DK160139B - COATED FACADE OR ROOF INSULATION PLATE OF MINERAL FIBER, AND PROCEDURE FOR PREPARING THE PLATE - Google Patents
COATED FACADE OR ROOF INSULATION PLATE OF MINERAL FIBER, AND PROCEDURE FOR PREPARING THE PLATE Download PDFInfo
- Publication number
- DK160139B DK160139B DK608983A DK608983A DK160139B DK 160139 B DK160139 B DK 160139B DK 608983 A DK608983 A DK 608983A DK 608983 A DK608983 A DK 608983A DK 160139 B DK160139 B DK 160139B
- Authority
- DK
- Denmark
- Prior art keywords
- coating
- facade
- mineral
- roof insulation
- plate
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 18
- 239000002557 mineral fiber Substances 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 4
- 238000000576 coating method Methods 0.000 claims abstract description 76
- 239000011248 coating agent Substances 0.000 claims abstract description 74
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000008199 coating composition Substances 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 5
- 238000005470 impregnation Methods 0.000 claims abstract description 5
- 239000000654 additive Substances 0.000 claims abstract 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical group O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000005995 Aluminium silicate Substances 0.000 claims description 6
- 235000012211 aluminium silicate Nutrition 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 239000000057 synthetic resin Substances 0.000 claims description 4
- 239000013008 thixotropic agent Substances 0.000 claims description 4
- 238000005476 soldering Methods 0.000 claims description 3
- 239000011094 fiberboard Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 210000002268 wool Anatomy 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 229910052909 inorganic silicate Inorganic materials 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 25
- 239000010410 layer Substances 0.000 abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 7
- 239000011707 mineral Substances 0.000 abstract description 7
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical group O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 abstract description 4
- -1 especially Chemical class 0.000 abstract description 3
- 150000004760 silicates Chemical class 0.000 abstract description 3
- 239000002344 surface layer Substances 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 239000008119 colloidal silica Substances 0.000 abstract description 2
- 239000011490 mineral wool Substances 0.000 abstract 1
- 239000000945 filler Substances 0.000 description 21
- 229920002748 Basalt fiber Polymers 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 239000000440 bentonite Substances 0.000 description 9
- 229910000278 bentonite Inorganic materials 0.000 description 9
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 235000019353 potassium silicate Nutrition 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011505 plaster Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- 229910001948 sodium oxide Inorganic materials 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5035—Silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5076—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
- C04B41/5089—Silica sols, alkyl, ammonium or alkali metal silicate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/61—Coating or impregnation
- C04B41/65—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/61—Coating or impregnation
- C04B41/65—Coating or impregnation with inorganic materials
- C04B41/68—Silicic acid; Silicates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/16—Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/07—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
- E04F13/08—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
- E04F13/16—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of fibres or chips, e.g. bonded with synthetic resins, or with an outer layer of fibres or chips
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/0012—Thixotropic mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
- Finishing Walls (AREA)
- Panels For Use In Building Construction (AREA)
- Polyesters Or Polycarbonates (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Paints Or Removers (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
Abstract
Description
4.4th
DK 160139 BDK 160139 B
Opfindelsen angår en belagt facade- eller tag i so 1 er ingsplade af kunstharpiksbundne mi nera 1fibre, især stenuld, samt en særlig velegnet fremgangsmåde til fremstilling af pladen.The invention relates to a coated facade or roof of so 1 is an artificial resin bonded mineral fiber, especially stone wool, and a particularly suitable method for making the plate.
5 Sådanne facade- eller tag i so 1 er ingsplader forsynet med en be lægning er kendt fra DE patentskrift nr. 24 55 691 og har i praksis fungeret tilfredsstillende. Disse plader kunne for forste gang opfylde en række krav, der skyldes belægningen af mi nera 1fiberp1 ader , og desuden opfylde en hel række yderligere 10 krav, som følge af funktionen af disse isoleringsplader. Disse krav kan ikke opfyldes af kendte belægninger, som kun er indrettet til at forhøje varmebestandigheden eller forbedre de brandt i 1bagehoIdende egenskaber ved mineralfiberplader.5 Such facade roofs or roofs in floor 1 are provided with a coating known from DE Patent Specification No. 24 55 691 and in practice have functioned satisfactorily. These boards could for the first time meet a number of requirements due to the coating of minor fiber fibers, and also meet a whole range of additional requirements due to the function of these insulating boards. These requirements cannot be met by known coatings designed only to increase the heat resistance or to improve the burnt in the backing properties of mineral fiber boards.
15 Således skal sådanne facade- eller tag i sol er ingsp1 ader, såle des som det også er reglen ved øvrige mineralfiberplader, ikke være brændbare, og derudover opfylde ønskede mekaniske egenskaber, såsom slidstyrke og lignende. Endvidere skal belægningsmassen kunne fremstilles til en til fremstilling af store 20 serier acceptabel pris, og ved fremstillingen være let at be arbejde og enkel at påføre, hvorved der allerede kan ses bort fra mange kendte og muligvis teknisk lovende forslag, selv om en realisering under laboratoriebetingelser synes tænkelig.Thus, such facade or roofs in the sun shall be non-flammable, as is also the case with other mineral fiber boards, non-combustible, and in addition fulfill the desired mechanical properties, such as wear resistance and the like. Furthermore, the coating material must be able to be manufactured at a price acceptable for the manufacture of large 20 series, and be easy to work and easy to apply in the manufacture, which already ignores many known and possibly technically promising proposals, even if realized under laboratory conditions. seems conceivable.
25 Specielt ved anvendelsen som tagisoleringsplader opstår et yderligere krav om, at belægningen ikke må være gennemtrænge-1 i g for bitumen, og at tagisoleringspladen derudover i det mindste skal kunne tåle, at der gås på pladen en sjælden gang.In particular, when used as roof insulating boards, there is a further requirement that the coating must not be permeable to 1 bit for bitumen, and that the roof insulation plate must at least be able to withstand the infrequency of the plate.
Ved anvendelse som facadeisoleringsplade, må belægningen egne 30 sig som bærer for puds, og altså have en tilstrækkelig hæfte evne over for den normalt hydrofobe mineralfiberplade såvel som over for mineralske eller kunstharpiksbundne former for puds. Det sidste krav medfører, at belægningen f.eks. skal tillade en vis diffusion for at pudsen på belægningssiden kan 35 afgive vand, og således under opnåelse af en hæftebinding kan tørre. Til trods for den hertil tilstrækkelige diffus ionsåben-hed af belægningen, må den imidlertid danne en sammenhængende revnefri film.When used as a facade insulating plate, the coating must be suitable as a carrier for plaster, and thus have a sufficient adhesive ability to the normally hydrophobic mineral fiber plate as well as to mineral or resin bonded forms of plaster. The latter requirement means that the coating e.g. must allow some diffusion in order for the coating on the coating side to dispense water and thus, upon obtaining a staple bond, dry. However, despite the sufficient diffusion openness of the coating, it must form a coherent crack-free film.
22
DK 160139 BDK 160139 B
De i det foregående skildrede væsentligste krav, som i øvrigt med hensyn til yderligere enkeltheder er nærmere belyst i DE patentskrift nr. 24 55 691, er så komplekse, at der siden den i DE patentskrift 24 55 691 omtalte belægning ikke er bekendt-5 gjort yderligere lovende forslag.The essential requirements described above, which are further elucidated with regard to further details in DE patent no. 24 55 691, are so complex that since the coating mentioned in DE patent no. 24 55 691 is not disclosed. further promising suggestions.
Ved isoleringspladen ifølge DE patentskrift nr. 24 55 691 består belægningsmassen af vandglas som bindefase og tilsætninger af finkornede lermineralske stoffer, som f.eks. oxider el-10 ler carbonater af jordalkalier eller af zink, oxider eller af hydroxider af aluminium og/eller bariumsulfat som hærder.In the insulation plate according to DE-patent no. 24 55 691, the coating composition consists of water glass as the bonding phase and additions of fine-grained clay mineral substances, such as e.g. oxides or carbonates of alkaline earth or of zinc, oxides or of hydroxides of aluminum and / or barium sulphate as hardener.
Ved tilsætning af vandglas som filmdannende bindemiddel i kombination med hærdningsmidler kan opnås et stort revnefrit og 15 relativt tyndt lag i den mineralfiberplade, som skal belægges med god hæfteevne og slidstyrke, og som også opfylder alle andre omtalte krav på den hidtil bedst mulige måde, og som i praksis har fungeret godt i stort omfang. For at opfylde et af de vigtigste krav, nemlig vandtætheden eller vandbestandighe-20 den, må denne belægning på vandglasbasis dog efter sin påføring på mineralfiberpladen og tørring gennemgå endnu en yderligere termisk efterhærdning, for også rent faktisk at opnå de ønskede egenskaber. Denne efterhærdning skal gennemføres ved relativt høje temperaturer. Da det organiske bindemiddel i mi-25 neralf iberpladen, i reglen phenolharpiks, imidlertid nedbrydes termisk over ca. 250eC, ville mineralfiberpladen bag belægningen derved miste sit indre sammenhold. Ganske vist kan efter-hærdningen af belægningen på vandglasbasis også gennemføres på tilfredsstillende måde ved temperaturer indtil 200°C, men kræ-30 ver da, udover den nødvendige høje energitilførsel, en overordentlig lang tid, der i sidste ende medfører en ikke uvæsentlig fordyrelse af produktet. Helt bortset fra at produktionslinien ved enden forlænges betydeligt på grund af den nødvendige tørringszone.By adding water glass as a film-forming binder in combination with curing agents, a large crack-free and relatively thin layer can be obtained in the mineral fiber plate to be coated with good adhesion and abrasion resistance, which also meets all other stated requirements in the best possible way so far, and which in practice has worked well to a large extent. However, in order to meet one of the most important requirements, namely the waterproofing or water resistance, this water-glass coating must, after its application to the mineral fiber board and drying, undergo yet another thermal curing to actually achieve the desired properties. This post-cure must be carried out at relatively high temperatures. However, since the organic binder in the mineral surface, usually phenolic resin, is thermally degraded over approx. 250 ° C, the mineral fiber sheet behind the coating would thereby lose its internal cohesion. Admittedly, the post-curing of the water-glass coating can also be carried out satisfactorily at temperatures up to 200 ° C, but then, in addition to the necessary high energy supply, requires an extremely long time, which ultimately leads to a not insignificant costing of product. Quite apart from the fact that the production line at the end is significantly extended due to the necessary drying zone.
Det er formålet med opfindelsen at tilvejebringe en facadeeller tag i soleringsplade af den i indledningen til krav 1 an- 35 3SUMMARY OF THE INVENTION It is an object of the invention to provide a facade or roof in a soldering plate of the one in the preamble of claim 1.
DK 160139 BDK 160139 B
givne art med en belægning, som gør pladen velegnet til brug på tage og facader, og således at pladen med belægning har de samme egenskaber, som plader med vandglas, der hærdes ved opvarmning har, og som uden en kostbar termisk efterhærdning 5 sikrer den krævede vandfasthed for belægningen og kan fremstilles økonomisk tilfredsstillende i store serier.given species with a coating which makes the sheet suitable for use on roofs and facades, and so that the sheet with coating has the same properties as sheets of water-cured hardened with heat, and which without a costly thermal curing 5 ensures the required waterproofing for the coating and can be made economically satisfactory in large series.
Dette formål opnås ved det i den kendetegnende del af krav 1 angivne træk.This object is achieved by the feature specified in the characterizing part of claim 1.
1010
Ifølge opfindelsen anvendes for det første Kolloid-kiselsyre, altså kiselsol i stedet for vandglas. Da alkali andelen af kiselsol sammenlignet med vandglas er så lille, at den kan negligeres, opstår der ingen problemer med hensyn til forenelig-15 heden med mi nera 1fibrene. Heller ikke vandbestandigheden ned sættes på grund af tilstedeværelsen af en væsentlig alkaliandel, således at en efterhærdning til frembringelse af den ønskede vandbestandighed kan undgås.According to the invention, firstly, colloidal silicic acid, ie silica sol, is used instead of water glass. Since the alkali proportion of silica sol compared to water glass is so small that it can be neglected, no compatibility problems arise with the minor fibers. Also, the water resistance is not reduced due to the presence of a substantial alkali content, so that a post-cure to produce the desired water resistance can be avoided.
20 Imidlertid kan der drages tvivl om, hvorvidt der i den foreliggende sammenhæng vil blive dannet en lukket film, således som det er et ufravigeligt krav, eftersom tørret kolloid kiselsyre foreligger som pulver eller støv, således at der ved en anvendelse udelukkende af kiselsol på ingen måde kan reg-25 nes med en lag- eller filmdannelse, der blot tilnærmelsesvis svarer til kravene. Man kan imidlertid ikke undvære dannelsen af en lukket, revnefri film af belægningen. For at muliggøre en sådan filmdannelse er det kendt, at blande kiselsol med malede a 1 uminiumsi1 i katf ibre, hvor fiberandelen bliver meget betyde-30 lig og kan overgå andelen af kiselsol. En sådan belægnings masse på basis af kiselsol med et fiberindhold på ca. 50 vægt% er af hensyn til det høje fiberindhold meget kostbar, sammenlignet med en belægningsmasse på vandglasbasis, ca. en 10 faktor dyrere. Af hensyn til dette kommer en anvendelse af kisel-35 sol med aluminiumsi 1ikatfibre som belægning næppe på tale i forbindelse med fremstilling af store serier.20 However, it is doubtful whether in the present context a closed film will be formed, as is an indispensable requirement, since dried colloidal silicic acid is present as powder or dust, so that, when used only by silica sol, no In this way, a layer or film formation which is merely approximately the requirements can be counted. However, one cannot do without the formation of a closed, crack-free film of the coating. To enable such film formation, it is known to mix silica sol with painted α 1 aluminum sieve in cat fibers, where the fiber content becomes very significant and can exceed the proportion of silica sol. Such a silica-based coating mass having a fiber content of approx. Due to the high fiber content, 50% by weight is very expensive, compared to a water glass based coating composition, approx. a 10 factor more expensive. For this reason, the use of silicon-sol with aluminum silicate fibers as coating is hardly considered in connection with the production of large series.
44
DK 160139 BDK 160139 B
Endvidere har til trods herfor gennemførte orienterende forsøg vist, at hæfteevnen for en sådan belægning på mineralfiber-overf1 aden ikke er tilstrækkelig. Det høje indhold af aluminiumsi 1 ikatfibre i belægningsmassen forhindrer nemlig en t i 1 — 5 strækkelig indtrængning af kiselsol i mineralfiberoverfladen for at danne en stedlig forankring. Det skal i denne forbindelse betænkes, at ved anvendelse som facade i soleringsplader er de kræfter, der vil udøves af det pudslag, der skal påføres, især fordskydningskræfter, ganske betydelige.Furthermore, in spite of this, orientation experiments have shown that the adhesiveness of such a coating on the mineral fiber surface is not sufficient. Namely, the high content of aluminum Si 1 ikat fibers in the coating mass prevents a t in 1 - 5 extensible penetration of silicon sol into the mineral fiber surface to form a local anchorage. In this connection, it should be borne in mind that when used as a facade in soldering plates, the forces that will be exerted by the plaster to be applied, especially displacement forces, are quite significant.
10 Løsningen af de to problemer, nemlig de til en massefremsti 1 -ling alt for høje omkostninger såvel som den for den tilsigtede anvendelse tilfredsstillende hæftning af belægningen på pladeoverflader kan dog på overraskende måde opnås ved et 15 kunstgreb ifølge de yderligere kendetegn som angivet i krav 1, ifølge hvilke belægningen nemlig i hvert fald i overvejende grad ikke frembringes på overfladen af mi neralfiberpladen, men i fiberlagene lige under overfladen af mineralfiberpladen. Funktionelt erstatter da de overfladenære mineralfibre i mine-20 ralfiberpladen de ellers til filmdannelse nødvendige aluminiums i 1 i katf ibre, således at udgifterne til disse kan spares. Ved forbindelsen af de endnu i belægningen liggende fibre med det øvrige fiberstruktur af mineralfiberpladen opnås den bedst mulige forankring af belægningen. Ved hjælp af uorganiske kor-25 nede fyldstoffer, således som de anvendes ved lignende kendt teknik som i kiselsol-belægninger for at erstatte en del af de der til dannelsen af et lukket lag nødvendige fibre, kan den beskrevne virkning af mineralfibrene understøttes i denne retning ved, at kornede fyldstoffer, der er indlejret mellem mi-30 neralfibrene, yderligere lukker de endnu tilstedeværende hul ler mellem ved siden af hinanden liggende mineralfibre. I en foretrukken udførelsesform kan belægningsmassen yderligere -især ved en ringe rumvægt af mi neral fiberpiaden - tilsættes malede mineralfibre, der trænger ind i hullerne af den rela-35 tivt porøse mineralfiberoverflade og hjælper til med at lukke disse huller. Sådanne indlejrede malede mineralfibre bidrager stærkere end storkornede fyldstoffer til dannelsen af film.However, the solution of the two problems, namely the excessive costs for a mass-advance 1-level as well as the adhesion of the coating to plate surfaces satisfactorily for the intended use, can surprisingly be achieved by an artificial grip according to the additional features as claimed in claim 1. 1, according to which the coating is, in any case, to a great extent not produced on the surface of the mineral fiber plate, but in the fiber layers just below the surface of the mineral fiber plate. Functionally, then, the mineral mineral surface fibers in the mineral fiber plate replace the otherwise required film-forming aluminum in 1 in catf ibre, so that the cost of these can be saved. By connecting the fibers still in the coating with the other fiber structure of the mineral fiber plate, the best possible anchoring of the coating is achieved. By using inorganic granular fillers such as are used in a similar prior art as in silica sol coatings to replace a portion of the fibers required for the formation of a closed layer, the described effect of the mineral fibers may be supported in this direction. in that granular fillers embedded between the mineral fibers further close the holes still present between adjacent mineral fibers. In a preferred embodiment, the coating composition may be further -especially at a low bulk weight of the mineral fiber pad - painted mineral fibers penetrating into the holes of the relatively porous mineral fiber surface and helping to close these holes. Such embedded painted mineral fibers contribute more strongly than large-grained fillers to the formation of films.
55
DK 160139 BDK 160139 B
Mængden af tilsatte mineralfibre kan - især ved plader med høj rumvægt og således fra starten af med tæt pakkede mineralfibre - være meget ringe, og arten af fibrene kan svare til fibrene i mineralfiberpladen, således at der herved ikke opstår væ-5 sentlige yderligere omkostninger. Derudover kan i en ligeledes fordelagtig udførelsesform ifølge opfindelsen en del af de nær overfladen liggende mineralfibre i mi neralfiberpladen være brudt, f.eks. ved at påføre belægningen ved en påvalsning, således at fibrene ligger tættere ind mod hinanden der og kan 10 danne et tættere net.The amount of mineral fibers added can - especially at high bulk sheets and thus from the beginning with tightly packed mineral fibers - be very low and the nature of the fibers can correspond to the fibers in the mineral fiber plate, so that no significant additional costs are incurred. In addition, in an equally advantageous embodiment of the invention, some of the near-surface mineral fibers in the mineral fiber board may be broken, e.g. by applying the coating to a roll, such that the fibers are closer to each other there and can form a denser mesh.
Derved bliver det muligt at danne et sammenhængende tæt lag i området nær overfladen af mineralfiberpladen, hvilket lag opfylder samtlige de stillede krav, og ikke behøver nogen efter-15 behandling bortset fra en tørring. Derved undgås ikke blot den egentlige udgift til efterhærdningen, men man opnår også en forenkling af kontrollen, da en ufuldstændig tørring er fuldstændig ukritisk i modsætning til en ikke-absolut regelret ef -terhærdning, eftersom pladen i tilslutning til fremstillingen 20 i luften har tilstrækkelig lejlighed til en eftertørring, således at den nødvendige vandbestand ighed sikres.Thereby, it becomes possible to form a cohesive dense layer in the region near the surface of the mineral fiber plate, which meets all the requirements and does not need any post-treatment except drying. This not only avoids the actual cost of the post-cure, but also simplifies the control, as incomplete drying is completely uncritical as opposed to a non-absolute straight-cure, since the plate adjacent to the production 20 in the air has sufficient opportunity for a post-drying so as to ensure the necessary water resistance.
Kolloide kiselsyrer kræver dog tilsætning af et stabiliseringsmiddel for at være stabile i solfasen, i reglen i form af 25 natriumoxid. Medens natriumoxid i tilfælde af vandglas foreligger i en andel på f.eks. 25 - 30 vægt%, er det ved tilsætning som stabiliseringsmiddel til vandholdige kolloide kiselsyrer tilstrækkeligt med en mængde på langt under 1%, f.eks.However, colloidal silicas require the addition of a stabilizer to be stable in the solar phase, usually in the form of sodium oxide. While in the case of water glasses, sodium oxide is present in a proportion of e.g. 25% to 30% by weight, when added as a stabilizing agent to aqueous colloidal silicic acid, an amount of well below 1%, e.g.
0,2 vægt%. For at kiselsol ved tørring kan danne et lukket lag 30 på de indlagrede fibre og fyldstoffer, er dens omdannelse fra sol til gel nødvendig. Denne sol-gel-omformn ing må dog ikke optræde før påføringen af belægningen, da kiselsolen med denne omdannelse udfældes i gel-tilstanden og ved geldannelsen ikke mere kan udfolde sin bindingsvirkning. Stabiliseringsmidlet, 35 som også i tilfælde af anvendelsesn af natriumoxid som følge af den yderst ringe mængde ikke kan give nogen nedsættelse af vandfastheden og ingen problemer med hensyn til foreneligheden 60.2% by weight. In order for silica sol to dry upon forming a closed layer 30 on the stored fibers and fillers, its conversion from sun to gel is necessary. However, this sol-gel conversion must not occur prior to application of the coating, as the silicon sol with this conversion precipitates in the gel state and, upon gel formation, can no longer exert its binding effect. The stabilizer, which, even in the case of the use of sodium oxide due to the extremely low amount, can not reduce the water resistance and no compatibility problems 6
DK 160139 BDK 160139 B
med mi neralfibrene, reagerer dog følsomt på elektrolytter, såsom natriumsulfat, calciumsulfat, natriumchlorid osv., indeholdt i belægningsmassen. Når der i massen forekommer elektro-lytholdige stoffer, altså stoffer, som indeholder eller fra-5 spalter vandopløselige substanser, som kan reagere med stabiliseringsmidlet for den kolloide kiselsyre, optræder en for tidlig sol-gel-omdanne!se og udfældelse af kiselsol, således at den ifølge opfindelsen nødvendige revnefri filmdannelse ikke mere nås i det nødvendige omfang.with the mineral fibers, however, are responsive to electrolytes, such as sodium sulfate, calcium sulfate, sodium chloride, etc., contained in the coating composition. When electrolyte-containing substances, that is, substances containing or decomposing water-soluble substances which can react with the colloidal silica stabilizer, occur in the mass, premature sol-gel conversion and precipitation of silica sol, thus that the crack-free film formation required by the invention is no longer achieved to the required extent.
1010
Endvidere må det kræves, at fyldstofferne i kemisk forstand er inaktive over for stabiliseringsmidlet for kiselsol, og at de i hvert fald i vid udstrækning er fri for elektrolytter, som kan reagere med stabiliseringsmidler for kiselsol.Furthermore, the fillers must be required to be chemically inactive against the silicon stabilizer and at least to a large extent free of electrolytes which can react with silicon stabilizers.
1515
Fra US patentskrift nr. 34 90 065 er det ganske vist kendt, at imprægnere mi neralfiberplader med et kiselssolholdigt middel i et kun få mm tykt lag nær overfladen for at forbedre modstandsdygtigheden af sådanne plader i forbindelse med brand.It is well known from US Patent No. 34,906,05 that impregnating mineral fiber sheets with a silica solvents in a few mm thick layer near the surface to improve the resistance of such sheets in the event of fire.
20 Hertil anvendes et bindemiddel bestående af fra 5 til 95 vægt% kiselsol og 95 - 5 vægt% bentonit, hvoved kiselsolen og bento-niten tilsammen danner bindefasen sammen med to kornede uorganiske fyldstoffer, der har et smeltepunkt henholdsvis under og over ca. 1.100°C, og hvor der som højeste smeltede fyldstof 25 f.eks. kan anvendes en hydrati seret aluminiumsilikat, såsom ildfast ler (Ballton), og til fyldstoffet med det lavere smeltepunkt en natrium-, kalium-, calcium,-, magnesium- og barium-aluminosilikat, som f.eks. Feldspat. I tilfælde af brand danner fyldstoffet med det lavere smeltepunkt en yderligere af-30 stivende keramisk binding, som skal opretholde den legemlige integritet af det porøse imprægneringslag, der danner en støtteramme, selv når mineralfibrene er brændt væk. Det samlede faststof indhold af imprægneringsmidlet andrager mellem 2 og 25 vægt%, hvorved indtrængningsdybden og dermed tykkelsen af im-35 prægneringslaget kan bestemmes ved indstilling af viskosite ten, tilsætning af befugtningsmidler, mekanisk ved inddrivning (Einrakeln) eller indvalsning eller fysisk ved undertryk på 7To this end, a binder consisting of from 5 to 95% by weight of silicon sol and from 95 to 5% by weight of bentonite is used, the silicon sol and the bentonite together forming the bonding phase together with two granular inorganic fillers having a melting point below and above approx. 1,100 ° C and where as the highest melted filler 25 e.g. For example, a hydrated aluminum silicate such as refractory clay (Ballton) can be used, and to the lower melting point a sodium, potassium, calcium, magnesium, and barium aluminosilicate, e.g. Feldspar. In the case of fire, the lower melting point filler forms an additional stiffening ceramic bond which is intended to maintain the physical integrity of the porous impregnation layer forming a support frame even when the mineral fibers are burnt away. The total solids content of the impregnating agent is between 2 and 25 wt.
DK 160139 BDK 160139 B
den side af pladen, der ligger over for belægningen. Faststofindholdet af imprægneringsmidlet består igen af fra 1 til 20 vægt% af kiselsol (faststofandel), 1 til 15 vægt% bentonit, begge som bindefase, resten af de to uorganiske fyldstoffer 5 med forskelligt smeltepunkt i et gensidigt forhold mellem ca.the side of the plate facing the coating. The solids content of the impregnating agent again consists of from 1 to 20% by weight of silicon sol (solids), 1 to 15% by weight of bentonite, both as a binder phase, the remainder of the two inorganic fillers 5 with different melting points in a mutual ratio of about 5%.
1:9 og 9:1.1: 9 and 9: 1.
På denne måde frembr i nges kunstharpiksbundet mi neral fiberplade med forbedrede brandegenskaber med et få mm tykt imprægneret 10 overfladelag ved, at en opslæmning af faststoffer i overfladen indbringes til den ønskede dybde, og pladen således tørres ved 2000C i 1 time.In this way, in fine synthetic resin bonded mineral fiber board with improved fire properties with a few mm thick impregnated surface layer, a slurry of solids in the surface is brought to the desired depth and thus the plate is dried at 200 ° C for 1 hour.
I det i US patentskrift nr. 34 90 065 omhandlede tilfælde dre-15 jer det sig om akustik-dækplader eller lignende til indvendige lofter, hvor de specielle problemstillinger ved tagisoleringsplader eller facadeisoleringsplader, især også problemet vedrørende vandtæthed, ikke omtales. De er heller ikke egnede til tagplader, da det ikke her kommer til dannelse af et lukket 20 lag, og hertil er kiselandelen, der kan aftage til en værdi på kun 1 vægt%, for ringe. I dette skrift fremhæves kiselsolen heller ikke alene på grund af sin sol-gel-omformning til lagdannelse, men som en bindefase i form af en blanding af kiselsol og bentonit. Bentonit er en lerart, der er opkaldt efter 25 det første findested ved Fort Benton, Wyoming, USA, og udmærker sig ved en høj kvældnings- og absorptionsevne, og betegnes derfor også på tysk som Quellton. Bentonit består i det væsentlige af lerarter af Montmorillonit-gruppen, og i bredere forstand også af lagsilikater, hvis kvældningsevne skyldes, at 30 vand trænger ind i deres lag og kan sprænge disse.In the case of US Pat. No. 34,906,05, these are acoustic cover plates or the like for interior ceilings, where the special problems of roof insulation or facade insulation panels, especially the problem of waterproofing, are not mentioned. They are also not suitable for roofing sheets, since it does not form a closed 20 layer here, and for this the diaphragm proportion, which can decrease to a value of only 1% by weight, is too low. In this writing, the silicon sol is also highlighted not only because of its sol-gel conversion to layer formation, but as a bonding phase in the form of a mixture of silicon sol and bentonite. Bentonite is a clay species named after 25 the first find site at Fort Benton, Wyoming, USA, and distinguished by a high swelling and absorption ability, and is therefore also referred to in German as Quellton. Bentonite consists essentially of clays of the Montmorillonite group, and in a broader sense also of layer silicates, whose swelling ability is due to the fact that 30 water penetrates into their layers and can burst them.
Sådanne naturligt eller kunstigt påvirkede godt kvældbare lerarter tjener som bindeler til frembringelse af en såkaldt "GrUnfestigkeit" for mineralfiberpladen i det belagte område 35 ved dennes håndtering, oplagring osv. I tilfælde af brand går denne "GrUnfestigkeit" over i en keramisk binding, således som det tilstræbes ifølge beskrivelsen til US patentskrift nr. 34 90 065 til forbedring af mineralfiberpladens brandegenskaber.Such naturally or artificially influenced swellable clays serve as binders for producing a so-called "GrUnfestigkeit" for the mineral fiber board in the coated area 35 by its handling, storage, etc. In the event of fire, this "GrUnfestigkeit" becomes a ceramic bond, such as it is sought in accordance with the specification of US Patent No. 34 90 065 to improve the fire properties of the mineral fiber board.
88
DK 160139 BDK 160139 B
Ved opfindelsen tilvejebringes ikke en kvældbar ler i bindefasen, som udelukkende består af kiselsol, da sådant ler på grund af sin store kvældbarhed formindsker belægningens vandbestand i ghed . Tilstedeværelsen af sådanne bi ndelerarter ved en 5 belagt facadeisoleringsplade ville i mangel af vandfastheden ikke sikre pudsets hæftning. Endvidere skulle der ifølge beskrivelse til US patentskrift nr. 34 90 065 også som fyldstof tilsættes montmori 11onitholdigt ler, som enten kan have kvældbarhed, som følge af sit naturlige af oplagringsstedet afhæn-10 gige høje indhold, især af natrium-montmorillonit eller ved aktivering som følge af vekselvirkning med alkalibestanddele fra andre stoffer i massen. Også i tilfælde af at en kvældbarhed ikke er nødvendig ved sådanne i fyldstofferne indeholdte montmorrilonit-lerarter af den i US patentskrift nr. 34 90 065 15 omtalte art eller ved stedlig bentonit i bindefasen, men hvor kvældbarheden er tilladelig uden problemer, må der ifølge den foreliggende opfindelse foretages et valg også med hensyn til fyldstofferne til en belægning af facadeisol er ingsplader på grundlag af den ovenfor inden for rammerne af den foreliggende 20 opfindelse anførte overvejelser, som udelukker kvældbare lagsilikater, såsom især natri ummontmorrillonitholdigt eller frembringende stoffer, eller nedsætter dem til en uskadelig negligerbar mængde.The invention does not provide a swellable clay in the bonding phase consisting solely of silicon sol, since such clay, due to its high swellability, reduces the coating's water resistance in goodness. The presence of such adhesives on a facade insulating plate would, in the absence of water resistance, not ensure the adhesion of the plaster. Further, as described in U.S. Patent No. 34,906,05, montmori 11only clay, which may have either swellability due to its natural high content dependent on the storage site, especially sodium montmorillonite or by activation as a filler, should also be added as a filler. due to interaction with alkali constituents from other substances in the pulp. Also, in the event that a swell is not necessary for such montmorrilonite clays contained in the fillers of the kind disclosed in U.S. Patent No. 34,906,055 or for local bentonite in the bonding phase, but where swellability is permissible without difficulty, The present invention also makes a choice with respect to the fillers for a coating of facade insulating boards on the basis of the considerations set forth above within the scope of the present invention which exclude swellable layer silicates, such as, in particular, sodium montmorillonite containing or reducing substances. a harmless negligible amount.
25 Som fyldstoffer kan der ifølge opfindelsen anvendes uorganiske substanser, når blot de ikke er vandopløselige, som f.eks. aluminiumoxid eller -hydroxid, s i 1 iciumdioxid, ikke kvældbare brændte eller ikke-brændte lermineraler, talk, mullit, kridt, zirkoniumoxid, zinkoxid såvel som blandinger af disse stoffer.In accordance with the invention, inorganic substances can be used as fillers provided they are not water-soluble, such as e.g. alumina or hydroxide, s in 1 icium dioxide, non-swellable burnt or unburned clay minerals, talc, mullite, chalk, zirconia, zinc oxide as well as mixtures of these substances.
30 Endvidere kan der som et uorganisk fyldstof efter behov tilsættes pigmenter til frembringelse af en ønsket farvevirkning, f.eks. Fe203, FeOOH, Ti02» C^Oø. Ved anvendelse som facadeisoleringsplade er det af stor fordel, når der ved siden af finkornede fraktioner også anvendes grovkornede fyldstoffer 35 med en kornstørrelse på fra 0,3 til 1,5 mm, som umiddelbart forbliver ved overfladen af mineralfiberpladen, og kan indbindes af kiselsol sammen med de overf1 adi ske fibre, og på 9Further, as an inorganic filler, pigments may be added as needed to produce a desired color effect, e.g. Fe203, FeOOH, TiO2 »C ^ Oo. When used as a facade insulating plate, it is of great advantage that, besides fine-grained fractions, coarse-grained fillers 35 having a grain size of 0.3 to 1.5 mm, which remain immediately at the surface of the mineral fiber plate, can also be bonded together with the superficial fibers, and at 9
DK 160139 BDK 160139 B
denne måde forhøje ruheden til forbedring af pudsets hæfte-evne.this way increase the roughness to improve the adhesive ability of the plaster.
Den kolloide kiselsyre kan ifølge opfindelsen anvendes i be-5 lægningsmassen med et faststof indhold mellem ca. 10 og 50 vægt%, fortrinsvis 30 - 40 vægt%, hvorved kiselsolen har en partikelstørrelse på fra 5 pm til 30 pm, og en specifik overflade på 100 - 350 m3/g. Variationer i faststof indholdet kan benyttes til justering af viskositeten eller generelt flyde-10 egenskaberne for belægningsmassen, og der er naturligvis også mulighed for en yderligere fortynding med vand til opnåelse af en ønsket konsistens.The colloidal silicic acid according to the invention can be used in the coating composition with a solids content of between approx. 10 and 50 wt.%, Preferably 30 to 40 wt. Variations in the solids content can be used to adjust the viscosity or generally the flow properties of the coating mass, and of course, further dilution with water is also possible to obtain a desired consistency.
I tilfælde af anvendelsen af grovkornede fyldstoffer er det 15 nødvendigt, at tilsætte tiksotrope midler til belægningsmassen, for at forhindre en sedimenter i ng af de store fraktioner, hvad der gør belægningsmassen bearbejdelig i en stor produktion. Som tiksotropt middel egner sig fortrinsvis uorganiske vandbindende substanser, f.eks. pyrogenkiselsyre.In the case of the use of coarse-grained fillers, it is necessary to add thixotropic agents to the coating mass, to prevent a sediment in the large fractions which makes the coating mass workable in a large production. As a thixotropic agent, inorganic water-binding substances, e.g. pyrogenkiselsyre.
2020
Som fortykkelses- og tiksotropt middel ville bentonit i princippet også egne sig. Da bentonit stærkt nedsætter vandfastheden af belægningen på den skildrede måde, er sådanne tilsætninger til belægningsmassen for en fiberisoleringsplade ifølge 25 opfindelsen i større mængder uegnet og heller ikke i mindre mængder anbefalingsværdig.As a thickening and thixotropic agent, bentonite would in principle also be suitable. Since bentonite greatly decreases the water resistance of the coating in the depicted manner, such additions to the coating mass of a fiber insulation board according to the invention are unsuitable in large quantities, and not in smaller quantities, as well.
Endvidere kan der til indstilling af viskositeten anvendes fortykkelsesmidler som methy1ce11u1 ose, stivelsesprodukter 30 osv. i belægningsmassen. Endvidere er det formålstjenligt ved en stor-teknisk bearbejdning af belægningsmassen, at tilføje kendte substanser til undertrykkelse af massens skum. Endelig skal en ringe mængde af kendte befugtningsmidler for massen tilføjes for at sikre en bedre hæftning af belægningen på de 35 hydrofobe mineralfibre i isoleringspladen.Further, in order to adjust the viscosity, thickeners such as methylsiluose, starch products 30, etc. can be used in the coating composition. Furthermore, it is useful in a large-scale technical processing of the coating mass to add known substances to suppress the foam of the mass. Finally, a small amount of known wetting agents for the pulp must be added to ensure better adhesion of the coating to the 35 hydrophobic mineral fibers in the insulating plate.
Fremgangsmåden ifølge opfindelsen til fremstilling af en sådan belagt mi neralfiberplade er ejendommelig ved, at belægnings-The process of the invention for making such a coated mineral fiber board is characterized in that
DK 160139BDK 160139B
10 massen trykkes ind i overfladen af mineralfiberpladen i en ønsket konsistens og under et betydeligt tryk, og at der derved frembringes brudte mineralfibre i området lige under mineral fiberoverf1aden. Indtrykningen kan med fordel ske i en 5 større dybde end, hvad der svarer til tykkelsen af belægningen eller imprægneringen, sådan at en stor del af mineral fibrene i nærheden af overfladen brydes og komprimeres igen, og samtidig sker der en homogen fordeling af belægningsmassen i de delvis brudte og tætnende mineralfibre i nærheden af overfladen. Der-10 ved kan mi neralfibrene i givet fald i forbindelse med yderligere belægningsmassen tilsatte mineralfibre og fyldstoffer virke som netværksdannere for kiselsolen, som omvendt binder disse stoffer ved sin i løbet af tørringen indtrufne sol-gel -omdannelse. På denne måde frembringes en lukket revnefri over-15 fladebelægning.10, the pulp is pressed into the surface of the mineral fiber board in a desired consistency and under considerable pressure, thereby producing broken mineral fibers in the area just below the mineral fiber surface. The impression may advantageously occur at a depth greater than that corresponding to the thickness of the coating or impregnation, such that a large portion of the mineral fibers near the surface are broken and compressed again, and at the same time a homogeneous distribution of the coating mass occurs in the partially fractured and sealing mineral fibers near the surface. In addition, the mineral fibers, where applicable, may, in addition to the additional coating material added, mineral fibers and fillers act as network formers for the silicon sol, which, conversely, bind these substances during their sol-gel conversion which has occurred during the drying. In this way, a closed crack-free surface coating is produced.
Eksempel 1Example 1
Der fremstilles en mineral fiberpiade med en rumvægt på 70 20 kg/m3 med 8 vægt% phenolharpiks som bindemiddel og 0,2 vægt% af et hydrofoberingsmiddel på si 1iconebasis på sædvanlig måde, hvorved der som mineralfibre f.eks. kan anvendes Basaltfibre.A mineral fiber pad having a weight of 70 20 kg / m3 is prepared with 8 wt.% Phenolic resin as the binder and 0.2 wt.% Of a hydrophobic agent on a silicon basis in the usual manner, whereby as mineral fibers e.g. Can be used Basalt fibers.
Der fremsti lies en belægningsmasse med følgende sammensætn i ng: 25 50 vægt% kiselsol (40 vægt% faststofandel Si02) 20 vægt% formalede Basaltfibre 29,1 vægt% kaolin 0,2 vægt% methy1ce11u1 ose 30 0,1 vægt% silicone skumdæmper 0,5 vægt% pyrogen kiselsyre 0,1 vægt% al kylaryl-sul fonat (befugtningsmiddel)A coating composition having the following composition is obtained: 25% by weight of silica sol (40% by weight solids content of SiO2) 20% by weight of ground Basalt fibers 29.1% by weight kaolin 0.2% by weight of methylene oxide 30 0.1% by weight of silicone antifoam 0 5 wt% pyrogenic silicic acid 0.1 wt% al kylaryl sulphonate (wetting agent)
De malede Basaltfibre bliver tilvejebragt med længder på mel -35 lem 20 og 300 pm og diametre mellem 1 og 10 pm.The painted Basalt fibers are provided with lengths of between -35 limbs 20 and 300 µm and diameters between 1 and 10 µm.
Denne belægningsmasse blev trykket ind i overfladen af mineralfiberpladen ved hjælp af en påføringsvalse under et tryk på 11This coating was pressed into the surface of the mineral fiber plate by means of an application roller under a pressure of 11
DK 160139 BDK 160139 B
15 N/cm2. ved påføringen blev pladeoverfladen trykket ca. 8 mm ned af påføringsvalsen, og dermed blev belægningsmassen trykket ind i et område nær overfladen af Basaltulden i en mængde på 700 g/m2. Bag påføringsvalsens fjedrede overfladen af mine-5 ralfiberpladen med et i forhold til påfør ingsva1 sens indtrængningsdybde noget mindre mål tilbage og indeholdt belægningsmassen med en indtrængningsdybde på 3 mm. Efter tørring ved knap 200°C i løbet af nogle minutter viste mineralfiberpladen en lukket revnefri belægning med ru overflade og god slid-10 styrke.15 N / cm 2. upon application the plate surface was pressed approx. 8 mm down from the application roller, and thus the coating mass was pressed into an area near the surface of the Basalt Customs in an amount of 700 g / m2. Behind the sprung roller, the surface of the mineral fiber sheet was sprung back with a somewhat smaller dimension relative to the depth of application of the application roller and contained the coating mass with a penetration depth of 3 mm. After drying at just under 200 ° C for a few minutes, the mineral fiber board showed a closed crack-free coating with a rough surface and good abrasion resistance.
Eksempel_2Eksempel_2
Der blev igen fremstillet en mi nera 1fiberp1ade af Basaltuld på 15 sædvanlig måde, dog med en rumvægt på 150 kg/m^ og 3 vægt% phenolharpiks som bindemiddel såvel som 0,3 vægt% hydrofobe-ringsmiddel på siliconebasis.Again, a minor 1 basalt fiber fiber board was prepared in the usual manner, however, with a bulk weight of 150 kg / m 2 and 3 wt% phenolic resin as binder as well as 0.3 wt% hydrophobic agent on silicone basis.
Som belægningsmasse blev følgende sammensætn i ng valgt: 20 65 vægt% kiselsol (40 vægt% faststofandel Si02) 8 vægt% malede Basaltfibre (dimensioneret som i eksempel 1) 16,2 vægt% kaolin 25 10,4 vægt% aluminiumhydroxid med en partikelstørrelse på over 10 pm 0,2 vægt% methylcellulose 0,1 vægt% silicone skumdæmper 0,1 vægt% alkylaryl-sulfonat som befugtningsmiddel.As the coating composition, the following composition was selected: 20 65 wt% silica sol (40 wt% solids content SiO 2) 8 wt% ground Basalt fibers (dimensioned as in Example 1) 16.2 wt% kaolin 25 10.4 wt% aluminum hydroxide having a particle size of over 10 µm 0.2 wt% methylcellulose 0.1 wt% silicone antifoam 0.1 wt% alkylaryl sulfonate as wetting agent.
3030
Denne belægningsmasse blev ligeledes påvalset med en påforingsval se med et tryk på 50 N/cm2 på pladen, hvorved påføringsvalsen her trykkede 5 mm ind i pladeoverfladen. Påføringsmængden androg derved 400 g/m2. Efter ti 1 bagefjedri ngen 35 af den med belægningsmassen fyldte overflade af mineral fiberpladen bag påføringsvalsen fremtrådte belægningsmassen med indtrængningsdybde på 2 mm.This coating mass was also rolled with a coating roll see at a pressure of 50 N / cm 2 on the plate, whereby the application roller here pressed 5 mm into the plate surface. The amount of application thus amounted to 400 g / m2. After ten liters of backing 35 of the coating-filled surface of the mineral fiber plate behind the applicator roller, the coating mass with penetration depth of 2 mm appeared.
1212
DK 160139 BDK 160139 B
Efter en tilsvarende behandling som i eksempel 1 fremkom ligeledes en lukket revnefri belægning af overfladen, der viste en til anvendelsen som tagisoleringsplade tilstrækkelig gangbarhed .Following a similar treatment as in Example 1, a closed crack-free coating of the surface was also shown, showing a feasibility for use as a roof insulation plate.
55
Med begge eksempler trængte de malede Basaltfibre ind i den ru overflade af mineralfiberpladen, hvorved der dog i det nedre område af imprægneringen i praksis udelukkende forelå fibre fra mineralfiberpladen. En del af de malede Basaltfibre fra 10 eksempel 1 og eksempel 2 såvel som en væsentlig del af aluminiumhydroxiden i eksempel 2 lå på oversiden af mi neralfiber-pladen indlejret mellem de derværende brudte Basaltfibre fra pladen og dannede der en overflade, som pudset ville kunne sidde fast på. Derved foreslå kaolinen ligesom kiselsolen i 15 hovedsagen jævnt over hele kerneområdet af belægningen og trængte således også godt ind i overfladen af mineralfiberpladen, fyldte hulrummene ud og dannede en forbindelse med mineralfiberpladens fiberstruktur.In both examples, the painted Basalt fibers penetrated into the rough surface of the mineral fiber plate, whereas in practice, however, in the lower region of the impregnation there were in practice exclusively fibers from the mineral fiber plate. A portion of the painted Basalt fibers of Example 1 and Example 2 as well as a substantial portion of the aluminum hydroxide of Example 2 lay on the upper side of the mineral fiber board embedded between the then broken Basalt fibers from the plate and formed a surface which the plaster could sit on stuck on. In doing so, the kaolin, like the silicon sol in the 15, substantially uniformly overlies the entire core region of the coating, and thus also penetrated well into the surface of the mineral fiber plate, filling the voids and forming a connection with the fiber structure of the mineral fiber plate.
20 Opfindelsen skal i det følgende forklares nærmere under henvisning til tegningen, hvor f ig. 1 viser et snit gennem en isoleringsplade ifølge opfindelsen og 25 fig. 2 en skematisk forenklet fremstilling af påføreisen af belægningen på isoleringspladen ifølge fig. 1.The invention will now be explained in more detail with reference to the drawing, in which 1 shows a section through an insulating plate according to the invention and FIG. 2 is a schematic simplified representation of the application of the coating to the insulating plate of FIG. First
Den i fig. 1 viste isoleringsplade 1 kan være en facadeisole-30 ringsplade af kunstharpiksbundne mineralfibre 2, f.eks. af Basaltfibre bundet med phenolharpiks, og har en belægning 3.The FIG. 1, insulation plate 1 may be a facade insulation plate of synthetic resin bonded mineral fibers 2, e.g. of Basalt fibers bonded with phenolic resin and having a coating 3.
Som det fremgår af fig. 2, tilføres en belægningsmasse 5 ifølge pilen Z i en tilførselstragt 6 en påføringsvalse 7 og 35 indvalses på i og for sig kendt måde af påføringsvalsen 7 i den endnu ubelagte overflade 8 af isoleringspladen 1. Derved trænger påføringsvalsen 7 ind i overfladen 8 af isolerings- 13As shown in FIG. 2, a coating mass 5 according to arrow Z is applied to an applicator roll 7 and 35 in a feed hopper 6 in a manner known per se of the application roll 7 in the still uncoated surface 8 of the insulating plate 1. The application roll 7 penetrates the surface 8 of the insulating plate. 13
DK 160139 BDK 160139 B
pladen 1 i en dybde T og trykker derved under samtidig knus-ning af de i overfladen liggende mineralfibre belægningsmassen 5 ind i isoleringspladen l's mineralfibre. Bag påføringsvalsen 7 udvider mi neralfibrene sig igen (efter at de har været tryk-5 ket sammen under valsen), og optager derved den mellem mineralfibrene indtrængende belægningsmasse 5 via en slags pumpevirkning. Belægningsmassen foreligger da over en effektiv indtrængningsdybde t i overfladelaget af isoleringspladen 1, der tydeligvis er mindre end indtrængningsdybden T for påførings-10 valsen 7. Indtrængningsdybden t omfatter kun det effektive kerneområde af belægningen, hvorimod der neden under i et ikke ubetydeligt omfang kan foreligge en gennemvædning af de dybere liggende mineralfibre med belægningsmassen, men ikke længere foreligger et næsten lukket lag. En sådan yderligere gennem-15 vædning er ønskelig for at opnå en god binding af belægningen 3 til de kunstharpiksbundne mineralfibre og forhøjer hæftestyrken af belægningen 3, ikke mindst med henblik på de nær ved den oprindelige overflade 8 af isoleringspladen 1 i tiltagende grad stærkt brudte mi nera 1 f i bre, som i fig. 1 er vist 20 som 2a.the plate 1 at a depth T, thereby pushing, while simultaneously crushing the mineral fibers lying on the surface, the coating mass 5 into the mineral fibers of the insulating plate 1. Behind the application roll 7, the mineral fibers expand again (after they have been pressed together under the roller), thereby absorbing the coating mass 5 penetrating between the mineral fibers via a kind of pumping action. The coating mass is then above an effective penetration depth to the surface layer of the insulating plate 1, which is obviously less than the penetration depth T of the application roller 7. The penetration depth t comprises only the effective core area of the coating, while there may be a softening down below. of the deeper mineral fibers with the coating mass, but no longer an almost closed layer. Such additional wetting is desirable to obtain a good bonding of the coating 3 to the synthetic resin bonded mineral fibers and to increase the adhesive strength of the coating 3, not least in view of the substantially broken fracture near the original surface 8 of the insulating plate 1. 1, as in FIG. 1 is shown as 2a.
I fig. 1 er antydet finkornene fyldstoffer 4 som kaolin med en partikelstørrelse på højst ca. 5 pm, hyppigt langt mindre, som sammen med belægningsmassens kiselsol kan trænge godt ind i 25 overfladen 8 af isoleringspladen 1. Storkornede fyldstoffer 10 med en partikelstørrelse på mere end ca. 10 μη», endog op til ca. 1 mm, er ligeledes vist, og tilsættes i relativ ringe mængde til belægningsmassen 5 og forbliver i overvejende grad på overfladen eller i umiddelbar nærhed af overfladeområdet af 30 isoleringspladen 1, idet de frafiltreres ved overfladen ved hjælp af Basaltfibrene. Malede mineralfibre som Basaltfibre 11 med en længde på fra 20 pm til 30 pm og en diameter på fra 1 pm til 10 pm, fortrinsvis mellem ca. 3 pm og 6 pm, ligesom Basaltfibrene 2 i isoleringspladen 1, forbliver fortrinsvis i 35 det umiddelbare overfladeområde af isoleringspladen 1, da de kun under gunstige betingelser trænger dybere ned mellem mineralfibrene 2 eller de brudte mineralfibre 2a for isole- 14In FIG. 1, fine-grained fillers 4 are indicated as kaolin with a particle size of no more than approx. 5 µm, often far less, which, together with the silicon sol of the coating composition, can penetrate well into the surface 8 of the insulating plate 1. Large-grained fillers 10 having a particle size of more than approx. 10 μη », even up to approx. 1 mm is also shown and is added in relatively small amount to the coating mass 5 and remains predominantly on the surface or in close proximity to the surface area of the insulating plate 1 as they are filtered off at the surface by the Basalt fibers. Ground mineral fibers such as Basalt fibers 11 having a length of from 20 µm to 30 µm and a diameter of from 1 µm to 10 µm, preferably between Preferably, 3 µm and 6 µm, like the Basalt fibers 2 in the insulating plate 1, remain in the immediate surface area of the insulating plate 1 as they only, under favorable conditions, penetrate deeper between the mineral fibers 2 or the fractured mineral fibers 2a for the insulating material.
DK 160139 BDK 160139 B
ringspladen 1. I de længere inde liggende områder af belægningen overtager de brudte Basaltfibre 2a af isoleringspladen 1 i tiltagende grad funktionen for de belægningsmassen 5 tilsatte malede Basaltfibre og tjener som netværksdannere for 5 bindingen gennem kiselsolen sammen med de finkornede fyldstoffer 4, som f.eks. kaolin.ring plate 1. In the longer-lying areas of the coating, the broken Basalt fibers 2a of the insulating plate 1 increasingly take over the function of the coated Basalt fibers added to the coating mass 5 and serve as network formers for the bond through the silicon sol together with the fine-grained fillers 4, such as e.g. . kaolin.
På denne måde fås en opbygning af et lag 3 af et imprægneringslag 3a med en tykkelse på én eller flere mm, og en tynd 10 overfladisk lukket film 3b, der ligeledes kan fremstilles i en større tykkelse, men hvor en ganske ringe tykkelse er tilstrækkeligt, og som med henblik på den ru overflade af isoleringspladen 1 ikke mere kan måles. I det foreliggende eksempel er der med den tilføjede andel til storkornede fyldstoffer 10 15 og malede basaltfibre 4 opnået en tykkelse af filmen 3b, der som antydet i fig. 1, fuldstændigt tæt dækker de øverste brudte mineralfibre 2a af isoleringspladen 1, således at disse under ingen omstændigheder kan fremtræde på overfladen. En sådan eller endnu større tykkelse af filmen 3b, der kan danne 20 et egnet lag, egner sig især til anvendelse af isoleringspladen 1 som tagisoleringsplade, for at opnå en sikkert 1ukket belægning, der er lukker over for indtrængning af Bitumen og har en tilsvarende gangbarhed. De storkornede fyldstoffer 10 kan dog også fuldstændigt udelades. Ved anvendelse som faca-25 deisoleringsplade bevirker de storkornede fyldstoffer og en ophobning af fibre i området nær overf1aden, hvad enten det er brudte mineralfibre fra isoleringspladen 1 eller med belæg-ningsmassen 5 påførte malede mineralfibre 11 en 1ukket revnefri yderoverflade af belægningen 3, der alligevel har en vis 30 ruhed, som antydet ved overfladeujævnhederne 12. I denne forbindelse kan der også indeholdes storkornede fyldstoffer 10 i en ringe andel, der er indlejret i huller mellem brudte mineralfibre 2a i oversiden af isoleringspladen 1, og kun i ringe grad rager op over disse, mens i øvrigt brudte mineralfibre 2a 35 eller malede mineralfibre 11 foreligger umiddelbart på overfladen af laget 3, og således sørger for en vis ruhed.In this way, a layer 3 is formed of an impregnating layer 3a having a thickness of one or more mm and a thin 10 superficially closed film 3b, which can also be made in a larger thickness, but where a very small thickness is sufficient. and which can no longer be measured for the rough surface of the insulating plate 1. In the present example, with the added proportion of large-grained fillers 10 and ground basalt fibers 4, a thickness of the film 3b obtained, as indicated in FIG. 1, completely covers the top broken mineral fibers 2a of the insulating plate 1, so that they can under no circumstances appear on the surface. Such or even greater thickness of the film 3b capable of forming a suitable layer is particularly suitable for use of the insulating plate 1 as a roof insulating plate, to obtain a securely closed coating which is closed to penetration of Bitumen and has a corresponding walkability. . However, the large-grained fillers 10 can also be completely omitted. When used as a facade insulation plate, the solid-grained fillers and an accumulation of fibers in the area near the surface, whether broken mineral fibers from the insulating plate 1 or applied to the coating mass 5, painted mineral fibers 11 produce a closed crack-free outer surface of the coating 3, which nevertheless has some roughness, as indicated by the surface irregularities 12. In this connection, large-grained fillers 10 may also be contained in a small proportion embedded in holes between broken mineral fibers 2a in the upper side of the insulating plate 1 and only slightly protrude above these, while otherwise broken mineral fibers 2a 35 or ground mineral fibers 11 are present immediately on the surface of layer 3, thus providing some roughness.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3248663A DE3248663C1 (en) | 1982-12-30 | 1982-12-30 | Coated facade or roof insulation board made of mineral fibers, as well as processes for their production |
DE3248663 | 1982-12-30 |
Publications (4)
Publication Number | Publication Date |
---|---|
DK608983D0 DK608983D0 (en) | 1983-12-30 |
DK608983A DK608983A (en) | 1984-07-01 |
DK160139B true DK160139B (en) | 1991-02-04 |
DK160139C DK160139C (en) | 1991-07-08 |
Family
ID=6182185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK608983A DK160139C (en) | 1982-12-30 | 1983-12-30 | COATED FACADE OR ROOF INSULATION PLATE OF MINERAL FIBER, AND PROCEDURE FOR PREPARING THE PLATE |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0114965B1 (en) |
AT (1) | ATE49788T1 (en) |
DE (2) | DE3248663C1 (en) |
DK (1) | DK160139C (en) |
FI (1) | FI79483C (en) |
NO (1) | NO161841C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997038181A1 (en) * | 1996-04-10 | 1997-10-16 | Jarmo Pirhonen | Method for producing an element structure and an element structure |
WO2000073600A1 (en) * | 1999-05-27 | 2000-12-07 | Rockwool International A/S | Mineral fibre insulating board comprising a rigid surface layer, a process for the preparation thereof and a use of the insulating product for roofing and facade covering |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3932472C2 (en) * | 1989-09-28 | 2000-06-21 | Gruenzweig & Hartmann | Acoustic damping cladding for floor ceilings |
DK164129C (en) * | 1990-03-19 | 1992-10-12 | Rockwool Int | EXTERNAL INSULATION Layer |
DE4110454C2 (en) * | 1991-03-29 | 1998-05-20 | Loba Bautenschutz Gmbh & Co Kg | Thermal insulation system with panels and method for surface treatment of these panels |
DE4212842C2 (en) * | 1992-04-16 | 1995-09-07 | Gruenzweig & Hartmann | Needle felt with cover layer and process for its production |
DE4241534C1 (en) * | 1992-12-10 | 1994-04-21 | Rockwool Mineralwolle | Mineral wool moldings for the insulation of building components and process for the production of mineral wool moldings |
DE4338619C5 (en) * | 1993-11-11 | 2007-12-27 | Saint-Gobain Isover G+H Ag | Coated mineral wool product and process for its production |
WO1995013253A1 (en) * | 1993-11-11 | 1995-05-18 | Isover Saint-Gobain | Mineral wool product, method for its production, impregnating mass therefor, and use thereof |
EP0728124B2 (en) * | 1993-11-11 | 2000-12-27 | Grünzweig + Hartmann AG | Rock wool product and process for its manufacture, coating material therefor and use thereof |
DE4413996C1 (en) * | 1994-04-22 | 1995-07-20 | Braas Gmbh | Roof tiles resistant to frost, dew etc. |
FI956010A (en) * | 1995-12-14 | 1997-06-15 | Firmo Ltd Oy | Cover plate and method of manufacture thereof |
DE19720067C5 (en) * | 1996-05-29 | 2004-08-05 | Marmorit Gmbh | Pre-coated mineral wool slat plate and method of making the same |
GB2317403B (en) * | 1996-09-20 | 2001-01-24 | Rockwool Int | A process for the preparation of a layered insulating board,and a layered insulating board |
DE19731073A1 (en) * | 1997-07-19 | 1999-05-06 | Wiehofsky Fritz | Manufacturing process and component for plasterable exterior and interior walls |
ATE248963T1 (en) * | 1998-02-28 | 2003-09-15 | Rockwool Mineralwolle | METHOD FOR PRODUCING AN INSULATION BOARD FROM MINERAL FIBERS AND INSULATION BOARD |
DE10020333B4 (en) * | 2000-03-09 | 2005-06-23 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Method and device for the production of insulating boards and coating for a mineral fiber web |
DE50108592D1 (en) | 2000-03-09 | 2006-03-30 | Rockwool Mineralwolle | Process for the production of insulating boards |
DE10054951A1 (en) * | 2000-11-06 | 2002-05-29 | Rockwool Mineralwolle | insulating element |
DE10226790B4 (en) * | 2001-12-22 | 2005-11-10 | Deutsche Rockwool Mineralwoll Gmbh + Co Ohg | Method for thermal and/or acoustic insulation of a building wall involves impregnation of insulation elements, directly before they are fixed to the building wall, with a liquid bonding and/or impregnating agent |
DE50305007D1 (en) * | 2002-05-28 | 2006-10-26 | Heraklith Ag | Building board and use of building board |
DE10338001C5 (en) * | 2003-08-19 | 2013-06-27 | Knauf Insulation Gmbh | Method for producing an insulating element and insulating element |
DE102010009145A1 (en) * | 2010-02-24 | 2011-08-25 | Vatramaxx GmbH, 47623 | Light pasty refractory adhesives and their use |
CN103403273B (en) | 2011-01-31 | 2016-05-25 | 罗克伍尔国际公司 | Be used for the shielding system of the facade of covering building |
MX2020006532A (en) | 2017-12-19 | 2020-09-14 | Saint Gobain Adfors Canada Ltd | A reinforcing layer, a cementitious board, and method of forming the cementitious board. |
CN112384667B (en) * | 2018-07-12 | 2023-01-13 | 扎伊罗技术股份公司 | Mineral wool board with filler |
CN114455980A (en) * | 2022-01-05 | 2022-05-10 | 湖北三江航天江北机械工程有限公司 | Ceramic antenna housing composite material and molding method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1252570B (en) * | 1957-02-27 | 1967-10-19 | ||
GB894056A (en) * | 1958-02-03 | 1962-04-18 | Carborundum Co | Ceramic fibre products and compositions and methods of making same |
US3490065A (en) * | 1965-05-24 | 1970-01-13 | Owens Corning Fiberglass Corp | High temperature resistant acoustical board |
US4144074A (en) * | 1976-11-30 | 1979-03-13 | Kansai Paint Co., Ltd. | Inorganic coating composition |
DE3277117D1 (en) * | 1981-12-10 | 1987-10-08 | Gruenzweig Hartmann Glasfaser | Heat insulating article made of a highly dispersed insulating material densified by compression, and process for its production |
-
1982
- 1982-12-30 DE DE3248663A patent/DE3248663C1/en not_active Expired
-
1983
- 1983-11-24 DE DE8383111756T patent/DE3381147D1/en not_active Expired - Lifetime
- 1983-11-24 EP EP83111756A patent/EP0114965B1/en not_active Expired - Lifetime
- 1983-11-24 AT AT83111756T patent/ATE49788T1/en not_active IP Right Cessation
- 1983-12-28 FI FI834822A patent/FI79483C/en not_active IP Right Cessation
- 1983-12-29 NO NO834870A patent/NO161841C/en unknown
- 1983-12-30 DK DK608983A patent/DK160139C/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997038181A1 (en) * | 1996-04-10 | 1997-10-16 | Jarmo Pirhonen | Method for producing an element structure and an element structure |
WO2000073600A1 (en) * | 1999-05-27 | 2000-12-07 | Rockwool International A/S | Mineral fibre insulating board comprising a rigid surface layer, a process for the preparation thereof and a use of the insulating product for roofing and facade covering |
Also Published As
Publication number | Publication date |
---|---|
FI79483B (en) | 1989-09-29 |
FI79483C (en) | 1990-01-10 |
EP0114965A3 (en) | 1985-10-02 |
NO161841B (en) | 1989-06-26 |
EP0114965B1 (en) | 1990-01-24 |
FI834822A (en) | 1984-07-01 |
EP0114965A2 (en) | 1984-08-08 |
ATE49788T1 (en) | 1990-02-15 |
DK608983A (en) | 1984-07-01 |
DK608983D0 (en) | 1983-12-30 |
DK160139C (en) | 1991-07-08 |
DE3381147D1 (en) | 1990-03-01 |
DE3248663C1 (en) | 1984-06-07 |
FI834822A0 (en) | 1983-12-28 |
NO161841C (en) | 1989-10-04 |
NO834870L (en) | 1984-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK160139B (en) | COATED FACADE OR ROOF INSULATION PLATE OF MINERAL FIBER, AND PROCEDURE FOR PREPARING THE PLATE | |
AU2001276441B2 (en) | Gypsum plaster base board and preparation thereof | |
CN104945997B (en) | A kind of outer wall flexible waterproof putty powder | |
CA2051002C (en) | Lightweight building material board | |
CN111212946A (en) | Mineral fiber roof covering | |
US7736429B2 (en) | Composition comprising a phosphate binder and its preparation | |
EP2481859A1 (en) | Composite aerogel thermal insulation system | |
KR101350423B1 (en) | Rapid Setting Cement Adhesive for Reinforcing Mesh Adhering on ALC Panel | |
IE832992L (en) | Lightweight joint composition. | |
EP0475302B1 (en) | Lightweight building material board | |
MXPA04011002A (en) | Interior wallboard and method of making same. | |
CA2824305A1 (en) | Composite thermal insulation system | |
US4552806A (en) | Cellular glass coated with a heat insulator | |
NO152167B (en) | OPTICAL BODY MANUFACTURER PREFORM, PROCEDURE FOR MANUFACTURING IT AND APPLICATION OF THE PREFORM FOR MANUFACTURING BODY MANUFACTURER | |
US3490065A (en) | High temperature resistant acoustical board | |
KR100394307B1 (en) | Poromeric and repellent floor finishing method of concrete surface for improvement of durability or renewal | |
CA2353886A1 (en) | Composite building materials | |
NO140296B (en) | MINERAL FIBER PLATE. | |
KR20010093816A (en) | Composite hardened body and production method thereof as well as plate-shaped building materials and composite building materials using such a composite hardened boy | |
CN112174595A (en) | Multifunctional base material for outer wall and preparation method thereof | |
GB2105216A (en) | Process for the production of an aqueous bituminous preparation | |
CN114161781A (en) | Modified floating bead calcium silicate, preparation method thereof and heat-insulation and decoration integrated board | |
CN108863404A (en) | The fireproof heat preservation decorative board material of pure inorganic material | |
CN213329491U (en) | Rock wool composite board thin plastering outer wall external heat insulation layer | |
CN206737314U (en) | One kind infiltration parcel composite polyurethane fireproof heat insulating plate exterior wall external heat preservation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |