder | |
Beyer et al. | Measuring gravity on the sea floor in deep water | |
US20100102985A1 (en) | Receiver orientation in an electromagnetic survey | |
US3181644A (en) | Apparatus for plotting seismic data | |
NO801537L (en) | DEVICE FOR MEASUREMENT OF SEA STREETS AT LARGE DEPTH | |
GB2084323A (en) | Underwater seismic testing | |
JPH10186048A (en) | Measuring method and device for buried object, structure of stratum, and nature of deposit | |
JPH0376852B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |