DK159883B - ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES - Google Patents
ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES Download PDFInfo
- Publication number
- DK159883B DK159883B DK601787A DK601787A DK159883B DK 159883 B DK159883 B DK 159883B DK 601787 A DK601787 A DK 601787A DK 601787 A DK601787 A DK 601787A DK 159883 B DK159883 B DK 159883B
- Authority
- DK
- Denmark
- Prior art keywords
- sugar
- process according
- substituted
- enzyme
- reaction
- Prior art date
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Epoxy Compounds (AREA)
Description
iin
DK 159883 BDK 159883 B
Opfindelsen angår en særlig fremgangsmåde til fremstilling af kendte og hidtil ukendte kulhydrater, der bærer en epoxygruppe som en glucosidisk aglycon eller angivet på en anden måde en særlig fremgangsmåde til fremstilling af 5 epoxysubstituerede aldoser eller ketoser, som har den i krav 1's indledning angivne formel I.This invention relates to a particular process for the preparation of known and novel carbohydrates bearing an epoxy group such as a glucosidic aglycone or otherwise specified in a particular process for the preparation of epoxy-substituted aldoses or ketoses having the formula I as set forth in the preamble of claim 1. .
Epoxider er en klasse af organiske forbindelser, der har stor praktisk betydning som mellemprodukter ved organisk syntese og som en klasse af forbindelser, der i sig selv ud-10 viser mange anvendelige egenskaber. Som følge deraf har man i årenes løb udtænkt mange metoder til syntese af epoxider, beskrevet i anerkendte lærebøger i organisk kemi, såsom f.eks. i Comprehensive Organic Chemistry udgivet af Barton og Ollis og publiceret af Pergamon Press, 1984. Principielt anvendes to 15 hovedmetoder til syntese af et givet ønsket molekyle, som indeholder en epoxygruppe: Enten dannes epoxygruppen på basis af passende fraktionsgrupper, som findes i en precursor for det ønskede molekyle, såsom en gruppe, der indeholder en dobbeltbinding af typen carbon-carbon, eller også indføres 20 epoxidet i det ønskede molekyle ved en kondensationsreaktion, hvor én af reaktanterne bærer en epoxygruppe. Den foreliggende opfindelse er af den sidst angivne art.Epoxides are a class of organic compounds which are of great practical importance as intermediates in organic synthesis and as a class of compounds which exhibit many useful properties. As a result, many methods have been devised over the years for the synthesis of epoxides, described in recognized textbooks in organic chemistry, such as e.g. in Comprehensive Organic Chemistry published by Barton and Ollis and published by Pergamon Press, 1984. In principle, two main methods are used for the synthesis of a given desired molecule containing an epoxy group: Either the epoxy group is formed on the basis of appropriate fraction groups found in a precursor for the desired molecule, such as a group containing a carbon-carbon double bond, or the epoxide is introduced into the desired molecule by a condensation reaction in which one of the reactants carries an epoxy group. The present invention is of the latter type.
En væsentlig vanskelighed, som foreligger ved organisk syntese af epoxider, hidrører fra reaktiviteten af epoxy-25 gruppen. Under mange forskellige betingelser vil epoxider reagere med opløsningsmidler og et stort antal organiske funktionelle grupper, således at én konsekvens deraf er, at indføring af en epoxygruppe i et komplekst, polyfunktionelt organisk molekyle kan være et yderst vanskeligt, hvis ikke 30 umuligt arbejde.A major difficulty inherent in organic synthesis of epoxides arises from the reactivity of the epoxy group. Under many different conditions, epoxides will react with solvents and a large number of organic functional groups, so one consequence of which is that introducing an epoxy group into a complex, polyfunctional organic molecule can be an extremely difficult, if not impossible, task.
Et eksempel af denne art har relation til kulhydratmolekyler, som bærer en epoxygruppe i det glucosidiske aglycon, jævnfør formel I. På grund af tilstedeværelsen af mange reaktive grupper i sådanne molekyler, den lave 35 opløselighed af forbindelserne i de fleste organiske opløsningsmidler og‘ den følsomme karakter af molekylerne erAn example of this kind is related to carbohydrate molecules bearing an epoxy group in the glucosidic aglycon, according to formula I. Due to the presence of many reactive groups in such molecules, the low solubility of the compounds in most organic solvents and the sensitive nature of the molecules is
DK 159883 BDK 159883 B
2 det et vanskeligt og ofte et meget langsommeligt arbejde at fremstille sådanne forbindelser ved organisk syntese. Et eksempel, der er beskrevet af J.E.G. Barnett og A. Ralph i Carbohydr. Res. 17 (1971), 231, angår syntese af 2,3-epoxy-5 propyl-g-D-glucopyranosid, formel II.2 it is a difficult and often very slow task to prepare such compounds by organic synthesis. An example described by J.E.G. Barnett and A. Ralph in Carbohydr. Res. 17 (1971), 231, relates to the synthesis of 2,3-epoxy-propyl-g-D-glucopyranoside, formula II.
HO -iHO -i
AA
)-0 0-CH--CH--CH-, (II) HO 1) -0 O-CH - CH - CH-, (II) HO 1
OHOH
En syntese af kulhydrat-molekyler, hvorpå der findes en epoxygruppe, omfatter en temmelig lang række af syntesetrin, 15 hvorved man går ud fra let tilgængelige udgangsmaterialer.A synthesis of carbohydrate molecules upon which an epoxy group is found comprises a fairly wide range of synthesis steps, starting from readily available starting materials.
I de senere år har der været en voksende interesse hvad angår potentialet for enzymer som organiske katalysatorer. Da disse katalysatorer i mange henseender er enestående, har de mange potentielle anvendelsesmuligheder i den 20 organiske syntese. F.eks. muliggør enzymerne gennemførslen af organiske reaktioner under yderst milde betingelser, og de er ofte substratselektive, hvorved man f.eks. muliggør selektiv omdannelse af en enkelt gruppe blandt adskillige i kemisk henseende meget beslægtede grupper i organiske molekyler eller 25 syntesen af optisk rene organiske komponenter udfra racemiske udgangsmaterialer.In recent years there has been a growing interest in the potential of enzymes as organic catalysts. Since these catalysts are unique in many respects, they have many potential uses in the organic synthesis. Eg. For example, the enzymes enable the conducting of organic reactions under extremely mild conditions and are often substrate selective, for example. enables selective conversion of a single group from several chemically related groups into organic molecules or the synthesis of optically pure organic components from racemic starting materials.
En gruppe af enzymer, der har tiltrukket sig en vis interesse som organiske katalysatorer, er enzymer, der er i stand til at spalte bindinger ved C-l stillingen (aldoser) 30 eller C-2 stillingen (ketoser) af et kulhydrat. Organiske kemikere har været interesserede i disse enzymer, fordi de muliggør gennemførslen af visse kemiske reaktioner ved de enzymatiske spaltningspositioner.A group of enzymes that have attracted some interest as organic catalysts are enzymes capable of cleaving bonds at the C-1 position (aldoses) 30 or the C-2 position (ketoses) of a carbohydrate. Organic chemists have been interested in these enzymes because they allow the execution of certain chemical reactions at the enzymatic cleavage positions.
DK 159883 BDK 159883 B
33
Anvendelsen af $-galactosidaser til syntese af galactosider illustrerer, hvorledes enzymer, der er i stand til at spalte bindinger ved C-l stillingen (aldoser) eller C-2 stillingen (ketoser) af kulhydrater, kan anvendes til organisk 5 syntese. I J.Biol. Chem. 248 (1973), 6571 - 6574, beskriver T.J. Silhavy et al., hvorledes (2R)-glyceryl-B-D-galactopyra-nosid (skema 1, formel III) kan syntetiseres på basis af lactose og isopropylidenglycerol, der kondenseres til det tilsvarende galactosid (skema 1, formel IV) ved at blive udsat 10 for påvirkning af den 8-galactosidase, som fremstilles ved hjælp af E. coli og ved derefter at blive spaltet til det ønskede produkt med formel III ved sur katalyse, jævnfør skema 1.The use of β-galactosidases for the synthesis of galactosides illustrates how enzymes capable of cleaving bonds at the C-1 position (aldoses) or the C-2 position (ketoses) of carbohydrates can be used for organic synthesis. In J. Biol. Chem. 248 (1973), 6571-6574, describes T.J. Silhavy et al., How (2R) -glyceryl BD-galactopyranoside (Scheme 1, Formula III) can be synthesized on the basis of lactose and isopropylidene glycerol condensed to the corresponding galactoside (Scheme 1, Formula IV) 10 to effect the 8-galactosidase produced by E. coli and then cleaved to the desired product of formula III by acid catalysis, as per Scheme 1.
DK 159883 BDK 159883 B
Skema 1 4 ch3 H2CO-C-CH3Scheme 1 4 ch3 H2CO-C-CH3
5 I I5 I I
GAL-GLU + HC--0 -3-:---.GAL-GLU + HC - 0 -3 -: ---.
I β-galactosidase ' h2c-oh ch3 10 I H+In β-galactosidase 'h2c-oh ch3 10 I H +
h2co-c-ch3 Hh2co-c-ch3 H
I II I
GAL-0-CH2“CH-0 (IV)GAL-0-CH2 “CH-0 (IV)
15 GAL-0-CH2-CH0H-CH20HGAL-O-CH 2 -CHOH-CH 2 OH
(III) GAL-GLU betegner lactose, og GAL betegner galactose.(III) GAL-GLU denotes lactose and GAL denotes galactose.
På lignende måde beskriver T. Satoh et al. i Chem.Pharm.Bull 32 (1984), 1183 - 1187, anvendelsen af lactase fra Kleuromyces 20 fragilis med henblik på syntese af en serie af galactosider.Similarly, T. Satoh et al. in Chem.Pharm.Bull 32 (1984), 1183 - 1187, the use of lactase from Coloromyces 20 fragilis for the synthesis of a series of galactosides.
Som vist i skema 2 nedenfor, gør disse kemikere brug af arylglucosider som udgangsmateriale for en ad enzymatisk vej katalyseret udvekslingsreaktion til syntese af en serie alkylglucosider. Det fremgår af denne publikation, at 25 principielt den samme reaktion kan gennemføres med vidt forskellige radikaler R.As shown in Scheme 2 below, these chemists make use of aryl glucosides as a starting material for an enzymatic pathway catalyzed exchange reaction for the synthesis of a series of alkyl glucosides. It appears from this publication that in principle the same reaction can be carried out with widely different radicals R.
Skema 2Scheme 2
DK 159883 BDK 159883 B
5 HO —i ! „0<r \ Γ 0H 1 /5 HO — i! "0 <r \ Γ 0H 1 /
10 I LACTASE10 I LACTASE
HO>_0 / \HO> _0 / \
/ \ ^OR ^ArOH/ \ ^ OR ^ ArOH
15 h^__X15 h ^ __ X
HO -ΓHO -Γ
OHOH
Ar = aryl 20 R = alkylAr = aryl R = alkyl
Ved fremgangsmåden ifølge opfindelsen anvendes enzymer til syntese af kulhydrater med formlen I, som på deres C-l stilling (aldoser) eller C-2 stilling (ketoser) bærer en epoxygruppe. Det har således overraskende vist sig, at 25 molekyler, som bærer en i høj grad reaktiv epoxygruppe, kan anvendes ved enzymatiske reaktioner, og at epoxygruppen kan overføres til et andet organisk molekyle uden at forstyrre eller inaktivere enzymet på trods af, at enzymet indeholder talrige funktionelle grupper, som vides at reagere med 30 epoxider.In the process of the invention, enzymes are used for the synthesis of carbohydrates of formula I which carry at their C-1 position (aldoses) or C-2 position (ketoses) an epoxy group. Thus, it has surprisingly been found that 25 molecules carrying a highly reactive epoxy group can be used in enzymatic reactions and that the epoxy group can be transferred to another organic molecule without disrupting or inactivating the enzyme despite the enzyme containing numerous functional groups known to react with 30 epoxides.
Fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 1 angivne.The method according to the invention is characterized by the method of claim 1.
DK 159883 BDK 159883 B
66
Hvis således SUGAR er oi-glucose-molekyldelen, er det enzym, som skal anvendes, α-glucosidase, hvis SUGAR er β-galactose-molekyldelen, er det enzym, som skal anvendes, β-galactosidase, osv. Disse enzymer udviser ikke blot en 5 spaltningsaktivitet, men også en tilsvarende overførselsaktivitet i forbindelse med den samme position som spaltnings-positionen.Thus, if SUGAR is the o-glucose molecule, the enzyme to be used is α-glucosidase, if SUGAR is the β-galactose molecule, it is the enzyme to be used, β-galactosidase, etc. These enzymes not only exhibit a cleavage activity, but also a corresponding transfer activity in connection with the same position as the cleavage position.
Et defineret SUGAR-radikal i forbindelse med denne opfindelse kan således altid associeres med et enzym med en 10 defineret aktivitet, hvilket fremgår af den nedenfor angivne tabel, der kun er af illustrerende artFor. nogle SUGAR-radikaler gælder det, at en glycosidase med en relativt uspecifik aktivitet ville være i stand til at katalysere reaktionen, hvorimod mere specifikke glycosidaser er nødvendige 15 i andre tilfælde··.Thus, a defined SUGAR radical in the context of this invention can always be associated with an enzyme having a defined activity, as shown in the table set forth below, which is for illustrative purposes only. in some SUGAR radicals, a glycosidase with a relatively nonspecific activity would be able to catalyze the reaction, whereas more specific glycosidases are required in other cases ··.
SUGAR I Glycosidaseaktivitet ribose | ribosidase 20 xylose j xylosidase β-galactose j β-galactosidase glucose j glucosidase fructose j fruetosidaseSUGAR IN Glycosidase Activity Ribose | ribosidase 20 xylose j xylosidase β-galactose j β-galactosidase glucose j glucosidase fructose j fruetosidase
En foretrukken udførelsesform for fremgangsmåden 25 ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 2 angivne. Både β-galactose og β-galactosi-dase er- let rekvirerbare stof-fer, og slutproduktet er et værdifuldt råmateriale til reaktion med organiske syrer.A preferred embodiment of the method 25 according to the invention is characterized by the characterizing part of claim 2. Both β-galactose and β-galactosidase are readily obtainable substances, and the final product is a valuable feedstock for reaction with organic acids.
En foretrukken udførelsesform for fremgangsmåden 30 ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 3 angivne. Både lactose og galactosidase er billige og let rekvirerbare.A preferred embodiment of the method 30 according to the invention is characterized by the characterizing part of claim 3. Both lactose and galactosidase are cheap and readily available.
En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegn-35 ende del af krav 4 angivne. Både saccharose og glucosidase er billige og let rekvirerbare.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 4. Both sucrose and glucosidase are cheap and readily available.
DK 159883 EDK 159883 E
77
En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 5 angivne. På denne måde gør man et meget reaktivt substrat let tilgængeligt.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 5. In this way, a highly reactive substrate is readily available.
5 En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 6 angivne. Der foreligger ingen steriske hindringer, og reaktionen kan gennemføres glat og med høje udbytter.5 A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 6. There are no steric obstacles and the reaction can be carried out smoothly and with high yields.
10 En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 7 angivne. På denne måde opnås alle de sædvanlige fordele ved at anvende et immobiliseret enzym.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 7. In this way, all the usual benefits of using an immobilized enzyme are obtained.
En foretrukken udførelsesform for fremgangsmåden 15 ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 8 angivne. Når begge reaktanter er tungt opløselige i vandige medier, foretrækkes denne udførelsesform.A preferred embodiment of the method 15 according to the invention is characterized by the characterizing part of claim 8. When both reactants are heavily soluble in aqueous media, this embodiment is preferred.
En foretrukken udførelsesform for fremgangsmåden 20 ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 9 angivne. Når begge reaktanter er tungt opløselige i rene vandige medier, men letopløselige i en blanding af vand og et organisk opløsningsmiddel, foretrækkes denne udførelsesform.A preferred embodiment of the method 20 according to the invention is characterized by the characterizing part of claim 9. When both reactants are heavily soluble in pure aqueous media but readily soluble in a mixture of water and an organic solvent, this embodiment is preferred.
25 En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen omfatter, at den gennemføres i et tofase-system. Når den ene reaktant er let opløselig i et vandigt medium, og den anden reaktant er let opløselig i et organisk opløsningsmiddel, foretrækkes denne udførelsesform, og 30 reaktionen finder sted i mellemfasen.A preferred embodiment of the method according to the invention comprises that it be carried out in a two-phase system. When one reactant is readily soluble in an aqueous medium and the other reactant is readily soluble in an organic solvent, this embodiment is preferred and the reaction takes place in the intermediate phase.
De reaktioner, som kan udføres ved hjælp af fremgangsmåden ifølge opfindelsen, kan sammenfattes som angivet nedenfor i skema 3, hvor X er hydrogen, en kulhydratremanens, alkyl eller aryl, hvilke alle kan være substitueret 35 med hydroxy, mercapto, nitro, alkoxy, carboxy eller amino, Z er oxygen eller svovl, Y er alkylen, som kan være 8The reactions which can be carried out by the process of the invention can be summarized as indicated below in Scheme 3, wherein X is hydrogen, a carbohydrate residue, alkyl or aryl, all of which may be substituted by hydroxy, mercapto, nitro, alkoxy, carboxy or amino, Z is oxygen or sulfur, Y is alkylene which may be 8
DK 159833 BDK 159833 B
substitueret med hydroxy, mercapto, nitro, alkoxy, carboxy 12 3 eller ammo, og R , R og R er ens eller forskellige og hver for sig repræsenterer hydrogen, alkyl eller aryl, hvorved begge de sidst angivne radikaler kan være substitueret med 5 hydroxy, mercapto, nitro, alkoxy, carboxy eller amino, hvorved den (usubstituerede) alkylgruppe fortrinsvis indeholder 6 karbonatomer eller under 6 karbonatomer, og hvorved den (usubstituerede) arylgruppe fortrinsvis indeholder mellem 6 og 10 karbonatomer, inklusive.substituted by hydroxy, mercapto, nitro, alkoxy, carboxy123 or ammo, and R, R and R are the same or different and each represents hydrogen, alkyl or aryl, whereby both of the latter radicals may be substituted by hydroxy, mercapto, nitro, alkoxy, carboxy or amino, wherein the (unsubstituted) alkyl group preferably contains 6 carbon atoms or below 6 carbon atoms, and wherein the (unsubstituted) aryl group preferably contains between 6 and 10 carbon atoms, including.
10 Fortrinsvis indeholder alkylengruppen 8 karbon atomer eller mindre end 8 karbonatomer, fortrinsvis 4 karbonatomer eller under 4 karbonatomer. Eksempler på foretrukne kulhydrat-remanenser (X) er monosaccharid-remanenser, f.eks. en glucoseremanens. Fortrinsvis er aryl phenyl eller 15 naphthyl, der kan være substitueret eller usubstitueret. De substituerede phenyl- eller naphthylradikaler foretrækkes, f.eks. de nitrosubstituerede radikaler, på grund af den højere reaktivitet af forbindelsen V.Preferably, the alkylene group contains 8 carbon atoms or less than 8 carbon atoms, preferably 4 carbon atoms or less than 4 carbon atoms. Examples of preferred carbohydrate residues (X) are monosaccharide residues, e.g. and glucose residue. Preferably, aryl is phenyl or naphthyl which may be substituted or unsubstituted. The substituted phenyl or naphthyl radicals are preferred, e.g. the nitrosubstituted radicals, due to the higher reactivity of compound V.
Skema 3Scheme 3
DK 159883 BDK 159883 B
9 ov / \ ~ enzym SUGAR-O-X + H-Z-Y-C-C-R ·-->9 ov / \ ~ enzyme SUGAR-O-X + H-Z-Y-C-C-R · ->
I II I
5 R1 R3 (V) (VI) /\ 25 R1 R3 (V) (VI) / \ 2
SUGAR-Z-Y-C—C-RSUGAR-Z-Y-C-C-R
I II I
10 R1 R3 (I) 12 3 hvor R , R , R , SUGAR, X, Y og Z hver er som defineret i det følgende krav 1.R1, R3 (I) 12 3 wherein R, R, R, SUGAR, X, Y and Z are each as defined in the following claim 1.
De enzymer, som kan anvendes ved fremgangsmåden 15 ifølge opfindelsen, er enzymer, der kan spalte -OX-bindingen af forbindelsen SUGAR-O-X (V), vist i skema 3, jfr. krav 1.The enzymes which may be used in the process of the invention are enzymes which can cleave the -OX bond of the compound SUGAR-O-X (V), shown in Scheme 3, cf. claim 1.
De enzymer, der anvendes ved fremgangsmåden ifølge opfindelsen, kan foreligge i opløsning eller være immobiliseret. Enzymerne kan også modificeres ved kemiske eller genetiske 20 metoder for at optimere reaktiviteten deraf i forbindelse med den pågældende reaktion.The enzymes used in the process of the invention may be in solution or immobilized. The enzymes can also be modified by chemical or genetic methods to optimize their reactivity in the reaction in question.
Fremgangsmåden ifølge opfindelsen kan gennemføres ved at blande acceptor- og donor-komponenten ved reaktionen, dvs. forbindelserne med formlerne henholdsvis V og VI, i 25 vand, der indeholder enzymet med stuetemperatur. Om ønsket kan reaktionsblandingen opvarmes for at accelerere reaktionen. Man kan også tilsætte organiske opløsningsmidler til reaktionsblandingen for at forøge reaktanternes opløse-The process of the invention can be carried out by mixing the acceptor and donor component in the reaction, i.e. the compounds of formulas V and VI, respectively, in water containing the enzyme at room temperature. If desired, the reaction mixture may be heated to accelerate the reaction. Organic solvents can also be added to the reaction mixture to increase the reactants' solubility.
DK 159883 BDK 159883 B
10 lighed, og reaktionsmediets pH-værdi kan indstilles med henblik på opnåelse af maksimal enzym-aktivitet og/eller -stabilitet.And the pH of the reaction medium can be adjusted to achieve maximum enzyme activity and / or stability.
De forbindelser med den almeme formel I, som kan 5 fremstilles ved hjælp af fremgangsmåden ifølge opfindelsen, kan anvendes til mange formål. F.eks. muliggør den reaktive epoxygruppe i molekyler med den almene formel I koblingen deraf til andre molekyler. Derfor kan kulhydrat-raolekyldele let overføres f.eks. til en matrix, som bærer hydroxyl-10 grupper, såsom Sepharose eller cellulose, eller kulhydratremanenser kan kobles til proteiner, der derved omdannes til glycoproteiner.The compounds of general formula I which can be prepared by the process of the invention can be used for many purposes. Eg. enables the reactive epoxy group in molecules of general formula I to link them to other molecules. Therefore, carbohydrate carbon moieties can be easily transferred e.g. to a matrix carrying hydroxyl groups, such as Sepharose or cellulose, or carbohydrate residues can be coupled to proteins which thereby become glycoproteins.
En reaktion af speciel interesse, som kan gennemføres under anvendelse af fremgangsmåden ifølge opfindelsen, 15 er illustreret i skema 4 nedenfor. Ved reaktion med epoxidet med formel VIII kan et substratmolekyle med den almene formel V som vist omdannes til den epoxiderede forbindelse med formel IX, der som vist ved reaktion med en fedtsyre yderligere kan omdannes til monoglyceridet med formlen X. For-20 bindeiserne med den almene formel X, som således kan fremstilles udfra forbindelser med den almene formel IX, der er fremstillet ved fremgangsmåden ifølge opfindelsen, er overfladeaktive midler med stor anvendelighed. Disse forbindelser kan således anvendes i næringsmidler og foder som emulger-25 ingsmidler, eller de kan anvendes til at forbedre mange funktionelle egenskaber af næringsmidler og foder. De reaktive forbindelser med den almene formel IX kan også kobles til aminosyrer, f.eks. i proteiner, hvorved de funktionelle egenskaber deraf ændres.A reaction of particular interest which can be carried out using the method of the invention is illustrated in Scheme 4 below. By reaction with the epoxide of formula VIII, a substrate molecule of general formula V as shown can be converted to the epoxidized compound of formula IX which, as shown by reaction with a fatty acid, can further be converted to the monoglyceride of formula X. The compounds of the general formula formula X, which can thus be prepared from compounds of general formula IX prepared by the process of the invention, are surfactants of great utility. Thus, these compounds can be used in food and feed as emulsifying agents, or they can be used to improve many functional properties of food and feed. The reactive compounds of general formula IX may also be coupled to amino acids, e.g. in proteins, thereby altering the functional properties thereof.
Skema 4Scheme 4
DK 159883 BDK 159883 B
11 y°\ SUGAR-O-X + HO-CH2-CH—-CH2 -> (V) (VIII)11 y ° \ SUGAR-O-X + HO-CH2-CH - CH2 -> (V) (VIII)
5 RCOOH5 RCOOH
sugar-o-ch2-ch—ch2 -> (IX)sugar-o-ch2-ch-ch2 -> (IX)
H2C-0-SUGARH2C-0-SUGAR
10 HCOH10 HCOH
H2C-OCORH2C-OCOR
(X) hvor R repræsenterer en carboxylsyre-remanens, f.eks. alkyl, og 15 hvor SUGAR og X hver for sig er som defineret i det følgende krav 1.(X) wherein R represents a carboxylic acid residue, e.g. alkyl, and wherein SUGAR and X are each as defined in the following claim 1.
Fremgangsmåden ifølge opfindelsen illustreres ved de følgende eksempler 1 og 2. Eksempel 3, 4 og 5 illustrerer anvendelsen af de epoxyforbindelser, som fremstilles ved 20 hjælp af fremgangsmåden ifølge opfindelsen.The process of the invention is illustrated by the following Examples 1 and 2. Examples 3, 4 and 5 illustrate the use of the epoxy compounds prepared by the method of the invention.
EKSEMPEL 1EXAMPLE 1
DK 159883 BDK 159883 B
1212
Fremstilling af 2,3-epoxypropyl-8-galactopyranosid β-Galactosidase (leveret af Boehringer Mannheim og udvundet fra E. coli, 830 μΐ, ca. 50 U, suspenderet i 5 (NH^)2SO^) blev sat til en blanding af 5 g (16,6 mmol) o-nitrophenylgalactopyranosid og 17,5 ml (0,26 mmol) 2,3-epoxy-1-propanol i 400 ml puffer (0,07 M fosfatpuffer, 10 mM MgCl2, pH = 7). Omsætningen blev fulgt ved tyndtlagskromatografi (i det følgende betegnet TLC) og højtryksvæskekromatografi (i det 10 følgende betegnet HPLC). Efter 4 timers forløb blev blandingen ekstraheret med æter (4 x 100 ml) til fjernelse af nitro-phenol, og vandfasen blev inddampet ved reduceret tryk. Produktet blev taget op i ethanol og uorganiske salte blev filtreret fra. Udbyttet ved inddampning var 6,4 g råprodukt.Preparation of 2,3-epoxypropyl-8-galactopyranoside β-Galactosidase (supplied by Boehringer Mannheim and recovered from E. coli, 830 μΐ, about 50 U, suspended in 5 (NH ^) 2SO ^) was added to a mixture of 5 g (16.6 mmol) of o-nitrophenyl galactopyranoside and 17.5 ml (0.26 mmol) of 2,3-epoxy-1-propanol in 400 ml of buffer (0.07 M phosphate buffer, 10 mM MgCl 2, pH = 7) . The reaction was followed by thin layer chromatography (hereinafter referred to as TLC) and high pressure liquid chromatography (hereinafter referred to as HPLC). After 4 hours, the mixture was extracted with ether (4 x 100 ml) to remove nitrophenol and the aqueous phase was evaporated under reduced pressure. The product was taken up in ethanol and inorganic salts were filtered off. The yield by evaporation was 6.4 g of crude product.
15 Dette produkt blev underkastet kromatografering på15 This product was subjected to chromatography
Si02 og yderligere krystalliseret af absolut ethanol, hvilket gav 1,1 g (28%) af den i overskriften anførte forbindelse. Smeltepunkt: 126 - 127°C.SiO 2 and further crystallized from absolute ethanol to give 1.1 g (28%) of the title compound. Melting point: 126 - 127 ° C.
Ή NMR(DMS0-d6) delta; 2,6 (m, IH), 2,74 (m, IH), 3,14 (m, 20 IH), 3,2 - 3,4 (m, 3H), 3,45 - 3,55 (m, 2H), 3,56 - 3,65 (m, 2H), 3,73 (dd, IH), 4,13 (d, IH), 4,38 (d, IH), 4,56 (m, IH), 4,72 (d, IH), 4,94 (d, IH).Ή NMR (DMSO-d6) delta; 2.6 (m, 1H), 2.74 (m, 1H), 3.14 (m, 1H), 3.2 - 3.4 (m, 3H), 3.45 - 3.55 (m , 2H), 3.56 - 3.65 (m, 2H), 3.73 (dd, 1H), 4.13 (d, 1H), 4.38 (d, 1H), 4.56 (m, IH), 4.72 (d, 1H), 4.94 (d, 1H).
13C NMR(DMS0-d6) delta; 43,8, 50,1, 60,5, 68,2, 69,3, 70,5, 73,4, 75,2, 103,4.13 C NMR (DMSO-d 6) delta; 43.8, 50.1, 60.5, 68.2, 69.3, 70.5, 73.4, 75.2, 103.4.
EKSEMPEL 2EXAMPLE 2
DK 159883 BDK 159883 B
1313
Fremstilling af 2,3-epoxypropyl-B-D--galactopyranosid β-Galactosidase (leveret af Boehringer Mannheim og udvundet fra E. coli, 12 mg frysetørret, ca. 2400 U) blev sat 5 til en blanding af 5 g (13,9 mmol) lactose og 20 ml (0,3 mol) 2,3-epoxy-l-propanol i 300 ml puffer (0,07 M fosfatpuffer, 10 mM MgCl2, pH = 7). Reaktionsblandingen blev omrørt i 15 timer ved stuetemperatur og derefter opvarmet til 80°C i 10 minutter. Vandfasen blev inddampet ved reduceret tryk. Pro-10 duktet blev taget op i ethanol og filtreret fra uorganiske salte. Inddampning gav det rå produkt som en gul sirup. Yderligere rensning blev udført som i eksempel 1, og dataene var konsistente med de ovenfor angivne.Preparation of 2,3-epoxypropyl BD - galactopyranoside β-Galactosidase (supplied by Boehringer Mannheim and recovered from E. coli, 12 mg freeze-dried, about 2400 U) was added to a mixture of 5 g (13.9 mmol ) lactose and 20 ml (0.3 mol) of 2,3-epoxy-1-propanol in 300 ml of buffer (0.07 M phosphate buffer, 10 mM MgCl 2, pH = 7). The reaction mixture was stirred for 15 hours at room temperature and then heated to 80 ° C for 10 minutes. The aqueous phase was evaporated at reduced pressure. The product was taken up in ethanol and filtered from inorganic salts. Evaporation gave the crude product as a yellow syrup. Further purification was performed as in Example 1, and the data was consistent with the above.
EKSEMPEL 3 15 Fremstilling af 1'-0-tetradecanoyl-3'-O-B-D-galactopyranosyl-glycerol_ 2,3-Epoxypropyl-f3-D-galactopyranosid (1 g, 4,2 mmol) blev sat til myristinsyre (1,06 g, 1,1 ækvivalent) ved 80°C. Derefter blev der tilsat tetraethylammoniumbromid (40 mg, 0,05 20 ml ækvivalent). Den halvfaste blanding blev omrørt i 3 timer. Produktet blev taget op i diethylketon/methanol (i det følgende betegnet Et20-MeOH) (50:50) og inddampet på SiC>2 efterfulgt af kromatografering, hvorved man fik 1,2 g (61%) af titelforbindelsen, som blev krystalliseret af acetone.EXAMPLE 3 Preparation of 1'-O-tetradecanoyl-3'-OBD-galactopyranosyl-glycerol 2,3-Epoxypropyl-3-D-galactopyranoside (1g, 4.2mmol) was added to myristic acid (1.06g, 1.1 equivalent) at 80 ° C. Then, tetraethylammonium bromide (40 mg, 0.05 20 ml equivalent) was added. The semi-solid mixture was stirred for 3 hours. The product was taken up in diethyl ketone / methanol (hereafter referred to as Et 2 O-MeOH) (50:50) and evaporated on SiC> 2 followed by chromatography to give 1.2 g (61%) of the title compound which was crystallized by acetone.
25 Ή NMR(DMSO-d6) delta; 0,88 (t, 3H), 1,25 (bs, 20H), 1,54 (m, 2H), 2,32 (t, 2H), 3,25 - 3,6 (mm, 6H), 3,65 (bs, IH), 3,72 (dd, IH), 3,83 (m, IH), 4,0 (m, IH), 4,08 (m, 2H), 4,4 (d, IH), 4,6 (t, IH), 4,75 (d, IH), 4,9 (d, IH), 5,0 (d, IH).25 Ή NMR (DMSO-d6) delta; 0.88 (t, 3H), 1.25 (bs, 20H), 1.54 (m, 2H), 2.32 (t, 2H), 3.25 - 3.6 (mm, 6H), 3 , 65 (bs, 1H), 3.72 (dd, 1H), 3.83 (m, 1H), 4.0 (m, 1H), 4.08 (m, 2H), 4.4 (d, 1H), 4.6 (t, 1H), 4.75 (d, 1H), 4.9 (d, 1H), 5.0 (d, 1H).
1414
DK 1 59883 BDK 1 59883 B
13C NMR(DMSO-d6) delta; 13/8, 22,0, 24,4, 28,5, 28,6, 28,7, 28.8, 28,9 - 29,0 (4c), 31,2, 33,5, 60,4, 65,4, 67,5, 68,1, 70.4, 70,6, 73,3, 104,0, 172,8.13 C NMR (DMSO-d 6) delta; 13/8, 22.0, 24.4, 28.5, 28.6, 28.7, 28.8, 28.9 - 29.0 (4c), 31.2, 33.5, 60.4, 65 , 4, 67.5, 68.1, 70.4, 70.6, 73.3, 104.0, 172.8.
EKSEMPEL 4 5 Fremstilling af 1'-O-hexadecanoyl-3'-0-3-D-galactopyranosyl-glycerol blev udført på analog måde som i eksempel 3 *H NMR(DMSO-d6) delta? 0,86 (t, 3H), 1,25 (bs, 24H), 1,5 (m, 2H), 2,3 (t, 2H), 3,25 - 3,55 (mm, 6H), 3,62 (bs, IH), 3,7 (m, IH), 3,8 (m, IH), 3,96 (m, IH), 4,05 (m, 2H), 4,4 (d, IH), 10 4,55 (t, IH), 4,7 (d, IH), 4,85 (bs, IH), 4,98 (d, IH).Example 4 5 Preparation of 1'-O-hexadecanoyl-3'-0-3-D-galactopyranosyl glycerol was carried out in an analogous manner as in Example 3 * 1 H NMR (DMSO-d6) delta? 0.86 (t, 3H), 1.25 (bs, 24H), 1.5 (m, 2H), 2.3 (t, 2H), 3.25 - 3.55 (mm, 6H), 3 , 62 (bs, 1H), 3.7 (m, 1H), 3.8 (m, 1H), 3.96 (m, 1H), 4.05 (m, 2H), 4.4 (d, IH), 4.55 (t, 1H), 4.7 (d, 1H), 4.85 (bs, 1H), 4.98 (d, 1H).
13c NMR(DMSO-d6) delta; 13,8, 22,0, 24,4, 28,5, 28,7 (2c), 28,9 (2c), 29,0 (5c), 31,2, 33,5, 60,4, 65,4, 67,5, 68,1, 70.4, 70,6, 73,4, 75,3, 104,0, 172,8.13 C NMR (DMSO-d 6) delta; 13.8, 22.0, 24.4, 28.5, 28.7 (2c), 28.9 (2c), 29.0 (5c), 31.2, 33.5, 60.4, 65 , 4, 67.5, 68.1, 70.4, 70.6, 73.4, 75.3, 104.0, 172.8.
EKSEMPEL 5 15 Fremstilling af 1'-O-octadecanoyl-3'-O-8-D-galactopyranosyl-glycerol blev udført på analog måde som i eksempel 3 Ή NMR(DMSO-d6) delta; 0,84 (t, 3H), 1,24 (bs, 28H), 1,5 (m, 2H), 2,28 (t, 2H), 3,25 - 3,55 (mm, 6H), 3,6 (bs, IH), 3,68 (m, IH), 3,8 (m, IH), 3,95 (m, IH), 4,05 (m, 2H), 4,35 (d, 20 IH), 4,55 (t, IH), 4,7 (d, IH), 4,85 (d, IH), 4,95 (d, IH).Example 5 Preparation of 1'-O-octadecanoyl-3'-O-8-D-galactopyranosyl-glycerol was carried out in an analogous manner as in Example 3 Ή NMR (DMSO-d6) delta; 0.84 (t, 3H), 1.24 (bs, 28H), 1.5 (m, 2H), 2.28 (t, 2H), 3.25 - 3.55 (mm, 6H), 3 , 6 (bs, 1H), 3.68 (m, 1H), 3.8 (m, 1H), 3.95 (m, 1H), 4.05 (m, 2H), 4.35 (d, 1H), 4.55 (t, 1H), 4.7 (d, 1H), 4.85 (d, 1H), 4.95 (d, 1H).
13C NMR(DMSO-d6) delta; 13,8, 22,0, 24,4, 28,5, 28,6, 28,7, 28.9, 29,0 (8c), 31,3, 33,5, 60,4, 65,4, 67,5, 68,2, 70,5, 70,7, 73,4, 75,3, 104,0, 172,8.13 C NMR (DMSO-d 6) delta; 13.8, 22.0, 24.4, 28.5, 28.6, 28.7, 28.9, 29.0 (8c), 31.3, 33.5, 60.4, 65.4, 67 , 5, 68.2, 70.5, 70.7, 73.4, 75.3, 104.0, 172.8.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK601787A DK159883C (en) | 1986-11-18 | 1987-11-16 | ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK549886 | 1986-11-18 | ||
DK549886A DK549886D0 (en) | 1986-11-18 | 1986-11-18 | ENZYME PROCESS |
DK601787A DK159883C (en) | 1986-11-18 | 1987-11-16 | ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES |
DK601787 | 1987-11-16 |
Publications (4)
Publication Number | Publication Date |
---|---|
DK601787D0 DK601787D0 (en) | 1987-11-16 |
DK601787A DK601787A (en) | 1988-05-19 |
DK159883B true DK159883B (en) | 1990-12-24 |
DK159883C DK159883C (en) | 1991-05-13 |
Family
ID=26067866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK601787A DK159883C (en) | 1986-11-18 | 1987-11-16 | ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK159883C (en) |
-
1987
- 1987-11-16 DK DK601787A patent/DK159883C/en active
Also Published As
Publication number | Publication date |
---|---|
DK601787D0 (en) | 1987-11-16 |
DK601787A (en) | 1988-05-19 |
DK159883C (en) | 1991-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters | |
Stevenson et al. | Optimization of alkyl β‐D‐galactopyranoside synthesis from lactose using commercially available β‐galactosidases | |
US5795749A (en) | Use of 2-deoxyribose-5-phosphate aldolase to prepare 2-deoxyfucose, analogues and derivatives | |
Sauerbrei et al. | Galactosylation and glucosylation by use of β-galactosidase | |
Mandhapati et al. | The isothiocyanato moiety: an ideal protecting group for the stereoselective synthesis of sialic acid glycosides and subsequent diversification | |
EP0714905A2 (en) | Process for producing trehalose derivatives | |
Bjo et al. | New enzyme catalyzed synthesis of monoacyl galactoglycerides | |
US4859589A (en) | Enzymatic method for preparation of epoxy compounds | |
Petit et al. | Syntheses of β-2-deoxy-D-glycosides assisted by glycosidases | |
Kurashima et al. | Enzymatic β-glycosidation of primary alcohols | |
Binder et al. | Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides | |
EP2598647B1 (en) | Process for producing glycosides of acrylate derivatives employing saccharides and glycosidases | |
DK159883B (en) | ENZYMATIC PROCEDURE FOR PREPARING EPOXY SUBSTITUTED ALDOS OR KETOSES | |
US8580538B2 (en) | Enzymatic production of an ethylenically unsaturated glycoside | |
US6080563A (en) | Method for synthesizing 2-ketoaldonic acids | |
US11377463B2 (en) | Class of sucrose esters and a method for their preparation | |
US5068186A (en) | Process for the enzymatic preparation of disaccharide fluorides using α-glycosyl fluorides as substrates | |
Nilsson et al. | Syntheses of modified carbohydrates with glycosidases: Stereo-and regiospecific syntheses of lactosamine derivatives and related compounds | |
Nilsson et al. | Synthesis of disaccharide derivatives employing β-N-acetyl-d-hexosaminidase, β-d-galactosidase and β-d-glucuronidase | |
CN111560408A (en) | Method for synthesizing coumarin-3-carboxylic acid sugar ester derivative on line based on flow chemistry enzymatic catalysis | |
Wu et al. | Highly anomer-and regio-selective transesterification catalyzed by alkaline protease from Bacillus subtilis in organic media | |
EP0635063B1 (en) | Process for the preparation of glycolipids | |
Kakinuma et al. | Transglucosylation with 6′-chloro-6′-deoxysucrose and immobilized isomaltulose-producing microorganisms using 2, 2-dimethyl-1, 3-dioxolane-4-methanol and its related compounds as acceptors. Steric and chemical requirement of the glucosyl acceptor | |
KR910008732B1 (en) | Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine | |
Ljevaković et al. | Syntheses and Enzymatic Hydrolyses of Acylated Methyl α-D-Mannopyranosides |