KR910008732B1 - Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine - Google Patents

Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine Download PDF

Info

Publication number
KR910008732B1
KR910008732B1 KR1019900000740A KR900000740A KR910008732B1 KR 910008732 B1 KR910008732 B1 KR 910008732B1 KR 1019900000740 A KR1019900000740 A KR 1019900000740A KR 900000740 A KR900000740 A KR 900000740A KR 910008732 B1 KR910008732 B1 KR 910008732B1
Authority
KR
South Korea
Prior art keywords
organic solvent
carbohydrate
producing
sugar derivative
reaction
Prior art date
Application number
KR1019900000740A
Other languages
Korean (ko)
Other versions
KR910014392A (en
Inventor
이대실
박한오
Original Assignee
한국과학기술 연구원
박원희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술 연구원, 박원희 filed Critical 한국과학기술 연구원
Priority to KR1019900000740A priority Critical patent/KR910008732B1/en
Publication of KR910014392A publication Critical patent/KR910014392A/en
Application granted granted Critical
Publication of KR910008732B1 publication Critical patent/KR910008732B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

A process for preparing saccharide deriv. of formula (I) [R is methyl, ethyl, isopropyl or monosacchride comprises: (a) mixing one or more organic solvents with alkyl boric acid, and dissolving carbohydrate; (b) treating the soln. with glycosidase at 15-90 deg.C and pH 3-10 for forming glycoside bond to obtain the final product. The carbohydrate is mono-, di- or polysaccharide. The organic solvent is petroleum ether, hexane, octane, toluene, benzene, chloroform, isopropylether, ethylacetate, cyclohexanone, tetrahydrofuran, dioxane, acetone, etc.. The glycosidase is glucosidase, galactosidase or mannosidase.

Description

효소의 역가수분해반응을 이용한 당유도체의 제조방법Method for preparing sugar derivatives using reverse hydrolysis of enzyme

제1도는 본 발명에 있어서, 실시예 1에 따른 액체크로마토그라피 분석도이고,1 is a liquid chromatography analysis according to Example 1 in the present invention,

제2도는 본 발명에 있어서, 실시예 1에 따른 탄소-13 핵자기 공명분석도이며,2 is a carbon-13 nuclear magnetic resonance analysis according to Example 1 in the present invention,

제3도는 본 발명에 있어서, 실시예 2에 따라 합성된 에틸글루코사이드 반응혼합물의 액체크로마토그라피 분석도이고,3 is a liquid chromatography analysis of the ethylglucoside reaction mixture synthesized according to Example 2 in the present invention,

제4도는 본 발명에 있어서, 실시예 2에 따라 합성된 반응혼합물의 탄소-13 핵자기 공명분석도이고,4 is a carbon-13 nuclear magnetic resonance analysis of the reaction mixture synthesized according to Example 2 in the present invention,

제5도는 본 발명에 있어서, 실시예 2에 따라 분리된 에틸렌글루코사이드의 탄소-13 핵자기 공명분석도이다.5 is a carbon-13 nuclear magnetic resonance analysis of ethylene glucoside separated according to Example 2 in the present invention.

본 발명은 다음 일반식(Ⅰ)으로 표시되는 효소의 역가수분해반응을 이용한 당유도체의 제조방법에 관한 것으로서, 특히 당의 C1위치에서 당을 포함하고 있는 알코올류와 효소반응으로 글리코사이드결합을 형성시킴으로써 효소합성방법에 의해 당유도체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a sugar derivative using a reverse hydrolysis reaction of the enzyme represented by the following general formula (I), in particular, glycoside bonds by the enzyme reaction with alcohols containing a sugar at the C 1 position of the sugar It relates to a method for producing a sugar derivative by the enzymatic synthesis method by forming.

Figure kpo00001
Figure kpo00001

상기 식에서, R은 메틸, 에틸, 이소프로필 또는 페닐기이거나 단당류를 나타낸다.Wherein R is a methyl, ethyl, isopropyl or phenyl group or represents a monosaccharide.

종래에도 글리코사이드결합을 형성시키는 화학적방법에 의해 당유도체를 제조하는 방법들이 오래전부터 보고되고 있는 바[Angew Chem. Int. Ed, Eng. 25(1986) 212-235]. 이러한 방법들은 히드록시기를 보호시키고 C1의 히드록시기만 탈보호와 할로겐화시켜서 촉매존재하에 친핵성치환에 의해 글리코사이드 결합을 형성시키고, 반응후에는 당의 나머지 보호된 히드록시기를 탈보호시켜서 당유도체를 합성하고 있다.Conventionally, methods for preparing sugar derivatives by chemical methods for forming glycoside bonds have been reported for a long time [Angew Chem. Int. Ed, Eng. 25 (1986) 212-235. These methods synthesize glycosides by protecting hydroxy groups, deprotecting and halogenating only hydroxy groups of C 1 to form glycoside bonds by nucleophilic substitution in the presence of a catalyst, and deprotecting the remaining protected hydroxy groups of sugars after the reaction. .

그러나, 이러한 종래의 방법들은 그 제조공정상 여러단계의 반응조작을 거쳐야 하고, 또 형성된 글리코사이드 결합에서는 두 종류의 이성체인 알파-와 베타-의 모노머가 동시에 생성되어 반응의 입체특이성이 적은 단점이 있었고, 또한 반응조건이 까다로울 뿐아니라 사용되는 일부의 촉매들은 취급상 어려움이 있기 때문에, 특정의 당유도체를 제조하는 경우에는 대량제조에 필요한 공정상에 난점이 노출되고, 그 반응에도 어려움이 있으며 수율도 좋지 않은 문제가 있었다. 따라서, 이들 방법은 실용화에는 상당히 제한을 받게 되었다.However, these conventional methods have to undergo several stages of reaction operation in the manufacturing process, and in the formed glycoside bond, two kinds of isomers, alpha- and beta-, are simultaneously produced, resulting in less steric specificity of the reaction. In addition, some of the catalysts used are difficult to handle, and some of the catalysts used are difficult to handle. Thus, in the case of producing a specific sugar derivative, difficulties are encountered in the process required for mass production, and the reaction is difficult and the yield is also high. There was a bad problem. Therefore, these methods have been quite limited in practical use.

최근에는 상기와 같은 문제점을 해결하기 위해, 이당류를 합성하기 위해 효소를 이용하는 효소합성방법이 시도 되어지고 있다[Biotechnol. Lett. 8(1986) 421-424 ; Biotechnol. Lett. 9(1987) 243, 248 ; Agri. Biol. Chem. 52(1988) 1345∼1351].Recently, in order to solve the above problems, an enzyme synthesis method using an enzyme for synthesizing disaccharides has been attempted [Biotechnol. Lett. 8 (1986) 421-424; Biotechnol. Lett. 9 (1987) 243, 248; Agri. Biol. Chem. 52 (1988) 1345-1135.

이 방법에서는 수용액상에서 기질의 농도를 높게 유지시켜서 물분자의 농도와 활성을 감소시켜 줌으로써, 평형반응의 방향을 역으로 이동시켜서 글리코사이드결합을 형성시켜 주는 방법이다.In this method, by maintaining the concentration of the substrate in the aqueous solution to reduce the concentration and activity of the water molecules, by shifting the direction of the equilibrium reaction to form a glycoside bond.

그러나, 이러한 종래의 효소합성방법에 있어서도 수용액상의 효소합성은 수용성기질만이 축합반응에 참여하기 때문에 불용성물질들에 대해서는 그 활용범위가 제한되어 왔다.However, even in such a conventional enzyme synthesis method, since the enzymatic synthesis in aqueous solution only the water-soluble substrate participates in the condensation reaction, the range of application of the insoluble materials has been limited.

따라서, 본 발명은 글리코사이드결합을 형성시키는 종래의 효소합성방법에 의한 당유도체의 제조방법을 개량하여, 탄수화물유도체의 효소합성을 유기용매상에서 진행되도록 하므로서, 간단한 방법으로도 효소반응의 입체 특이성과 넓은 적용범위를 가지며, 수용액상의 반응에서 나타나는 장점을 그대로 갖는 당유도체의 새로운 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention improves the production method of sugar derivatives by the conventional enzyme synthesis method for forming glycoside bonds, so that the enzymatic synthesis of carbohydrate derivatives proceeds in an organic solvent, and the stereospecificity of the enzymatic reaction can be achieved by a simple method. It is an object of the present invention to provide a new method for preparing a sugar derivative having a wide range of application and having the advantages of the aqueous phase reaction.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 당의 C1위치에서 당을 포함하는 알코올류의 효소반응으로 글리코사이드결합을 형성시키므로서 당유도체를 제조함에 있어서, 유기용매에 불용성인 상변환체인 유기봉산(Alkyl boric acid)을 사용하여 유기용매중에 용해시키고, 글리코사이드 가수분해효소를 이용하여 역가수분해반응으로 글리코사이드결합을 형성시키므로서 상기 일반식(Ⅰ)으로 표시되는 당유도체를 제조하는 방법이다.In the present invention, in the preparation of a sugar derivative by forming a glycoside bond by the enzymatic reaction of an alcohol containing a sugar at the C 1 position of a sugar, an organic solvent, insoluble in an organic solvent, using an organic boric acid (Alkyl boric acid) It is a method for producing a sugar derivative represented by the general formula (I) by dissolving in an organic solvent and forming glycoside bonds by reverse hydrolysis using glycoside hydrolase.

이와 같은 본 발명은 더욱 상세히 설명하면 다음과 같다.Such a present invention will be described in more detail as follows.

본 발명에서는 유기용매에 불용성인 탄수화물을 유기용매중에 용해시키기 위해서 상변환체인 유기붕산, 특히 좋기로는 페닐붕산을 사용하여서 효소와 반응이 일어날 수 있도록 용해도를 유지시켰으며, 이때 사용되는 유기붕산은 인접한 히드록시기와 결합하여 유기붕산 에스테르를 형성하면서 유기용매에 녹아 들어가 탄수화물이 용해되는 것이다.In the present invention, in order to dissolve carbohydrates insoluble in the organic solvent in the organic solvent, solubility was maintained to react with the enzyme using an organic boric acid, especially phenylboric acid, which is a phase-converter, wherein the organic boric acid used is It combines with adjacent hydroxy groups to form an organic boric acid ester and dissolves in an organic solvent to dissolve carbohydrates.

이와 같이, 본 발명은 당의 C1위치에서 당을 포함하는 알코올류의 효소반응에 의해 글리코사이드결합이 형성되는 효소합성방법을 이용하되 유기용매상에서 효소합성을 시키는데 특징이 있는 것인 바, 이러한 당유도체의 합성을 화학반응식으로 간단히 표시하면 다음과 같다.As such, the present invention is characterized by using an enzyme synthesis method in which glycoside bonds are formed by the enzymatic reaction of alcohols including sugars at the C 1 position of the sugar, but is characterized by enzymatic synthesis on an organic solvent. The synthesis of derivatives is simply expressed by chemical reaction equation as follows.

Figure kpo00002
Figure kpo00002

상기식에서, R은 상술한 바와 같다.Wherein R is as described above.

이러한, 본 발명의 방법에서 사용되는 유기용매는 친핵반응성이 없는 것은 어느것이라도 사용가능한데, 예컨대 석유에테르, 헥산, 옥탄, 톨루엔, 벤젠, 클로로포름, 이소프로필에테르, 에틸아세테이트, 시클로헥사논, 테트라하이드로퓨란, 디옥산, 아세톤 및 아세토니트릴 중에서 하나 이상을 선택하여 사용할 수 있다.The organic solvent used in the method of the present invention may be any one having no nucleophilic reactivity, such as petroleum ether, hexane, octane, toluene, benzene, chloroform, isopropyl ether, ethyl acetate, cyclohexanone, tetrahydrofuran One or more of dioxane, acetone and acetonitrile may be selected and used.

또한, 본 발명에서 상변환체로 사용되는 유기붕산은 탄수화물을 용해시키는 것이라면 어떤 유기붕산이라도 사용가능하며, 반응당류로서는 글리코사이드결합을 할 수 있는 모든 당류와 그 유도체가 사용가능하나 특히, 단당류, 이당류, 과당류 또는 다당류인 경우가 적합하다.In addition, any organic boric acid may be used as long as the organic boric acid used as a phase-converter in the present invention dissolves carbohydrates. As the reaction saccharide, all sugars and derivatives thereof capable of glycosidation can be used, but in particular, monosaccharides and disaccharides. For example, it is suitable for the case of fructose or polysaccharide.

그리고, 상기 글리코사이드 가수분해효소로 사용되는 것으로는 다당류을 분해시키는 모든 글리코시다제가 사용 가능하나 특히 글루코시다제, 갈락토시다제 및 만노시다제 중에서 선택된 것을 사용하는 것이 바람직하다.As the glycoside hydrolase, all glycosidases that decompose polysaccharides can be used, but it is preferable to use one selected from among glucosidase, galactosidase and mannosidase.

한편, 본 발명에 따르면 상기와 같은 반응시 알코올류의 농도는 전체반응물의 부피에 대한 2∼40V%가 되도록 사용하는 것이 좋다. 또한, 상기 탄수화물은 10∼100g/l, 유기붕산은 사용되는 단당류 1Kg당 2~12몰의 비율로 사용하는 것이 바람직하고, 상기 가수분해효소는 5~100단위/㎖로 사용하는 것이 바람직하다.On the other hand, according to the present invention it is preferable to use the concentration of alcohol at the reaction as described above to be 2 to 40V% of the volume of the total reactant. In addition, the carbohydrate is preferably used at a ratio of 10 to 100 g / l, and organoboric acid at a ratio of 2 to 12 moles per 1 kg of monosaccharide used, and the hydrolase is preferably used at 5 to 100 units / ml.

본 발명에서는 이와 같은 반응물을 이용하여 역가수분해반응으로 글리코사이드결합을 형성시키는데, 이때의 반응조건은 pH가 3~10되도록 하고, 반응온도는 15~90℃에서 반응시키는 것이 좋다. 특히, 상기 반응에서 사용효소중 예컨대, 아몬드베타-글루코시다제를 사용하는 경우에는 pH가 4~7의 범위가 되도록 하는 것이 좋고, 이때의 반응온도는 25~50℃로 하는 것이 가장 바람직한 것으로 나타났다. 또한 상기 사용되는 효소가 내열성효소인 경우에는 특히 40~85℃에서 반응시키는 것이 바람직하다.In the present invention, a glycoside bond is formed by reverse hydrolysis using such a reactant. At this time, the reaction conditions are such that the pH is 3 to 10, and the reaction temperature is preferably reacted at 15 to 90 ° C. In particular, when using the enzyme, such as almond beta-glucosidase in the reaction, the pH is preferably in the range of 4-7, the reaction temperature was found to be 25 ~ 50 ℃ most preferred . In addition, when the enzyme used is a heat-resistant enzyme, it is particularly preferable to react at 40 ~ 85 ℃.

상기와 같은 반응조건으로 형성된 글리코사이드결합을 갖는 반응물질은 그 반응조건이 효소반응에 영향을 주지 않으므로 가역반응성을 유지시키시가 쉽게 되며, 따라서, 당유도체의 합성보조물질로 매우 유용한 것이다.Reactants having glycoside bonds formed under the above reaction conditions are easy to maintain reversible reactivity because the reaction conditions do not affect the enzymatic reaction, and thus, are very useful as a synthetic auxiliary material of sugar derivatives.

상술한 바와 같이, 본 발명의 방법은 효소합성반응중에서 가역반응이 평형을 최대로 축합반응방향으로 이동시킬 수 있게 되므로, 복잡하고도 입체특이성을 갖는 탄수화물류, 특히 당유도체의 합성에 유용한 방법 이다.As described above, the method of the present invention is a method useful for synthesizing complex and stereospecific carbohydrates, especially sugar derivatives, since the reversible reaction can move the equilibrium in the direction of condensation reaction in the enzymatic synthesis reaction. .

특히, 본 발명의 방법에 의하면, 유기용매상에서 탄수화물유도체의 효소합성을 수행함으로 해서, 종래의 방법에서의 제문제점을 해소할 수가 있는 바, 특히 효소반응의 입체특이성과 넓은 적용범위를 갖게됨은 물론 종래의 수용액상의 반응에서 나타났던 잇점도 그대로 지니게 되는 장점이 있는 것이다.In particular, according to the method of the present invention, by carrying out the enzymatic synthesis of carbohydrate derivatives in an organic solvent, it is possible to solve the problems in the conventional method, in particular the stereospecificity of the enzymatic reaction and a wide range of application, of course There is an advantage that the advantages appear in the conventional aqueous phase reaction as it is.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의거 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to Examples.

[참고예 1]Reference Example 1

효소반응에 적합한 유기용매를 찾고 수율을 최적화하기 위해, 포도당 90mg, 페닐붕산 61mg, 베타-글루코시다제 30단위, 용매 20㎖를 400C에서 3일간 반응시키고, 이때의 각 유기용매에 따른 수율을 조사하였다. 그 결과는 다음 표-1과 같다.In order to find an organic solvent suitable for the enzymatic reaction and optimize the yield, 90 mg of glucose, 61 mg of phenylboric acid, 30 units of beta-glucosidase, and 20 ml of the solvent were reacted at 40 0 C for 3 days, and the yield according to each organic solvent was Was investigated. The results are shown in Table 1 below.

[표 1]TABLE 1

유기용매에 따른 이당류 수율Yields of Disaccharides According to Organic Solvents

Figure kpo00003
Figure kpo00003

[참고예 2]Reference Example 2

유기용매내에 공존하는 미량의 물이 효소반응에 미치는 영향을 알기 위해, 분자체 3A(Molecular sieve 3A)를 반응계에 도입하고 이때 합성된 이당체의 수율을 조사하였다. 반응조건은 우선 분자체 3A를 pH5.3으로 조정하여 진공건조시켰다.Molecular sieve 3A (Molecular sieve 3A) was introduced into the reaction system and the yield of the synthesized disaccharide was investigated. Reaction conditions were first dried under vacuum by adjusting the molecular sieve 3A to pH5.3.

또한, 효소반응은 포도당 90mg, 부틸붕산 51mg, 베타-글루코시다제 30단위와 건조된 분자체 50, 100, 200mg씩을 각각 차례로 가하여 500C에서 3일간 반응시켰다. 이때 넣어준 분자체의 양에 따른 포도당 이당체의 수율은 다음 표-3과 같다.In addition, the enzyme reaction was added to 90 mg of glucose, 51 mg of butylboric acid, 30 units of beta-glucosidase and 50, 100 and 200 mg of dried molecular sieves, respectively, and reacted at 50 0 C for 3 days. At this time, the yield of glucose disaccharide according to the amount of molecular sieve added is shown in Table 3 below.

[표 2]TABLE 2

분자체에 따른 포도당 이당체 수율Glucose Disaccharide Yield According to Molecular Sieve

Figure kpo00004
Figure kpo00004

[실시예 1]Example 1

포도당 90mg과 페닐붕산 61mg, 베타-글루코시다제 30단위, 벤젠 2㎖을 넣은 후, 40℃에서 3일간 흔들어 주었다. 이 반응후 상기 벤젠이 제거된 반응혼합물을 암모니아수(14%)로 녹이고, 페놀-클로로포름(1 : 1)추출을 행하여 이때의 수층을 에틸에테르(2㎖)로 3번 추출하였다. 그후 이 용액을 감압하에서 용매를 증발시킨 다음, 얻어진 생성물을 액체 크로마토그라피와 탄소 13핵자기공명으로 분석하였다. 그 결과는 각각 제1도와 제2도에 나타내었다.90 mg of glucose, 61 mg of phenylboric acid, 30 units of beta-glucosidase, and 2 ml of benzene were added, followed by shaking at 40 ° C. for 3 days. After the reaction, the reaction mixture from which benzene was removed was dissolved in ammonia water (14%), phenol-chloroform (1: 1) was extracted, and the aqueous layer was extracted three times with ethyl ether (2 ml). The solution was then evaporated under reduced pressure and the resulting product was analyzed by liquid chromatography and carbon 13 nuclear magnetic resonance. The results are shown in FIGS. 1 and 2, respectively.

[실시예 2]Example 2

다음 표-4에서와 같이 알킬글루코사이드(alkyl-glucosides)합성을 위해 포도당 90mg, 페닐붕산 61mg, 베타-글루코시다제 30단위, 벤젠-알콜 2㎖(9 : 1, V/V)를 가하고, 50℃에서 3일간 반응시켰다. 이때 생성된 주생성물과 그 수율은 표-4와 같다. 이렇게 합성된 알킬글루코사이드중에서 대표적으로 에틸글루코사이드(실시예 2)반응혼합물의 액체크로마토그라피와 탄소-13핵자기공명분석도는 각각 제3도와 제4도에 나타내었다.As shown in Table 4, 90 mg of glucose, 61 mg of phenylboric acid, 30 units of beta-glucosidase, and 2 ml of benzene-alcohol (9: 1, V / V) were added for alkyl-glucosides synthesis. The reaction was carried out for 3 days at ℃. At this time, the main product produced and its yield are shown in Table-4. Among the alkyl glucosides thus synthesized, liquid chromatography and carbon-13 nuclear magnetic resonance analysis of the ethyl glucoside (Example 2) reaction mixture are shown in FIGS. 3 and 4, respectively.

또한, 생성된 에틸클루코사이드를 이온교환수지(Dowex IX-2)로 분리한 후의 탄소-13핵자기공명분석도는 제5도에 나타내었다.In addition, carbon-13 nuclear magnetic resonance analysis after separating the resulting ethyl glucoside with ion exchange resin (Dowex IX-2) is shown in FIG.

[표 3]TABLE 3

효소반응에 의한 알콜클루코사이드의 수율Yield of Alcohol Clocoside by Enzyme Reaction

Figure kpo00005
Figure kpo00005

Claims (10)

당의 C1위치에서 당을 포함하는 알코올류의 효소반응으로 글리코사이드결합을 형성시키므로서 당유도체를 제조하는 방법에 있어서, 유기용매에 불용성인 탄수화물을 상변환체인 유기붕산(Alkyl boric acid)을 사용하여 유기용매중에 용해시키고, 글리코사이드 가수분해효소를 이용하여 역가수분해반응으로 글리코사이드 결합을 형성시키는 것을 특징으로 하는 다음 일반식(I)으로 표시되는 당유도체의 제조방법In the method of producing a sugar derivative by forming a glycoside bond by the enzymatic reaction of alcohols containing sugar at the C 1 position of the sugar, a carbohydrate insoluble in an organic solvent using an organic boric acid (Alkyl boric acid) as a phase converter Method of preparing a sugar derivative represented by the following general formula (I), which is dissolved in an organic solvent, and a glycoside bond is formed by reverse hydrolysis using a glycoside hydrolase.
Figure kpo00006
Figure kpo00006
상기식에서, R은 메틸, 에틸, 이소프로필 또는 단당류를 나타낸다.Wherein R represents methyl, ethyl, isopropyl or a monosaccharide.
제1항에 있어서, 상기 탄수화물은 단당류, 이당류 또는 다당류중에서 선택된 것임을 특징으로 하는 유도체의 제조방법.The method of claim 1, wherein the carbohydrate is selected from monosaccharides, disaccharides, or polysaccharides. 제1항 또는 제2항에 있어서, 상기 탄수화물은 전체반응물의 부피를 기준으로 10∼100g/ι의 량으로 사용하는 것을 특징으로 하는 당유도체의 제조방법.The method of claim 1, wherein the carbohydrate is used in an amount of 10 to 100 g / ι based on the total volume of the reactants. 제1항에 있어서, 상기 유기붕산으로서는 탄수화물을 용해시키는 유기붕산화합물을 사용하여서 됨을 특징으로 하는 당유도체의 제조방법The method for producing a sugar derivative according to claim 1, wherein an organic boric acid compound in which carbohydrates are dissolved is used as the organic boric acid. 제1항 또는 제4항에 있어서, 상기 유기붕산은 사용되는 상기 탄수화물 1Kg당 2∼12몰의 비율로 사용하는 것을 특징으로 하느 당유도체의 제조방법.The method for producing a sugar derivative according to claim 1 or 4, wherein the organoboric acid is used at a ratio of 2 to 12 moles per 1 kg of carbohydrate used. 제1항에 있어서, 상기 유기용매로는 친핵반응이 없는 것을 사용하여서 됨을 특징으로 하는 당유도체의 제조방법.The method for producing a sugar derivative according to claim 1, wherein the organic solvent is one having no nucleophilic reaction. 제6항에 있어서, 상기 친핵반응성이 없는 유기용매로는 석유에테르, 헥산, 옥탄, 톨루엔, 벤젠,클로로포름, 이소프로필에테르, 에틸아세테이트, 시클로헥사논, 테트라하이트로퓨란, 디옥산, 아세톤 및 아세토니트릴 중에서 선택된 어느 하나 이상을 사용하여서 됨을 특징으로 하는 당유도체의 제조방법.The non-nucleophilic organic solvent according to claim 6, wherein the organic solvent is non-nucleophilic, petroleum ether, hexane, octane, toluene, benzene, chloroform, isopropyl ether, ethyl acetate, cyclohexanone, tetrahydrofuran, dioxane, acetone and aceto Method for producing a sugar derivative, characterized in that using at least one selected from nitriles. 제1항, 제6항 및 제7항중의 어느 한 항에 있어서, 상기 알코올류는 전체반응물의 부피를 기준으로 2∼40v%로 사용하는 것을 특징으로 하는 당유도체의 제조방법.The method for producing a sugar derivative according to any one of claims 1 to 6, wherein the alcohols are used at 2 to 40 v% based on the total volume of the reactants. 제1항에 있어서, 상기 효소로는 상기 탄수화물을 분해하는 글리코시다제를 사용하여서 됨을 특징으로 하는 당유도체의 제조방법.The method of claim 1, wherein the enzyme is produced using a glycosidase that decomposes the carbohydrate. 제9항에 있어서, 상기 글리코시다제로는 글리코시다제, 갈락토시다제 및 만노시다제중에서 선택된 것을 사용하는 것을 특징으로 하는 당유도체의 제조방법.The method of claim 9, wherein the glycosidase is selected from glycosidase, galactosidase, and mannosidase.
KR1019900000740A 1990-01-22 1990-01-22 Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine KR910008732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900000740A KR910008732B1 (en) 1990-01-22 1990-01-22 Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900000740A KR910008732B1 (en) 1990-01-22 1990-01-22 Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine

Publications (2)

Publication Number Publication Date
KR910014392A KR910014392A (en) 1991-08-31
KR910008732B1 true KR910008732B1 (en) 1991-10-19

Family

ID=19295468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900000740A KR910008732B1 (en) 1990-01-22 1990-01-22 Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine

Country Status (1)

Country Link
KR (1) KR910008732B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038784A1 (en) * 2000-11-08 2002-05-16 Solvent Innovation Gmbh Enzyme catalysis in the presence of ionic liquids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038784A1 (en) * 2000-11-08 2002-05-16 Solvent Innovation Gmbh Enzyme catalysis in the presence of ionic liquids

Also Published As

Publication number Publication date
KR910014392A (en) 1991-08-31

Similar Documents

Publication Publication Date Title
Mehta et al. Synthesis and enzymic activity of novel glycosidase inhibitors containing sulfur and selenium
JP2518739B2 (en) Tumor suppressive saccharide conjugate
US20040059105A1 (en) Triazole linked carbohydrates
Pozsgay A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide
US4683297A (en) Process for the preparation of glycosides
EP0491960B1 (en) Alkylated oligosaccharide and acetyl derivative thereof
Kováč et al. Systematic chemical synthesis and nmr spectra of methyl α-glycosides of isomalto-oligosaccharides and related compounds
Yamanoi et al. New Synthetic Methods and Reagents for Complex Carbohydrates. VIII. Stereoselective. ALPHA.-and. BETA.-Mannopyranoside Formation from Glycosyl Dimethylphosphinothioates with the C-2 Axial Benzyloxyl Group.
US5672587A (en) α-Glycosyl derivative of catecholamine or its salt, and its preparation and uses
KR910008732B1 (en) Process for preparing saccaride derivatives for using reverse hydrolysis of enzyine
US7772381B2 (en) Efficient method to synthesize benzyl group-protected alpha-pentagalloylglucose (α-PGG) and its analogues
Lafont et al. A new synthesis of 1, 2-trans-2-acetamido-2-deoxyglycopyranosides via 1, 2-trans-2-deoxy-2-iodoglycosyl azides
Eby et al. The stepwise synthesis of methyl α-isomaltooligoside derivatives and methyl α-isomaltopentaoside
US4859589A (en) Enzymatic method for preparation of epoxy compounds
EP0882733B1 (en) Acylating agent and a method of producing thereof
US20040019198A1 (en) Method of forming glycosidic bonds from thioglycosides using an N,N-dialkylsulfinamide
Lubineau et al. Synthesis of aryl d-gluco-and d-galacto-pyranosides and 1-O-acyl-d-gluco-and-d-gluco-pyranoses exploiting the mitsunobu reaction. Influence of the pKa of the acid on the stereoselectivity of the reaction
Chen et al. Synthesis, conformational analysis, and the glycosidic coupling reaction of substituted 2, 7-dioxabicyclo [4.1. 0] heptanes: 1, 2-anhydro-3, 4-di-O-benzyl-β-l-and β-d-rhamnopyranoses
KR880001565B1 (en) Process for preparation aminocyclitol derivatives
Konradsson et al. Conditions for modified fischer glycosidations with n‐pentenol and other alcohols
Lee et al. Synthesis of allyl 3-deoxy-and 4-deoxy-β-D-galactopyranoside and simultaneous preparation of Gal (1→ 2)-and Gal (1→ 3)-linked disaccharide glycosides
EP0298438B1 (en) Disaccharidyl fluorides and process for enzymatic synthesis using alpha-glycosyl fluorides as substrates
US4242503A (en) Process for O-demethylating fortimicins
US2734055A (en) Glucosides of chloramphenicol
Fischer et al. Enantioselective synthesis of several 1-O-β-D-glucoconjugates using almond β-glucosidase (EC 3.2. 1.21)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19991004

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee