DK158005B - PROCEDURE FOR THE PREPARATION OF POROUS CELLULOSE PEARLS AND THE USE OF THESE - Google Patents
PROCEDURE FOR THE PREPARATION OF POROUS CELLULOSE PEARLS AND THE USE OF THESE Download PDFInfo
- Publication number
- DK158005B DK158005B DK175777A DK175777A DK158005B DK 158005 B DK158005 B DK 158005B DK 175777 A DK175777 A DK 175777A DK 175777 A DK175777 A DK 175777A DK 158005 B DK158005 B DK 158005B
- Authority
- DK
- Denmark
- Prior art keywords
- beads
- cellulose
- solution
- porous
- enzymes
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/10—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
- C12N11/12—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/054—Precipitating the polymer by adding a non-solvent or a different solvent
- C08J2201/0542—Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/81—Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
- Y10S530/812—Peptides or proteins is immobilized on, or in, an organic carrier
- Y10S530/813—Carrier is a saccharide
- Y10S530/814—Cellulose or derivatives thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
DK 158005BDK 158005B
Opfindelsen angår en fremgangsmåde til fremstilling af porøse celluloseperler, der er egnede til brug som bærere af enzymer og andre biologiske midler, og anvendelse af de ved fremgangsmåden fremstillede porøse celluloseperler.The invention relates to a process for the preparation of porous cellulose beads suitable for use as carriers of enzymes and other biological agents and to the use of the porous cellulose beads made by the process.
55
Porøse celluloseperler udgør et forholdsvis billigt stabilt materiale, der har alsidige kemiske egenskaber, således at de kan være nyttige som bærere til immobi1iserede enzymer og andre aktive biologiske stoffer.Porous cellulose beads constitute a relatively inexpensive stable material having versatile chemical properties so that they can be useful as carriers for immobilized enzymes and other active biological agents.
10 Sædvanlige cellulosepartikler og regenererede cellulosepulve-re tilfredsstiller de fleste af de ønskede krav til gode bære-rere, hvortil enzymer kan immobi1 i seres, men de lider af formulemper, der bevirker, at søjlereaktorer bliver tæt pakkede, 15 hvilket resulterer i strømningsreduktion og somme tider kanaldannelse og derfor utilstrækkelig berøring mellem de immobili-serede enzym og reaktionsvæsken eller luftarten. Immobilisering af enzymer på en uopløselig bærer er en meget anvendt teknik til en praktisk anvendelse af enzymer, som undgår nød-20 vendigheden af at anvende friske enzymer til hver ønsket brug. Gennem immobilisering af enzymet opnås stabilisering, som giver effektiv enzymbrug og muliggør konstruktion og drift af enzymreaktorer på kontinuerlig måde.Ordinary cellulose particles and regenerated cellulose powders satisfy most of the desired requirements for good carriers to which enzymes can be immobilized, but they suffer from formulas that cause column reactors to become tightly packed, resulting in flow reduction and some sometimes duct formation and therefore insufficient contact between the immobilized enzyme and the reaction liquid or gaseous. Immobilization of enzymes on an insoluble carrier is a widely used technique for the practical use of enzymes which avoids the necessity of using fresh enzymes for any desired use. Through the immobilisation of the enzyme, stabilization is achieved which provides efficient enzyme use and enables the construction and operation of enzyme reactors in a continuous manner.
25 Et vellykket resultat af et immobi 1 iseret enzym til brug ved praktisk anvendelse afhænger i vidt omfang af egenskaberne af de bærere, der anvendes til immobiliseringen. En god bærer skal derfor tilfredsstille de krav at være billig og skal have en sådan fysisk form, at den er let at anvende i reaktorer. I 30 denne henseende er formen af en kugleformet perle særlig ønskelig, fordi den er nyttig i et pakket leje, et fluidiseret leje, et ekspanderet leje, en omrørt tank eller andre almindelige typer kemiske reaktorer. En sådan bærer skal også have den nødvendige fysiske og mekaniske styrke, således at den ik-35 ke knuses eller deformeres, når den pakkes i en høj søjle. Knusning og deformering resulterer i, at søjlen bliver tæt pakket, hvorved strømmen af flydende reagenser gennem søjlen blokeres, og effektiviteten af den kemiske reaktor derfor ned- 2A successful result of an immobilised enzyme for use in practical application depends to a large extent on the properties of the carriers used for the immobilization. A good carrier must therefore satisfy the requirements to be cheap and must be of such physical shape that it is easy to use in reactors. In this regard, the shape of a spherical bead is particularly desirable because it is useful in a packed bed, a fluidized bed, an expanded bed, a stirred tank or other common types of chemical reactors. Such a carrier must also have the necessary physical and mechanical strength so that it is not crushed or deformed when packed in a high column. Crushing and deformation results in the column being tightly packed, thereby blocking the flow of liquid reagents through the column and therefore reducing the efficiency of the chemical reactor.
DK 158005 BDK 158005 B
sættes. Egnede bærere skal også have alsidige kemiske egenskaber, således at immobiliseringen af enzymerne og de andre biologiske midler på bæreren gennem ionisk eller kemisk kovalent binding samt overfladeadsorption let kan opnås. I denne hen-5 seende skal bæreren have en høj kapacitet til at danne et stort antal bindinger, således at hver enhed af bæreren kan immobilisere store mængder af de ønskede enzym. En bærer, der har en høj grad af porøsitet og ensartet fordelte indre hulrum, er derfor særlig ønskelig. En sådan porøsitet giver god 10 diffusion af kemiske reagenser og reaktionsprodukter ind i og ud af de indre hulrum i celluloseperlerne. Bærere skal være kemisk stabile, fysisk stærke og fremstillet af indifferent materiale, som modstår mikrobiologisk angreb, der forårsager ødelæggelse af bæreren, for at der kan fås et immobi 1 iseret 15 enzymsystem med lang aktiv levetid.put. Suitable carriers must also have versatile chemical properties so that the immobilization of the enzymes and other biological agents on the carrier through ionic or chemical covalent bonding and surface adsorption can be readily achieved. In this regard, the carrier must have a high capacity to form a large number of bonds, so that each unit of the carrier can immobilize large amounts of the desired enzyme. Therefore, a carrier having a high degree of porosity and uniformly distributed internal cavities is particularly desirable. Such porosity provides good diffusion of chemical reagents and reaction products into and out of the internal cavities of the cellulose beads. Carriers must be chemically stable, physically strong and made of inert material that resists microbiological attack causing destruction of the carrier in order to obtain an immobilised 15 enzyme system with a long active life.
For tiden anvendes porøse glaspartikler og porøse keramiske partikler almindeligvis til immobilisering af enzymer, og disse pørtikler tilfredsstiller ganske vist de fleste af de oven-20 nævnte krav til en acceptabel partikel, men de er forholdsvis dyre. Antallet af kemiske reaktioner, der kan anvendes til immobilisering af enzymerne til glas og keramiske bærere, er endvidere begrænset.Currently, porous glass particles and porous ceramic particles are commonly used for the immobilisation of enzymes, and these particles satisfy most of the above requirements for an acceptable particle, but are relatively expensive. Furthermore, the number of chemical reactions that can be used to immobilize the enzymes for glass and ceramic carriers is limited.
25 I de amerikanske patenter nr. 3.947.325, 3.905.954, 3.573.277, 3.505.299, 3.501.419, 3.397.198, 3.296.000, 3.251.824, 3.236.In U.S. Patents Nos. 3,947,325, 3,905,954, 3,573,277, 3,505,299, 3,501,419, 3,397,198, 3,296,000, 3,251,824, 3,236.
669, 2.843.583, 2.773.027, 2.543.928 og 2.465.343 er beskre vet fremstillingen af forskellige cellulosematerialer i forskellige former, hvoraf nogle er beskrevet som egnede til brug 30 ved fiksering af biologisk aktive materialer, såsom enzymer eller ionbyttende grupper dertil. Disse fremgangsmåder synes imidlertid også at lide af den ulempe at være kostbare, og de fremkomne produkter har i almindelighed en uønsket fysisk form til brug i sådanne kemiske reaktorer som pakkede lejer og flu-35 idiserede lejer. Specielt kan den kendte teknik ikke give et middel til fremstilling af‘kugleformede cel!uloseperler, der har en ensartet fordeling af porer gennem overfladen og et stort ensartet porøst indre hulrum. Cel!ulosepartiklerne og 3669, 2,843,583, 2,773,027, 2,543,928 and 2,465,343 describe the preparation of various cellulosic materials in various forms, some of which are described as suitable for use in the fixation of biologically active materials, such as enzymes or ion exchange groups thereto. . However, these methods also appear to suffer from the disadvantage of being costly, and the resulting products generally have an undesirable physical form for use in such chemical reactors as packed beds and fluidized beds. In particular, the prior art cannot provide a means for producing spherical cellulose beads having a uniform distribution of pores through the surface and a large uniform porous internal cavity. The cellulose particles and 3
DK 158005 BDK 158005 B
pulverne ifølge den kendte teknik er endvidere i almindelighed af så lille partikelstørrelse, at de ikke er egnede til brug i kemiske reaktorer. Desuden har cellulosepulverne og partiklerne ifølge den kendte teknik ofte en hård overfladehud, som 5 forårsager alvorlig diffusionshindring og ineffektiv brug i kemiske reaktorer.Furthermore, the powders of the prior art are generally of such small particle size that they are not suitable for use in chemical reactors. In addition, the prior art cellulose powders and particles often have a hard surface skin which causes severe diffusion prevention and inefficient use in chemical reactors.
Formålet med den foreliggende opfindelse er at tilvejebringe billige, højporøse, stabile partikler med alsidige kemiske 10 egenskaber, der gør dem egnede som bærere af immobi1iserede enzymer og andre biologisk aktive materialer, og at tilvejebringe porøse cel 1uloseperler med forbedret fysisk og mekanisk stabilitet og tilstrækkelig stor overflade til en høj immobiliseringskapacitet for enzymer.The object of the present invention is to provide inexpensive, highly porous, stable particles with versatile chemical properties that make them suitable as carriers of immobilized enzymes and other biologically active materials, and to provide porous cellulose beads with improved physical and mechanical stability and sufficient size. surface for a high immobilization capacity for enzymes.
1515
Fremgangsmåden ifølge opfindelsen er ejendommelig ved, at man a) opløser et hydrolyserbart cellulosederivat i et indifferent organisk, med vand blandbart opløsningsmiddel i et forhold fra 20 1:20 til 1:3 vægt/rumfang til dannelse af en opløsning, der har en vægtfylde større end vægtfylden af den under b) anvendte udfældningsopløsning, b) fordeler denne opløsning i form af små dråber i en udfæld-25 ningsopløsning, der er blandbar med det under a) anvendte opløsningsmiddel, og som består af vand, en vandig opløsning af ikke-ioniske eller ioniske tensider, en blanding af vand og ethanol eller methanol eller en hydrocarbon eller hydrocarbon-blanding, hvorved cel!ulosederivatet udfældes i form af ens- 30 artet porøse perler, c) adskiller de udfældede perler fra opløsningen, d) vasker de adskilte porøse perler med vand, 35 e) hydrolyserer de vaskede perler for at omdanne perlerne til cellulose og for at forøge de aktive steder for binding af enzymer og andre biologiske midler, 4The process of the invention is characterized in that a) dissolves a hydrolyzable cellulose derivative in an inert organic water-miscible solvent at a ratio of from 20 1:20 to 1: 3 w / v to form a solution having a density greater than than the density of the precipitate solution used in (b), (b) distributes this solution in the form of small droplets in a precipitate solution which is miscible with the solvent used in (a) and which consists of water, an aqueous solution of ionic or ionic surfactants, a mixture of water and ethanol or methanol or a hydrocarbon or hydrocarbon mixture, whereby the cellulose derivative is precipitated in the form of uniformly porous beads; c) separates the precipitated beads from the solution; e) hydrolyzes the washed beads to convert the beads to cellulose and to increase the active sites for the binding of enzymes and other biologics. no funds, 4
DK 158005 BDK 158005 B
f) vasker de hydrolyserede perler for at få porøse celluloseperler, der har et ensartet fordelt hulrum større end 50 rumfangsprocent, og 5 h) eventuelt tværbinder de porøse celluloseperler med mindst ét tværbindingsmiddel til fremstilling af tværbundne porøse celluloseperler før eller efter hydrolysen.f) washing the hydrolyzed beads to obtain porous cellulose beads having a uniformly distributed cavity greater than 50% by volume, and 5 h) optionally cross-linking the porous cellulose beads with at least one crosslinking agent to produce crosslinked porous cellulose beads before or after the hydrolysis.
Opfindelsen angår ligeledes anvendelse af de ved fremgangsmå-10 den ifølge opfindelsen fremstillede porøse celluloseperler, eventuelt efter en forbehandling, til immobilisering af enzymer og andre biologisk aktive midler og til adskillelse og rensning af enzymer, proteiner og nukleinsyrer.The invention also relates to the use of the porous cellulose beads prepared by the process according to the invention, optionally after a pretreatment, for the immobilization of enzymes and other biologically active agents and for the separation and purification of enzymes, proteins and nucleic acids.
15 De ifølge opfindelsen fremstillede højporøse celluloseperler med ensartet porøsitet egner sig især til immobilisering af enzymer. Derudover er de også egnede til rensning og adskillelse af enzymer, proteiner, nukleinsyre og lignende forbindelser og til adskillelse af metalioner fra fortyndede opløs-20 ninger. På grund af deres porøsitet og deres gode mekaniske stabilitet giver de ifølge opfindelsen fremstillede celluloseperler ved anvendelse i reaktorer med fast leje en fremragende væskepassage og undergår ingen dekomponer ings- og deformer i ngsfænomener.The highly porous cellulose beads of uniform porosity of the invention are particularly suitable for the immobilization of enzymes. In addition, they are also suitable for purification and separation of enzymes, proteins, nucleic acids and similar compounds and for the separation of metal ions from dilute solutions. Due to their porosity and their good mechanical stability, the cellulose beads made according to the invention, when used in fixed bed reactors, provide excellent fluid passage and do not undergo decomposition and deformation in any phenomena.
2525
Fremgangsmåden ifølge opfindelsen giver porøse celluloseperler, der egner sig som bærere for enzymer og andre biologiske midler. Endvidere muliggør fremgangsmåden ifølge opfindelsen ændring af de kemiske og fysiske egenskaber af porøse perler 30 fremstillet af cellulosederivater. Sædvanlig mikrokrystal1insk cellulose og andre partikler fremstillet af cellulose tilfredsstiller mange af de almindelige krav til en egnet bærer for enzymer, men sådanne partikler lider af en tendens til at pakke tæt sammen under tryk og kan heller ikke frembyde ti 1 -35 strækkelig porøsitet til at fastgøre en tilstrækkelig stor mængde enzymer dertil. Cellulosederivater er i almindelighed billige, og når de behandles ifølge den foreliggende opfindelse, giver det et meget alsidigt materiale for kemiske reaktio- 5The process of the invention provides porous cellulose beads suitable as carriers for enzymes and other biological agents. Furthermore, the process of the invention enables the chemical and physical properties of porous beads 30 made from cellulose derivatives to be changed. Conventional microcrystalline cellulose and other particles made of cellulose satisfy many of the general requirements for a suitable carrier for enzymes, but such particles suffer from a tendency to pack tightly under pressure and also cannot provide sufficient porosity to attach. a sufficient amount of enzymes thereto. Cellulose derivatives are generally inexpensive and when treated according to the present invention provide a very versatile chemical reaction material.
DK 158005 BDK 158005 B
ner, der i almindelighed er biologisk indifferente. Cellulo-seperlerne fremstillet ifølge opfindelsen har således mange ønskelige egenskaber til brug som bærere af immobi1iserede enzymer .which are generally biologically inert. Thus, the cellulose beads prepared according to the invention have many desirable properties for use as carriers of immobilized enzymes.
55
Ved ifølge opfindelsen at opløse et cellulosederivat i et udvalgt opløsningsmiddel og fordele dette i en udva1gt udfældningsopløsning er det muligt at fremstille celluloseperler med høj ensartet porøsitet og forbedrede kemiske og fysiske egen-10 skaber. Perlerne fremstillet ifølge opfindelsen er højporøse. Porerne er i almindelighed ensartet fordelt over overfladen og gennem det indre af perlen. Ved passende valg af opløsningsmidler og udfældningsopløsninger kan perlernes porestørrelse reguleres. Det er særligt fordelagtigt, at de i overensstem-15 melse med fremgangsmåden er muligt at regulere både porestørrelsen og porefordelingen. Idet der henvises til tegningens fig. 2, 4· (A) og (B), vil det ses, at poreåbningerne er ensartet fordelt over perlens overflade og blev bedømt til at være ca. I'IO-? m,hvilket er en passende størrelse for bevægel-20 se af enzym og reagensmolekyler i porerne.By dissolving a cellulose derivative according to the invention in a selected solvent and distributing it in a selected precipitation solution, it is possible to prepare cellulose beads with a high uniform porosity and improved chemical and physical properties. The beads made according to the invention are highly porous. The pores are generally uniformly distributed over the surface and through the interior of the bead. By appropriate choice of solvents and precipitation solutions, the pore size of the beads can be adjusted. It is particularly advantageous that in accordance with the method it is possible to control both the pore size and the pore distribution. Referring to FIG. 2, 4 · (A) and (B), it will be seen that the pore openings are uniformly distributed over the surface of the bead and were judged to be approx. I'IO-? m, which is an appropriate size for the movement of enzyme and reagent molecules in the pores.
Det indifferente organiske, med vand blandbare opløsningsmiddel kan være en enkelt væske eller en kombination af væsker.The inert organic water-miscible solvent may be a single liquid or a combination of liquids.
Det er vigtigt, at man anvender en korrekt kombination af in-25 different organisk opløsningsmiddel og udfældningsopløsning for at få porøse cel!uloseperler af ønsket form og porøsitet.It is important to use a correct combination of inorganic solvent and precipitate solution to obtain porous cellulose beads of the desired shape and porosity.
Det indifferente organiske, med vand blandbare opløsningsmiddel kan være en kombination af væsker, som sammen med cellulo-sederivatet giver en opløsning, som, når den blandes med ud-30 fældningsopløsningen, resulterer i en faseomvending, hvorved cellulosederivatet koaguleres i form af en porøs perle. Det indifferente organiske opløsningsmiddel indeholder således en komponent (a), der er karakteriseret som en væske, der er i stand til at opløse cellulosederivatet, såsom celluloseacetat 35 og er opløselig i udfældningsopløsningen.The inert organic water-miscible solvent may be a combination of liquids which together with the cellulose derivative provide a solution which, when mixed with the precipitate solution, results in a phase reversal whereby the cellulose derivative is coagulated in the form of a porous bead . Thus, the inert organic solvent contains a component (a) characterized as a liquid capable of dissolving the cellulose derivative, such as cellulose acetate 35, and being soluble in the precipitating solution.
En anden komponent (b) af opløsningsmiddelsystemet er en væske, som er opløselig i komponent (a) og også i udfældnings- 6Another component (b) of the solvent system is a liquid which is soluble in component (a) and also in the precipitate.
DK 158005 BDK 158005 B
opløsningen, og som findes i opløsningsmidlet i en tilstrækkelig mængde til, at vægtfylden af den endelige opløsningsmiddelopløsning (sammen med cellulosederivatet) er tilstrækkelig meget højere end vægtfylden af udfældningsopløsningen, således 5 at ved fordeling af opløsningsmiddelopløsningen i form af små dråber i udfældningsopløsningen vil cellulosen koagulere og fælde ud som en porøs perle med ønsket størrelse og porøsitet. Komponenten (b) i opløsningsmidlet anvendes til at regulere overfladeaktiviteten af opløsningsmiddelopløsningen, således 10 at de små dråber af opløsningsmiddelopløsningen vil bevare deres form ved berøring med udfældningsopløsningen. Komponenten (b) tjener også til at regulere porestørrelsen og porøsiteten af de udfældede perler. I nogle tilfælde kan komponenten (a) og komponenten (b) være den samme. I andre tilfælde kan det 15 være hensigtsmæssigt at anvende en eller flere væsker til fremstilling af komponent (a) og/eller komponent (b).the solution, which is present in the solvent in a sufficient quantity that the density of the final solvent solution (together with the cellulose derivative) is sufficiently much higher than the density of the precipitate solution, so that when distributing the solvent solution in the form of small droplets in the precipitate solution, the cellulose will coalesce and precipitate as a porous bead of desired size and porosity. The component (b) in the solvent is used to regulate the surface activity of the solvent solution so that the small droplets of the solvent solution will retain their shape upon contact with the precipitate solution. The component (b) also serves to regulate the pore size and porosity of the precipitated beads. In some cases, component (a) and component (b) may be the same. In other cases, it may be convenient to use one or more liquids to produce component (a) and / or component (b).
Som anvendt i den foreliggende beskrivelse defineres udtrykket "udfældningsopløsning" som en væskeopløsning, der ikke er et 20 opløsningsmiddel for cel!ulosederivatet og er blandbart med det ovennævnte indifferente organiske, med vand blandbare opløsningsmiddel. Som illustration kan udfældningsopløsningen være vand eller en vandig opløsning. Udfældningsopløsningen er således blandbar med både opløsningskomponenten (a) og (b).As used in the present specification, the term "precipitate solution" is defined as a liquid solution which is not a solvent for the cellulose derivative and is miscible with the aforementioned inert organic water-miscible solvent. By way of illustration, the precipitation solution may be water or an aqueous solution. Thus, the precipitation solution is miscible with both the solution component (a) and (b).
25 Det vil således forstås, at når man opløser cellulosederivatet i det organisek opløsningsmiddel og derefter tilsætter en dråbe af den fremkomne opløsningsmiddelopløsning til udfældningsopløsningen, vil cellulosederivatet koagulere og fælde ud på grund af faseomvendingen, som cellulosederivatet undergår, 30 og derved danne den ønskede porøse celluloseperle.Thus, it will be understood that when dissolving the cellulose derivative in the organic solvent and then adding a drop of the resulting solvent solution to the precipitate solution, the cellulose derivative will coagulate and precipitate due to the phase reversal the cellulose derivative undergoes, thereby forming the desired porous cell. .
Som det vil fremgå af beskrivelsen, er forskellige variationer mulige i den ovenfor beskrevne fremgangsmåde til fremstilling af de ønskede porøse celluloseperler. Foruden cel!uloseacetat 35 kan andre cellulosederivater anvendes som udgangsmateriale til fremstilling af de porøse perler, f.eks. cellulosenitrat og methylcellulose. Udtrykkene cellulosederivat og hydrolyserbart cel!ulosederivat skal i den foreliggende beskrivelse forstås 7As will be apparent from the specification, various variations are possible in the process described above for preparing the desired porous cellulose beads. In addition to cellulose acetate 35, other cellulose derivatives can be used as starting material for preparing the porous beads, e.g. cellulose nitrate and methyl cellulose. The terms cellulose derivative and hydrolyzable cellulose derivative are to be understood in the present specification 7
DK 158005 BDK 158005 B
som indbefattende materialer, hvoraf cellulose kan regenereres, f.eks. ved hjælp af hydrolyse eller hydrogenering.as including materials from which cellulose can be regenerated, e.g. by hydrolysis or hydrogenation.
De organiske opløsningsmiddelkomponenter (a) og (b) til cellu-5 1 osederivatet kan variere, men skal være kemisk indifferente over for cellulosederivatet og helt eller i det væsentlige blandbare med udfældningsopløsningen. Det er af betydning, at vægtfylden af opløsningsmiddelopløsningen dannet ved at sætte cellulosederivatet til det indifferente opløsningsmiddel er 10 v større end vægtfylden af udfældningsopløsningen, hvori den fordeles, således at når små dråber af opløsningsmiddelopløsningen fordeles i udfældningsopløsningen, vil dråberne synke, når den vandige opløsning ikke omrøres. Egnede enkelte opløsningsmidler, når der anvendes en vandig udfældningsopløsning, 15 indbefatter bl.a. f.eks. dimethylsulfoxid og methyl acetat. Det skal forstås, at industrielt tilgængelige materialer kan anvendes som opløsningsmiddelkomponenterne (a) og/eller (b), og at disse materialer kan indeholde fugtighed, hvilket i nogle tilfælde har vist sig at være fordelagtigt.The organic solvent components (a) and (b) of the cellulose derivative may vary but must be chemically inert to the cellulose derivative and fully or substantially miscible with the precipitate solution. It is important that the density of the solvent solution formed by adding the cellulose derivative to the inert solvent is 10v greater than the density of the precipitating solution in which it is distributed so that when small droplets of the solvent solution are distributed in the precipitating solution, the droplets of solution will sink when do not stir. Suitable single solvents when an aqueous precipitate solution is used include eg. dimethyl sulfoxide and methyl acetate. It is to be understood that industrially available materials can be used as the solvent components (a) and / or (b) and that these materials may contain moisture, which in some cases has proved advantageous.
20 Når der anvendes en vandig udfældningsopløsning, kan man hensigtsmæssigt som opløsningsmiddelkompoent (a) anvende en repræsentant fra gruppen bestående af acetone, formamid, en blanding af acetone og methanol eller ethanol, methyl acetat, 25 en blanding af methylendichlorid og methanol, methyl ethyl keton og dimethylsulfoxid. Opløsningsmiddelkomponenten (b) kan således hensigtsmæssigt vælges blandt repræsentanter fra gruppen bestående af dimethylsulfoxid, formamid, methyl acetat, cyklo-hexanon, methylendichlorid, ethylendichlorid, en blanding af 30 methylendichlorid og methanol og en blanding af ethylendichlorid og methanol.When an aqueous precipitate solution is used, it is convenient to use as a solvent component (a) a representative of the group consisting of acetone, formamide, a mixture of acetone and methanol or ethanol, methyl acetate, a mixture of methylene dichloride and methanol, methyl ethyl ketone and dimethyl sulfoxide. Thus, the solvent component (b) may conveniently be selected from representatives of the group consisting of dimethyl sulfoxide, formamide, methyl acetate, cyclohexanone, methylene dichloride, ethylene dichloride, a mixture of methylene dichloride and methanol, and a mixture of ethylene dichloride and methanol.
En foretrukken opløsningsmiddelkomponent (a) er acetone, men andre opløsningsmidler kan anvendes, og når der anvendes en 35 vandig udfældningsopløsning kan man vælge en komponent (a) blandt følgende materialer (blandingsforholdet, hvor der er tale om blandinger, er det minimalt ønskelige forhold på rumfangsbasis) : DK 158005 B_ 8 /A preferred solvent component (a) is acetone, but other solvents may be used, and when an aqueous precipitate solution is used, a component (a) may be selected from the following materials (the mixing ratio in the case of mixtures, the minimum desirable ratio of volume basis): DK 158005 B_ 8 /
Komponent (a) Minimalt forhold (rumfang)Component (a) Minimum ratio (volume)
Acetone -----Acetone -----
Acetone + methanol 60;40 5 Acetone + ethanol 60:40Acetone + methanol 60; 40 5 Acetone + ethanol 60:40
Methylacetat -----Methyl acetate -----
Methylendichlorid + methanol 80:20Methylene dichloride + methanol 80:20
Dimethylsulfoxid -----Dimethylsulfoxide -----
Methylethylketon ----- 10 Formamid -----Methylethyl ketone ----- Formamide -----
Som ovenfor nævnt er den primære funktion af komponent (a) at opløse cellulosederivatet. Tilsætningen af komponent (b) er 15 nødvendig for at skabe en opløsningsmiddelopløsning, der har den nødvendige vægtfylde, således at cel!ulosederivatet vil fælde ud i udfældningsopløsningen. Komponent (b) giver også regulering af porestørrelse og ensartet porøsitet af perlerne.As mentioned above, the primary function of component (a) is to dissolve the cellulose derivative. The addition of component (b) is necessary to create a solvent solution having the necessary density so that the cellulose derivative will precipitate into the precipitate solution. Component (b) also provides control of pore size and uniform porosity of the beads.
20 Opløsningsmiddelkomponenten (b) tilvejebringer derfor den ønskede vægtfylde af opløsningsmiddelopløsningen, og når der anvendes en vandig udfældningsopløsning foretrækkes det at anvende dimethylsul foxid som komponent (b). Det vil forstås, at i nogle tilfælde kan komponent '(a) og komponent (b) være den 25 samme, dsv. dimethylsulfoxid, formamid eller methylacetat, når de anvendes sammen med vandige udfældningsopløsninger. Forskellige materialer, der kan anvendes som komponent (b), når der anvendes en vandig udfældningsopløsning, er anført nedenfor : 30 35 9The solvent component (b) therefore provides the desired density of the solvent solution and when using an aqueous precipitate solution it is preferred to use dimethyl sulfoxide as component (b). It will be understood that in some cases component '(a) and component (b) may be the same, dsv. dimethyl sulfoxide, formamide or methyl acetate when used with aqueous precipitate solutions. Various materials that can be used as component (b) when using an aqueous precipitate solution are listed below: 30 35 9
DK 158005 BDK 158005 B
(·*λ :4(· * Λ: 4
Komponent (b) Minimalt forhold (rumfang)Component (b) Minimum ratio (volume)
Dimethylsulfoxid ____ 5 Ethylendichlorid + methanol 60:40Dimethylsulfoxide ____ 5 Ethylene dichloride + methanol 60:40
Methylendichlorid + methanol 60:40Methylene dichloride + methanol 60:40
Ethylendichlorid _____Ethylene dichloride _____
Methylendichlorid _____Methylene dichloride _____
Formamid _____ 10 Cyklohexanon _____Formamide _____ 10 Cyclohexanone _____
Opløsningen af cellulosederivat og indifferent opløsningsmiddel skal have et reguleret forhold mellem cellulosederivat og opløsningsmiddel, fordi dette vil have en virkning på den en-15 delige porøsitet af de fremstillede perler. I almindelighed resulterer et lille forhold (større indhold af opløsningsmiddel) i perler, der har større porøsitet. Et forhold mellem cellulose og opløsningsmiddel (inklusive komponenterne (a) og (b)) fra 1:20 til 1:3 (vægt/rumfang) har vist sig egnet til 20 fremstilling af cellu1 oseper 1 er, der har forskellige specielle anvendelser. Fortrinsvis anvendes et forhold mellem cellu-losederivat og opløsningsmiddel på 1:10 til 1:6 (vægt/rumfang) til at give en let håndterbar opløsning, som resulterer i porøse celluloseperler med ønskede egenskaber, der har et hulrum 25 på mindst 50 rumfangsprocent, fortrinsvis 75 til 95% og mest hensigtsmæssigt ca. 75 til 80%. Perler, der har større porøsitet, vil i almindelighed have en større mængde ensartet fordelte indre hulrum, der giver mindre diffusionshindring, men vil være noget svagere med hensyn til fysisk styrke end perler 30 med lavere porøsitet.The solution of cellulose derivative and inert solvent must have a regulated ratio of cellulose derivative to solvent because this will have an effect on the final porosity of the beads produced. Generally, a small ratio (greater solvent content) results in beads having greater porosity. A ratio of cellulose to solvent (including components (a) and (b)) from 1:20 to 1: 3 (w / v) has been found suitable for the preparation of cellulose soaps 1 having various special applications. Preferably, a cellulose derivative to solvent ratio of 1:10 to 1: 6 (w / v) is used to provide a readily manageable solution resulting in porous cellulose beads having desired properties having a void 25 of at least 50% by volume. preferably 75 to 95% and most conveniently about 75 to 80%. Beads having greater porosity will generally have a greater amount of uniformly distributed inner voids, providing less diffusion impediment, but will be somewhat weaker in physical strength than beads 30 having lower porosity.
Den foretrukne udfældningsopløsning, hvori opløsningen af cellulosederivat skal fordeles, består i almindelighed af vand, men kan være en vandig opløsning, som indeholder egnede mæng-35 der af ikke-ioniske eller ioniske overfladeaktive midler for at nedsætte overfladespændingen deraf og lette dannelsen af de porøse perler. Udfældningsopløsningen kan hensigtsmæssigt også indeholde en blanding af vand og methanol eller ethanol (rum- 10The preferred precipitation solution in which the cellulose derivative solution is to be distributed generally consists of water, but may be an aqueous solution containing appropriate amounts of nonionic or ionic surfactants to reduce its surface tension and facilitate the formation of the porous beads. Conveniently, the precipitate solution may also contain a mixture of water and methanol or ethanol (
DK 158005 BDK 158005 B
fangsforhold 50:50). Udfældningsopløsningen kan være ikke-van-dig, når blot cellulosederivatet er uopløseligt deri, og det nødvendige vægtfyldekrav er tilfredsstillet. Kulbrinteopløsninger kan således anvendes, såsom cyklohexan, hexan, decan, 5 benzen, når blot de er i flydende form, har en vægtfylde mindre end vægtfylden af det indifferente organiske opløsningsmiddel og er blandbare dermed. Når cellulosederivatopløsnin-gen fordeles ved sprøjtning via et egnet organ, såsom en dyse, resulterer trykfaldet og blandbarheden af det indifferente op-10 løsningsmiddel i den vandige opløsning i en dispersion og til sidst i udfældning af porøse perler af cel!ulosederivatet.capture ratio 50:50). The precipitate solution may be non-usual, provided that the cellulose derivative is insoluble therein and the required density requirement is satisfied. Hydrocarbon solutions can thus be used, such as cyclohexane, hexane, decane, benzene, provided they are in liquid form, have a density less than the density of the inert organic solvent and are miscible therewith. When the cellulose derivative solution is dispensed by spraying via a suitable means such as a nozzle, the pressure drop and miscibility of the inert solvent in the aqueous solution results in a dispersion and eventually the precipitation of porous beads of the cellulose derivative.
Som det vil forstås af fagfolk, må der ved udfældning af celluloseperlerne være en tilstrækkelig mængde af opløsningsmid-15 delkomponent (b) til stede til, at opløsningen indeholdende cellulosederivatet har den nødvendige højere vægtfylde end vægtfylden af udfældningsopløsningen. Tabel 1 angiver nogle indifferente organiske opløsningsmidler til udfældning af et cellulosederivat i en vandig opløsning. De anførte mængdefor-20 hold er det minimum, som kræves til at give en opløsningsmiddelopløsning, der har større vægtfylde end vand. Jo større vægtfylden af komponent (b) er, des mindre af denne komponent kræves der for at opnå den minimale vægtfylde.As will be appreciated by those skilled in the art, when precipitating the cellulose beads, a sufficient amount of solvent component (b) must be present for the solution containing the cellulose derivative to have the necessary higher density than the density of the precipitate solution. Table 1 lists some inert organic solvents for precipitation of a cellulose derivative in an aqueous solution. The stated proportions are the minimum required to give a solvent solution having a higher density than water. The greater the density of component (b), the less of this component is required to obtain the minimum density.
Tabel 1 25 -Table 1 -
Opløsningsmiddel Minimalt rumfangs-;Solvent Minimum volume;
Komponent (a)_Komponent (b)·_forhold a:b_iComponent (a) _Component (b) · _ ratio a: b_i
Acetone Dimethylsulfoxid 70:30Acetone Dimethylsulfoxide 70:30
Acetone Ethylendichlorid 80:20Acetone Ethylene Dichloride 80:20
Acetone Methylendichlorid 80:20 30 Acetone Formamid 75:25Acetone Methylene Dichloride 80:20 30 Acetone Formamide 75:25
Acetone Cyklohexanon 45:55Acetone Cyclohexanone 45:55
Acetone Methylacetat 35:65 35Acetone Methyl Acetate 35:65 35
Efter udfældning af de porøse perler regenereres cellulose af derivatet ved hydrolyse for at skabe flere aktive steder til enzymbinding. Ved regenerering af cellulose af dets derivat 11After precipitation of the porous beads, cellulose is regenerated by the derivative by hydrolysis to create more active sites for enzyme binding. In the regeneration of cellulose by its derivative 11
DK 158005 BDK 158005 B
efter dannelse af perlerne kan man fjerne de substituerende grupper (såsom acetat fra celluloseacetat) for at regenerere alle hydroxylgrupperne, der normalt findes i cellulosemateri-alet. Jo højere regenereringsgrad, des mere stabilitet kan der 5 findes i de fremkomne perler. I nogle tilfælde, hvor enzymerne skal immobi1iseres på cel!uloseperlebærerne, er det ønskeligt at omdanne hydroxygrupperne eller substituerende grupper til funktionelle kemiske grupper, såsom aminogrupper, der letter enzymbinding.after formation of the beads, the substituent groups (such as acetate from cellulose acetate) may be removed to regenerate all the hydroxyl groups normally found in the cellulose material. The higher the degree of regeneration, the more stability can be found in the resulting beads. In some cases where the enzymes are to be immobilized on the cellulose bead carriers, it is desirable to convert the hydroxy groups or substituent groups to functional chemical groups such as amino groups which facilitate enzyme binding.
10 På tegningen er fig. 1 en i 111ustrati on af part i kel størrelses-fordelingen i de porøse perler, fig. 2 er et skanderende elektromikrografi af en porøs cellu-15 loseperle, fig, 3 er en kurve over de porøse celluloseperlers trykfaldsegenskaber, 20 fig. 4 (A) er et skanderende elektronmikrografi af overfladen af en porøs celluloseperle (20.000 x), fig. 4 (B) er et skanderende elektronmikrografi af det indre af en porøse celluloseperle (20.000 x).10 In the drawing, FIG. 1 shows a partial distribution of the cell size distribution in the porous beads; FIG. 2 is a scanning electromicrograph of a porous cellulose bead; FIG. 3 is a graph of the pressure drop properties of the porous cellulose beads; FIG. Figure 4 (A) is a scanning electron micrograph of the surface of a porous cellulose bead (20,000 x); 4 (B) is a scanning electron micrograph of the interior of a porous cellulose bead (20,000 x).
2525
Fig. 1 illustrerer størrelsesfordel i ngen af de endelige porøse perler fremstillet ved at fordele (f.eks. ved sprøj tn ing) en opløsning af cellulosederivat gennem en sprøjtedyse i overensstemmelse med den fremgangsmåde, der er beskrevet i enkelt-30 heder i det følgende. Perler, som enten er for store eller for små, afhængende af den tilsigtede endelige anvendelse, kan opsamles og genopløses i det ønskede opløsningsmiddel. Generelt foretrækkes perler med ensartet størrelse, hvis de anvendes i en kemisk reaktor af søjletypen. Den ønskede partikelstørrel-35 se kan variere med den tilsigtede brug af perlerne, f.eks. den type enzym, som skal immobi1iseres.FIG. 1 illustrates the size distribution of some of the final porous beads prepared by distributing (e.g., by spraying) a solution of cellulose derivative through a spray nozzle in accordance with the process described in detail below. Beads that are either too large or too small, depending on the intended final use, can be collected and redissolved in the desired solvent. Generally, beads of uniform size are preferred if used in a column-type chemical reactor. The desired particle size may vary with the intended use of the beads, e.g. the type of enzyme to be immobilized.
De porøse celluloseperler fremstillet ved den ovenfor beskrevne fremgangsmåde har i almindelighed meget høj porøsitet og en 12The porous cellulose beads prepared by the process described above generally have very high porosity and a
DK 158005 BDK 158005 B
reguleret porestørrelse, der ligger fra 0,05 til 30 micron.regulated pore size ranging from 0.05 to 30 microns.
Når der anvendes et forhold mellem cellulose og opløsningsmiddel på 1:10 (vægt/rumfang) til fremstilling af opløsningen af cellulose og opløsningsmiddel, kan de dannede færdige perler 5 have en høj porøsitet på ca. 90% hulrum. Et skanderende elek-tromikrografi af en porøs celluloseperle fremstillet ved fremgangsmåden er vist på fig. 2, 4 (A) og 4 (B). Af disse billeder kan man se flere vigtige ejendommeligheder ved de fremstillede perler. For det første vil de ses, at perlerne er 10 generelt kugleformede, og porøse åbninger er ensartet fordel over overfladen af perlerne. Til de fleste anvendelser er dette ønskeligt, fordi det kan give en immobi1iseret enzymkatalysator med ensartet aktivitet. Hulrumsfasen i ce11uloseperi erne er kontinuerlig. Dette er et ønskeligt træk, fordi diskon-15 tinuerlige adskilte bobler ville resultere i et nytteløst og ikke tilgængeligt dødt rum i et immobi1 i seret enzymsystem. For det tredje er der ingen hård hud på perleoverf 1 aden. En hård hud ville forårsage alvorlig diffusionshindring. Endelig er porestørrelserne helt ensartede. Som resultat heraf vil hele 20 det indre overfladeareal af de indre hulrum i perlerne være tilgængeligt for enzymimmobilisering og for enzymkatalyserede reaktioner. Både den høje porøsitet og de andre nævnte træk gør de porøse celluloseperler ifølge opfindelsen enestående egnede til brug ved immobilisering af enzymer og andre biolo-25 gisk aktive midler.When a cellulose-solvent ratio of 1:10 (w / v) is used to prepare the cellulose-solvent solution, the resulting finished beads 5 can have a high porosity of approx. 90% cavity. A scanning electron micrograph of a porous cellulose bead made by the method is shown in FIG. 2, 4 (A) and 4 (B). From these pictures one can see several important peculiarities of the beads made. First, they will be seen that the beads are generally spherical and porous openings are uniformly distributed over the surface of the beads. For most applications, this is desirable because it can provide an immobilized enzyme catalyst with uniform activity. The void phase in the cellulose period is continuous. This is a desirable feature because discontinuous separated bubbles would result in a useless and unavailable dead space in an immobilized enzyme system. Third, there is no hard skin on pearl surface 1 aden. A hard skin would cause severe diffusion obstruction. Finally, the pore sizes are completely uniform. As a result, as much as 20 of the inner surface area of the inner cavities of the beads will be available for enzyme immobilization and for enzyme catalyzed reactions. Both the high porosity and the other features mentioned make the porous cellulose beads of the invention exceptionally suitable for use in immobilizing enzymes and other biologically active agents.
En vigtig egenskab ved en enzymbærer er trykfaldet, som den forårsager ved forskellige væskestrømningshastigheder gennem en enzymreaktor indeholdende bæreren. F.eks. anvendes DEAE-30 cellulose for tiden i· industrien som en enzymbærer til omdannelse af glukose til fruktose. For DEAE-cellulose er trykfaldet meget stort, og følgelig kan der kun anvendes lave lejer til at opnå en rimelig hastighed af væskestrømmen. Trykfaldsegenskaberne af de porøse celluloseperler ifølge den forelig-35 gende opfindelse ved drift i en pakket søjle er vist med kurven A på fig. 3. Den nominelle lineære strømningshastighed er beregnet ved at dividere den volumetriske strømningshastighed af væsken, som føres til søjlen, med søjlens tværsnitsareal.An important property of an enzyme carrier is the pressure drop that it causes at different fluid flow rates through an enzyme reactor containing the carrier. Eg. DEAE-30 cellulose is currently used in the industry as an enzyme carrier to convert glucose into fructose. For DEAE cellulose, the pressure drop is very large and consequently only low bearings can be used to obtain a reasonable rate of fluid flow. The pressure drop properties of the porous cellulose beads of the present invention when operating in a packed column are shown by curve A of FIG. 3. The nominal linear flow rate is calculated by dividing the volumetric flow rate of the liquid fed to the column by the cross-sectional area of the column.
1313
DK 158005 BDK 158005 B
Ved praktisk drift vil den nominelle lineære strømningshastighed i industrielle søj1ereaktorer være mindre end 0,5 cm/sek. Med en reaktorsøjle med en indre diameter på 60,96 cm er en lineær hastighed på 0,5 cm/sek. f.eks. ævkvivalent med 5 en volumetrisk strømningshastighed på 5254 liter/time. I en typisk industriel drift til fremstilling af fruktose af glukose er sukkerkoncentrationen i den tilførte væske ca. 0,59 kg/liter. Ovennævnte strømningshastighed vil give mere end 27.000.000 kg af produktet pr, 61 cm søjle pr. år. På grund af 10 den enzymatiske reaktions krav til opholdstid er den lineære strømn i ngshastighed i reglen mindre end 0,5 cm/sek. Det kan derfor ses, at de porøse cel 1uloseperler fremsti 11 et ifølge den foreliggende opfindelse ikke frembyder nogen alvorlige problemer med hensyn til trykfald, når de anvendes i kemiske 15 reaktorer af søjletypen som bærere, hvortil enzymer og andre biologisk aktive midler kan immobi1 i seres. Når de porøse celluloseperler efter passende derivatdannelse anvendes til andre formål (f.eks fjernelse af garvestof fra frugtsaft, vin eller øl og af metalioner fra fortyndede opløsninger), kan væske-20 strømningshastigheden gennem reaktorsøjlen være meget større end de her nævnte 0,5 cm/sek.In practical operation, the nominal linear flow rate in industrial column reactors will be less than 0.5 cm / sec. With a reactor column with an internal diameter of 60.96 cm, a linear velocity of 0.5 cm / sec. eg. equivalent to 5 volumetric flow rate of 5254 liters / hour. In a typical industrial operation for the production of glucose fructose, the sugar concentration in the liquid supplied is approx. 0.59 kg / liter. The above flow rate will yield more than 27,000,000 kg of product per 61 cm column per unit. year. Due to the residence time requirements of the enzymatic reaction, the linear flow rate is usually less than 0.5 cm / sec. Therefore, it can be seen that the porous cellulose beads prepared according to the present invention present no serious pressure drop problems when used in column-type chemical reactors as carriers to which enzymes and other biologically active agents can be immobilized. . When the porous cellulose beads, after appropriate derivative formation, are used for other purposes (e.g., removing tanning from fruit juice, wine or beer, and metal ions from dilute solutions), the fluid flow rate through the reactor column may be much greater than the 0.5 cm mentioned herein. /SEC.
Strømningsegenskaberne og andre fysiske og mekaniske egenskaber af de porøse celluloseperler kan forbedres ved tværbinding 25 med bi- og/eller multifunktionel le forbindelser. Kurven B på fig. 3 viser trykfaldkravet til porøse celluloseperler efter behandling med tolylen-2,4-diisocyanat og enzymimmobilisering.The flow properties and other physical and mechanical properties of the porous cellulose beads can be enhanced by cross-linking 25 with bi- and / or multifunctional compounds. The curve B in FIG. 3 shows the pressure drop requirement for porous cellulose beads after treatment with tolylene-2,4-diisocyanate and enzyme immobilization.
Over en nominel lineær hastighed på 2 cm/sek. bliver de ubehandlede celluloseperler (kurven A) sammentrykt og deformeret 30 betydligt, hvilket resulterer i en drastisk forøgelse af trykfaldet. Kurven B er kun svagt konkav, hvilket viser ingen eller ringe deformering af de behandlede perler.Above a nominal linear velocity of 2 cm / sec. For example, the untreated cellulose beads (curve A) become significantly compressed and deformed, resulting in a drastic increase in pressure drop. Curve B is only slightly concave, showing no or slight deformation of the treated beads.
Behandling af de porøse cel!uloseperler med et tværbi ndings-35 middel enten før eller efter hydrolyse af perlerne resulterer i en forøgelse af deres fysiske styrke. Binding af enzymer på perlerne vil også forøge deres fysiske styrke. Efter behandling med, f.eks. et diisocyanat (f.eks. tolylen-2,4-diisocya- 14Treatment of the porous cellulose beads with a crosslinking agent either before or after hydrolysis of the beads results in an increase in their physical strength. Binding of enzymes to the beads will also increase their physical strength. After treatment with, e.g. a diisocyanate (e.g., tolylene-2,4-diisocyan 14)
DK 158005 BDK 158005 B
nat eller hexamethylendiisocyanat), bliver perlerne faktisk ret stive og stærke. Tværbinding med epichlorhydrin forbedrer også de fysiske egenskaber af de porøse celluloseperler. Kemien i tværbinding af polysaccharider, herunder cellulose og 5 stivelse, er en godt udviklet gren af fysikken. Andre egnede tværbindingsmidler indbefatter f.eks. formaldehyd i saltsyreopløsning eller giutaraldehyd. Mange andre kulhydrattværbindingsmidler er velkendte som f.eks. beskrevet i amerikansk patent nr. 3.905.954.(or sodium hexamethylene diisocyanate), the beads actually become quite stiff and strong. Cross-linking with epichlorohydrin also improves the physical properties of the porous cellulose beads. The chemistry of cross-linking polysaccharides, including cellulose and starch, is a well-developed branch of physics. Other suitable crosslinking agents include, e.g. formaldehyde in hydrochloric acid solution or giutaraldehyde. Many other carbohydrate cross-linking agents are well known, e.g. disclosed in U.S. Patent No. 3,905,954.
1010
Generelt fremstilles de porøse perler ved fremgangsmåden ifølge opfindelsen ved følgende trin: a) En hydrolyserbar form af cellulose opløses i et indifferent 15 organisk, med vand blandbart opløsningsmiddel i et reguleret forhold mellem cellulosederivat og opløsningsmiddel, som i almindelighed er i intervallet 1:20 til 1:3 (vægt:rumfang) til fremstilling af en opløsningsmiddelopløsning. Opløsningsmidlet skal være helt eller væsentligt blandbart med udfældningsop-20 løsningen, og vægtfylden af op løsnings-middel«©© løsn ingen skal være tilstrækkelig til, at opløsningsmidlet ved berøring med udfældningsopløsningen let bliver blandbart med udfældningsopløsningen, og cellulosederivatet udfælder deri.Generally, the porous beads are prepared by the process of the invention by the following steps: a) A hydrolysable form of cellulose is dissolved in an inert organic water-miscible solvent in a controlled ratio of cellulose derivative to solvent which is generally in the range of 1:20 to 1: 3 (weight: volume) to prepare a solvent solution. The solvent must be completely or substantially miscible with the precipitate solution, and the density of the solvent should not be sufficient for the solvent to become easily miscible with the precipitate solution and the cellulose derivative to precipitate therein.
25 b) Opløsningsmiddelopløsningen fordeles (f.eks. ved sprøjtning) i form af små dråber i en udfældningsopløsning. Ved berøring med udfældningsopløsningen, der kan indeholde et over-fadeaktivt middel, dispergeres opløsningsmidlet inde i opløsningsmediet, og porøse perler af cellulosematerialet dannes, 30 efterhånden som de koagulerer og udfælder til bunden af beholderen, der indeholder udfældningsopløsningen. Cellulosederi-vatopløsningen kan hensigtsmæssigt sprøjtes under tryk gennem en forstøvningsdyse ind i et bad af udfældningsopløsning. Hvis det ønskes, kan badet omrøres for at fremme dannelsen af per-35 lerne.B) The solvent solution is distributed (e.g. by spraying) in the form of small droplets in a precipitate solution. Upon contact with the precipitate solution which may contain a surface active agent, the solvent is dispersed within the solvent medium and porous beads of the cellulose material are formed as they coagulate and precipitate to the bottom of the container containing the precipitate solution. The cellulose derivative solution may conveniently be sprayed under pressure through a nebulizer nozzle into a precipitate solution bath. If desired, the bath can be stirred to promote the formation of the beads.
c) Efter at være vasket bliver de udfældede perler hydrolyseret for at regenerere cellulose og derved tilvejebringe en po- 15c) After being washed, the precipitated beads are hydrolyzed to regenerate cellulose, thereby providing a polymer.
DK 158005 BDK 158005 B
røs celluloseperle, der har aktive steder til enzymbinding.rose cellulose bead having active sites for enzyme binding.
Hvis det ønskes for at forøge stabiliteten af de porse perler eller tilvejebringe egende reakt i onssteder, kan man kemisk modificere perlerne på forskellige måder. F.eks. kan perlerne 5 tværbindes for at tilvejebringe større stabilitet og forøget fysisk styrke. Man kan også kemisk substituere enten positivt ladede Iler negativt ladede grupper for at ændre overfladeabsorptionsegenskaberne af celluloseperlen. Cellulosen selv er generelt hydrofil, og ved at ændre dens reaktionssteder kan 10 man derfor ændre dens hydrofile egenskaber.If it is desired to enhance the stability of the porous beads or provide proper response in onsite locations, the beads can be chemically modified in various ways. Eg. For example, the beads 5 can be crosslinked to provide greater stability and increased physical strength. Chemically, either positively charged or negatively charged groups can be chemically substituted to alter the surface absorption properties of the cellulose bead. The cellulose itself is generally hydrophilic, and by changing its reaction sites one can therefore change its hydrophilic properties.
Opfindelsen angår endvidere en fremgangsmåde, ved hvilken enzymer og andre biologisk aktive midler kan immobi1iseres ved binding på de porøse celluloseperler. F.eks. kan man omdanne 15 porøse celluloseperler, som ovenfor beskrevet, t-mnethylami-noethyIcel1u1 ose (DEAE) ved at bringe perlerne til at reagere med N,N-diethyl-2-chlorethylaminhydrochlorid på sædvanlig måde. Perler fremkommet på, denne måde indeholder DEAE-cellu-~-lese og; er med-godt resul tat anvendt"'·* i T-at bNtrdf-^jUjkoseiso-20 merase, udvundet af en streptomyces kultur. Der har også“\^f?^i^_^^ anvendt en fremgangsmåde, som indebærer cyanogenbromid til at ^ Mmmob'f 1 i sere g 1 ukoseisomerasen.The invention further relates to a method by which enzymes and other biologically active agents can be immobilized by binding to the porous cellulose beads. Eg. For example, 15 porous cellulose beads, as described above, can be converted to t-methylaminoethyl cellulose (DEAE) by reacting the beads with N, N-diethyl-2-chloroethylamine hydrochloride in the usual manner. Beads obtained in this way contain DEAE cellulose and; has been successfully used in T-at bNtrdf- ^ jjkoseisomerase, derived from a streptomyces culture. Also, a method involving cyanogen bromide has been used. to ^ Mmmob'f 1 in sere g 1 the ukose isomerase.
En anden fremgangsmåde til enzymimmobilisering på de porøse 25 celluloseperler indebærer anvendelse af tolylen-2,4-diisocya-nat. Diisocyanatet blev anvendt til at tværbinde cellulose for at forbedre den fysiske styrke af de porøse perler, det har imidlertid vist sig, at de porøse celluloseperler ifølge opfindelsen, når de er behandlet med diisocyanat, kan immobili-30 sere enzymer på overfladen deraf ved blot at blande de med diisocyanat behandlede perler sammen med en enzymopløsning. Når der f.eks. blev anvendt giukoamylase, bandt diisocyanatperlerne mere end 1000 internationale enheder af enzymet pr. g tørre perler. Opfindelsen er ikke begrænset til den følgende te-35 ori, men det ser ud til, at når tørre porøse celluloseperler er i tør acetone med to 1 y 1 en-2,4-di isocyanat i nærværelse af en katalysator (f.eks. triethylamin), sker der en betydelig grad af tværbinding mellem cellulosemolekyler, som vist ved 16Another method of enzyme immobilization on the porous cellulose beads involves the use of tolylene-2,4-diisocyanate. The diisocyanate was used to crosslink cellulose to improve the physical strength of the porous beads, however, it has been found that the porous cellulose beads of the invention, when treated with diisocyanate, can immobilize enzymes on the surface thereof by mix the diisocyanate-treated beads together with an enzyme solution. For example, when was used giukoamylase, the diisocyanate beads bound more than 1000 international units of the enzyme per g dry beads. The invention is not limited to the following teas, but it appears that when dry porous cellulose beads are in dry acetone with two 1 µl of 2,4-di isocyanate in the presence of a catalyst (e.g. triethylamine), there is a considerable degree of cross-linking between cellulose molecules, as shown at 16
DK 158005 BDK 158005 B
den forbedrede fysiske styrke af perlerne. Efter en tilstrækkelig lang reaktionstid blev perlerne vasket med tør acetone for at fjerne frie diisocyanatrester. Cel 1u1 oseper 1 erne synes at have et stort antal bundne isocyanatgrupper. Ved blanding 5 af de behandlede perler med en vandig enzymopløsning synes enzymmolekyler at blive kovalent bundet til celluloseperlerne gennem isocyanatgrupperne. Det har også vist sig, at vask af de behandlede perler med vand resulterer i omdannelse af isocyanatgrupper til aminogrupper. På denne måde er med godt 10 resultat immobi1iseret et enzym, glukoamylase til aminocellu-loseperlerne med glutaraldehyd, et middel, der er velkendt for dets evne til at reagere og tværbinde aminogrupper (på perlerne og enzymet).the enhanced physical strength of the beads. After a sufficiently long reaction time, the beads were washed with dry acetone to remove free diisocyanate residues. The cel 1u1 oseps 1s appear to have a large number of bound isocyanate groups. By mixing 5 of the treated beads with an aqueous enzyme solution, enzyme molecules appear to be covalently bound to the cellulose beads through the isocyanate groups. It has also been found that washing the treated beads with water results in the conversion of isocyanate groups to amino groups. In this way, an enzyme, glucoamylase, is immobilized to the amino cellulose beads with glutaraldehyde, an agent well known for its ability to react and crosslink amino groups (on the beads and enzyme).
15 De porøse^eTTXrl-©£^erJer fremstillet ifølge opfindelsen kan - også anvendes til adskiHelse og rein.s.ning af enzymer, protei ner, nukleinsyrer ©g lignende. De porøse cel 1 uloseperle.r .fremstillet ved fremOanosjnåden^ffølaae opfi-adejsen kan derivatise-res i-H^f’remstTlTTWg af DEAE-porøse cel 1 uTosepCT'Ter ,~"som Irar Z ?r~ ' udmærkede strømningsegenskaber og alligevel er effektiv i stand til at adskille enzymer, proteiner, nuklejjisyrej^jag lig-nende, ligeså effektivt som eksisterénde"~industriel le produkter i overensstemmelse med den teknik-, #e.r kaldes søj 1 ekr-oma-tografi.The porous compounds prepared according to the invention can also be used for the separation and purification of enzymes, proteins, nucleic acids and the like. The porous cell 1 beads prepared by the method of the invention can be derivatized in the form of DEAE porous cell 1, as well as excellent flow properties and excellent flow properties. capable of separating enzymes, proteins, nucleic acids, and the like, as effectively as existing "industrial products in accordance with the technique known as column 1 ecr oma-tography.
2525
Man kan også derivatisere de porøse celluloseperler ifølge opfindelsen (in situ) med andre grupper end DEAE. De porøse celluloseperler ifølge opfindelsen er således anvendelige til mange forskellige anvendelser. F.eks. kan man binde en speci-30 fik funktionel gruppe til de porøse cellu1 oseper 1 er, og de derefter derivatiserede perler kan anvendes f.eks. til fjernelse af garvestof fra frugtsaft ved at lede frugtsaften gennem et leje af de derivatiserede porøse celluloseperler med protei n.The porous cellulose beads of the invention can also be derivatized (in situ) with groups other than DEAE. Thus, the porous cellulose beads of the invention are useful for a variety of applications. Eg. For example, one may bind a specific functional group to the porous cellulose soaps 1, and the subsequently derivatized beads may be used e.g. for removing tanning substance from fruit juice by passing the fruit juice through a bed of the derivatized porous cellulose beads with protein n.
På lignende måde kan man fjerne metalioner fra fortyndede opløsninger indeholdende disse. En sådan fremgangsmåde kunne muliggøre udvinding af værdifulde metalioner (dvs. kobberioner 35 17Similarly, metal ions can be removed from dilute solutions containing these. Such a method could enable the extraction of valuable metal ions (ie, copper ions 17)
DK 158005 BDK 158005 B
og guldioner) af fortyndede opløsninger, der forekommer i minedriften, og kunne finde særlig anvendelighed til eksisterende mineteknik med opløsninger, hvorved metaller ekstraheres fra malme med sure opløsninger.and gold ions) of dilute solutions occurring in the mining industry and could find particular applicability to existing mining techniques with solutions whereby metals are extracted from ores with acidic solutions.
55
Opfindelsen anskueliggøres nærmere af de følgende eksempler, af hvilke eksempel I-V belyser fremstilling af porøse celluloseperler, eksempel VI-XII og XVIII-XXVII belyser anvendelsen af porøse celluloseperler, og eksempel XIII-XVIII belyser 10 tværbinding af porøse celluloseperler.The invention is further illustrated by the following examples, of which Examples I-V illustrate the preparation of porous cellulose beads, Examples VI-XII and XVIII-XXVII illustrate the use of porous cellulose beads, and Examples XIII-XVIII illustrate the cross-linking of porous cellulose beads.
Eksempel IExample I
50 g celluloseacetat (Vise 3 fra Eastman Kodak Chemicals) blev 15 opløst i 400 ml opløsningsmiddel A (sammensat af acetone og dimethylsulfoxid i et rumfangsforhold på 6-til-4) til dannelse af en 12,5% (vægt/rumfang) opløsning. Med e.n sprøjtepistol (malingssprøjte fra Sears Roebuck & Co.) t>!©v celluloseopløs-n i ngen s;å aprejjtet ved et lufttryk på U,,4 fcg/cai* som fine små 20 dråber ii/nd ii ©m 'vawdtan'k indeholdende 152 liter vand og 4 drå-—~b©r—af ét "ålmindeligt husholdsningsrensemiddel . Ved berøring med overfladen af vandet koagulerer celluloseacetatdråberne til porøse perler og synker til bunds. De porøse perler blev opsamlet og vasket. De vaskede perler blev så deacetyleret med 25 ca. en 0,15 N opløsning af natriumhydroxid natten over ved stuetemperatur. De deacetylerede perler blev så vasket og sugetørret og gav en porøs celluloseperle med et hulrum større rend 50 rumfangsprocent parat til brug ved enzymimmobilisering. Fig. 1 illustrerer størrelsesfordelingen af de frem-30 stillede porøse perler. Elektronmikrografier afslørede, at perlerne var generelt kugleformede, og det indre og overfladen deraf havde samme struktur. Porestørrelserne var helt ensartede, og porerne var fordelt ensartet gennem hele perlen som vist på fig. 2, 4 (A) og 4 (B). Perlernes porestørrelse blev 35 bestemt af skanderende elektronmikrografier. Den skanderende mikrografering kræver tørre prøver, og da tørring af perlerne i luft resulterer i en formindskelse af størrelsen, blev perlerne tørret ved den kritiske punktteknik med flydende kuldioxid. Porestørrelsen blev bestemt til at være ca. 1*10-^ m.50 g of cellulose acetate (Vise 3 from Eastman Kodak Chemicals) was dissolved in 400 ml of solvent A (composed of acetone and dimethyl sulfoxide in a volume ratio of 6 to 4) to form a 12.5% (w / v) solution. With a spray gun (paint sprayer from Sears Roebuck & Co.) t>! © v cellulose solution at no time, sprayed at an air pressure of U ,, 4 fcg / cai * as fine small 20 drops ii / nd ii © m ' vawdtan'k containing 152 liters of water and 4 drops of one ordinary household cleaner. Upon contact with the surface of the water, the cellulose acetate drops coagulate into porous beads and sink to the bottom. The porous beads were collected and washed. was then deacetylated with about a 0.15 N solution of sodium hydroxide overnight at room temperature.The deacetylated beads were then washed and suction dried to give a porous cellulose bead with a cavity larger than 50 volume percent ready for use in enzyme immobilization. Electron micrographs revealed that the beads were generally spherical and the interior and surface thereof had the same structure. The pore sizes were completely uniform and pores ne were distributed uniformly throughout the bead as shown in FIG. 2, 4 (A) and 4 (B). The pore size of the beads was determined by scanning electron micrographs. Scanning micrographing requires dry samples, and as drying the beads in air results in a reduction in size, the beads were dried by the critical point technique of liquid carbon dioxide. The pore size was determined to be approx. 1 * 10- ^ m.
Eksempel IIExample II
DK 158005 BDK 158005 B
ιβιβ
Ved anvendelse af en 10% (vægt/rumfang) cel!uloseacetatopløs-ning i opløsningsmiddel A ved fremgangsmåden i eksempel I blev 5 der også dannet porøse perler, som var egnede til brug ved en-zymimmobi1isering.Using a 10% (w / v) cellulose acetate solution in solvent A by the procedure of Example I, 5 porous beads suitable for use in enzyme immobilization were also formed.
Eskempel IIIExample III
10 En 10% (vægt/rumfang) celluloseacetatopløsning (Vise 3 fra Eastman Kodak Chemicals) blev fremstillet i opløsningsmiddel B (acetone og formamid i et rumfangsforhold 7-til3). Cellulose-acetatopløsningen blev så sprøjtet og hydrolyseret ved fremgangsmåden i eksempel I. Der fremkom stærkt porøse cellulose-15 perler med et hulrum større end 50 rumfangsprocent.A 10% (w / v) cellulose acetate solution (Vise 3 from Eastman Kodak Chemicals) was prepared in solvent B (acetone and formamide in a volume ratio of 7 to 3). The cellulose acetate solution was then sprayed and hydrolyzed by the procedure of Example I. Highly porous cellulose beads with a cavity greater than 50% by volume were obtained.
Eksempel IVExample IV
Fremgangsmåden, der er beskrevet i eksempel II, blev gentaget 20 ved anvendelse af en opløsning fremstillet med cel!uloseacetat af typen Vise 45 (fra Eastman Kodak Chemicals)-^ Der fremkom også porøse perler med udmærkede egenskaber til enzymimmobilisering.The procedure described in Example II was repeated 20 using a solution prepared with cellulose acetate of type 45 (from Eastman Kodak Chemicals) - Porous beads with excellent properties for enzyme immobilization were also obtained.
25 Eksempel VExample V
Fremgangsmåden, der er beskrevet i eksempel II, blev udført under anvendelse af en 10% vægt/rumfang opløsning af cellulo-setriaeetat (fra Eastman Kodak Chemicals) i opløsningsmiddel 30 a. De derved fremkomne perler udviste udmærket porøsitet til enzymimmobilisering. Cellulose kan anvendes som understøtningsmateriale til immobilisering af enzymer og andre biologisk aktive midler. Mange har valgt cellulose som understøtning, fordi cellulose er billig, kemisk stabil og er resistent 35 over for mikrobiologisk forurening. Cellulose har også tre hy-droxylgrupper på hver anhydro-glukoseenhed, hvilket giver stor alsidighed samt stor kapacitet til immobilisering af et ønsket stof.The procedure described in Example II was carried out using a 10% w / v solution of cellulose etria etate (from Eastman Kodak Chemicals) in solvent 30 a. The resulting beads showed excellent porosity for enzyme immobilization. Cellulose can be used as a support material for immobilization of enzymes and other biologically active agents. Many have chosen cellulose as support because cellulose is cheap, chemically stable and resistant to microbiological contamination. Cellulose also has three hydroxyl groups on each anhydro glucose unit, providing great versatility as well as great capacity to immobilize a desired substance.
1919
DK 158005 BDK 158005 B
Den største ulempe ved at anvende cellulose som understøtningsmateriale er, at cellulose har en fibrøs form og mangler den nødvendige mekaniske styrke. Reaktorer pakket med cellulose har dårlige strømningsegenskaber, udvikler et alvorligt 5 højt trykfald og somme tider kanaldannelse. For at overvinde disse problemer fremstilledes ifølge opfindelsen cellulose i perleform, som udviste bedre mekanisk styrke og gav forbedrede strømningsegenskaber sammenlignet med kendte materialer. Da strukturen af celluloseperlerne ifølge opfindelsen er forskel-10 lig fra strukturen af regulær cellulose, kan belastningen af enzymer og stabiliteten af de immobi1iserede enzymer dog være forskellig fra den, der fås med regulær cellulose. Kemien ved fremstillingen af immobi1iserede enzymer påvirker ikke blot belastningen og stabiliteten af enzymet på celluloseperlerne, 15 men påvirker også den mekaniske styrke af celluloseperlerne. Enhver mekanisk fremgangsmåde til immobilisering af enzymer, som forøger den mekaniske styrke af celluloseperler, ville forbedre strømningsegenskaberne i en reaktor, såedes som det vil fremgå af eksemplerne.The main disadvantage of using cellulose as a backing material is that cellulose has a fibrous form and lacks the necessary mechanical strength. Reactors packed with cellulose have poor flow properties, develop a severe high pressure drop and sometimes duct formation. In order to overcome these problems, according to the invention, cellulose was prepared in pearl form which exhibited better mechanical strength and gave improved flow properties compared to known materials. However, since the structure of the cellulose beads of the invention is different from the structure of regular cellulose, the loading of enzymes and the stability of the immobilized enzymes may be different from that obtained with regular cellulose. The chemistry in the preparation of immobilized enzymes not only affects the loading and stability of the enzyme on the cellulose beads, but also affects the mechanical strength of the cellulose beads. Any mechanical method for immobilizing enzymes which increases the mechanical strength of cellulose beads would improve the flow characteristics of a reactor as will be apparent from the examples.
2020
Eksempel VIExample VI
1 g porøse celluloseperler fremstillet ifølge eksempel I blev dispergeret i 15 ml vand, som blev indstillet til pH 11,5 med 25 natriumhydroxid og holdt ved konstant temperatur på 20°C. l g cyanogenbromid blev sat til denne dispersion. pH-værdien blev holdt på 11,5 med IN NaOH. Efter 15 minutter blev perlerne vasket med en phosphatstødpude (0,1 M) ved pH og 0eC. 15 ml glukoamylaseopløsning (30 mg/ml) blev så sat til perlerne.1 g of porous cellulose beads prepared according to Example I was dispersed in 15 ml of water which was adjusted to pH 11.5 with 25 sodium hydroxide and kept at a constant temperature of 20 ° C. One gram of cyanogen bromide was added to this dispersion. The pH was maintained at 11.5 with 1N NaOH. After 15 minutes, the beads were washed with a phosphate buffer (0.1 M) at pH and 0 ° C. 15 ml of glucoamylase solution (30 mg / ml) was then added to the beads.
30 Blandingen blev henstillet natten over. De således fremstillede perler indeholdet 1830 enheder enzymaktivitet pr. g tør vægt af celluloseperlen ved 60eC under anvendelse af 5% maltose som substrat. En enhed enzymaktivitet defineres som den, der frembringer et mikromol produkt pr. minut.The mixture was left to stand overnight. The beads thus prepared contain 1830 units of enzyme activity per ml. g dry weight of the cellulose bead at 60 ° C using 5% maltose as a substrate. One unit of enzyme activity is defined as that which produces one micromole of product per minute.
35 2035 20
DK 158005 BDK 158005 B
Eksempel VIIExample VII
0,2 g porøse celluloseperler fremkommet som i eksempel I blev dispergeret i 5 ml acetone. 0,2 ml tri ethyl am in blev sat til 5 dispersionen, og det samme blev 0,2 ml tolylen-2,4-diisocya-nat. Efter 30 minutter blev perlerne vasket med acetone og derefter en acetatstødpude ved pH 4,75. 5 ml glukoamylaseop-løsning (25 mg/ml) blev tilsat. Enzymet blev derved immobili-seret på perlerne med en aktivitet af 2000 enheder pr. g cello 1 uloseperler.0.2 g of porous cellulose beads obtained as in Example I were dispersed in 5 ml of acetone. 0.2 ml of triethyl amine was added to the dispersion, and the same was 0.2 ml of tolylene-2,4-diisocyanate. After 30 minutes, the beads were washed with acetone and then an acetate buffer at pH 4.75. 5 ml of glucoamylase solution (25 mg / ml) was added. The enzyme was thereby immobilized on the beads with an activity of 2000 units per ml. g cello 1 ulos beads.
Eksempel VIIIExample VIII
200 mg glukoseisomerase i en maleinsyrestødpudeopløsning blev 15 immobi1iseret på 2 g celluloseperler på samme måde, som beskrevet i eksempel 7. Cel!uloseperlerne indeholdt 90 enheder enzymaktivitet pr. g celluloseperler ved 60°C under anvendelse af 9% fruktose som substrat.200 mg glucose isomerase in a maleic acid buffer solution was immobilized on 2 g of cellulose beads in the same manner as described in Example 7. The cellulose beads contained 90 units of enzyme activity per ml. g cellulose beads at 60 ° C using 9% fructose as substrate.
20 Eksempel IXExample IX
300 mg invertase i 5 ml acetatstødpude blev immobi 1 iseret på 0,5 g porøse celluloseperler ved anvendelse af fremgangsmåden, der er beskrevet i eksempel VII. Celluloseperlerne indeholdt 25 3000 enheder aktivitet pr. g cellulose.300 mg of invertase in 5 ml of acetate buffer was immobilized on 0.5 g of porous cellulose beads using the procedure described in Example VII. The cellulose beads contained 25,000 units of activity per g of cellulose.
Eksempel XExample X
50 mg laktase i phosphatstødpude (pH 7,0) blev immobi1 i seret 30 på 0,5 g celluloseperler ved anvendelse af fremgangsmåden, der er beskrevet i eksempel VI. De fremkomne celluloseperler indeholdt ca. 80 enheder enzymaktivitet pr. g celluloseperler ved 3Q°C under anvendelse af 1¾ laktose som substrat.50 mg of lactase in phosphate buffer (pH 7.0) was immobilized in sera 30 on 0.5 g of cellulose beads using the procedure described in Example VI. The resulting cellulose beads contained approx. 80 units of enzyme activity per g cellulose beads at 3 ° C using 1¾ lactose as substrate.
3535
Eksempel XIExample XI
2121
DK 158005 BDK 158005 B
500 mg giukkoseisomerase blev opløst i 150 ml maleinsyrestød-pude (0,0 M, pH = 5,5). Enzymopløsningen blev pumpet gennem 5 5 g porøse tværbundne celluloseperler fremstillet som beskrevet i eksempel XIV. DEAE-celluloseperlerne indeholdt således 100 enheder enzymaktivitet pr. g perler.500 mg of glucose glucose isomerase was dissolved in 150 ml maleic acid buffer (0.0 M, pH = 5.5). The enzyme solution was pumped through 5 g of porous cross-linked cellulose beads prepared as described in Example XIV. Thus, the DEAE cellulose beads contained 100 units of enzyme activity per ml. g beads.
Eksempel XIIExample XII
10 0,25 g porøse celluloseperler fremstillet som i eksempel I blev udblødt i 3% giutaraldehyd og 0,1 M MgCl2· Efter tørring under anvendelse af vakuumsugning på en Buchner tragt blev prøverne opvarmet til 80°C i 30 minutter. 5 ml glukoamylase 15 (25 mg/ml) blev sat til perlerne. Efter henstand natten over indeholdt de således fremstillede perler ca. 200 enheder enzymaktivitet pr. g tørre celluloseperler.10 0.25 g of porous cellulose beads prepared as in Example I were soaked in 3% giutaraldehyde and 0.1 M MgCl 2 · After drying using vacuum suction on a Buchner funnel, the samples were heated to 80 ° C for 30 minutes. 5 ml of glucoamylase 15 (25 mg / ml) was added to the beads. After standing overnight, the beads thus prepared contained approx. 200 units of enzyme activity per g of dry cellulose beads.
Eksempel XIIIExample XIII
20 1 g porøse celluloseperler blev cyanethy1eret med 10 ml acryl-nitril (C = CCsN) ved 50°C. De således behandlede celluloseperler blev derefter behandlet med hydroxylamin ved en pH-vær-di på 6,5-6,7 ved 50-100°C i 4 timer. De fremkomne modificere-25 NH2 de porøse perler indeholdt - C = Ν0Η grupper og er egnet til absorbering af tunge ioner, såsom ferri, ferro og kupri.20 1 g of porous cellulose beads were cyanethylated with 10 ml of acrylonitrile (C = CCsN) at 50 ° C. The cellulose beads thus treated were then treated with hydroxylamine at a pH of 6.5-6.7 at 50-100 ° C for 4 hours. The resulting modifier 25 NH 2 the porous beads contained - C = Ν0Η groups and is suitable for absorbing heavy ions such as ferric, ferrous and copper.
30 Eksempel XIVExample XIV
En suspension af 2,5 g porøse celluloseperler blev behandlet med 2,5 ml hexamethy1 end iisocyanat og triethylamin, efterfulgt af hydrolyse i vand. Produktet blev så behandlet med 50 ml 0,5 35 M 0-methyl isourinstof ved pH 5. Det fremkomne produkt havde følgende funktionelle grupper: 22A suspension of 2.5 g porous cellulose beads was treated with 2.5 ml hexamethylene than isocyanate and triethylamine, followed by hydrolysis in water. The product was then treated with 50 ml of 0.5 35 M O-methyl isourine at pH 5. The resulting product had the following functional groups: 22
DK 158005 BDK 158005 B
porøse m © cellulose- ΪΗ2 perler---- - C - 5 der er nyttig som anionbytter.porous m © cellulose ΪΗ2 beads ---- - C - 5 useful as anion exchanger.
Eksempel XVExample XV
10 5 g porøse celluloseper ler fremstillet ifølge eksempel I blev sat til 100 ml 36% formaldehyd og 200 ml 37% saltsyre. Efter henstand i 1¾ time ved stuetemperatur blev perlerne filtreret og derefter vasket med vand og 0,2% natriumcarbonatopløsning. Perlerne blev så tørret ved 75 til 80°C. De fremkomne, tvær-15 bundne celluloseperler udviste stor fysisk styrke.10 g of porous cellulose beads prepared according to Example I were added to 100 ml of 36% formaldehyde and 200 ml of 37% hydrochloric acid. After standing for 1 hour at room temperature, the beads were filtered and then washed with water and 0.2% sodium carbonate solution. The beads were then dried at 75 to 80 ° C. The resulting cross-linked cellulose beads showed great physical strength.
Eksempel XVIExample XVI
3 g porøse cel!uloseperler blev tværbundet med formaldehyd ved 20 fremgangsmåden i eksempel XV. Perlerne blev så behandlet med 3 g 2-chlortriethylamin. Efter opvarmning af blandingen i 35 minutter til en temperatur på 80 til 85eC blev perlerne vasket i rækkefølge med natriumchlorid, natriumhydroxid, saltsyre, vand og ethanol. De derved fremkomne tværbundne porøse DEAE-cellu-25 loseperler udviste udmærket porøsitet og havde et hulrum større end 50 rumfangsprocent.3 g of porous cellulose beads were crosslinked with formaldehyde by the procedure of Example XV. The beads were then treated with 3 g of 2-chlorotriethylamine. After heating the mixture for 35 minutes to a temperature of 80 to 85 ° C, the beads were washed sequentially with sodium chloride, sodium hydroxide, hydrochloric acid, water and ethanol. The resulting cross-linked porous DEAE cellulose beads showed excellent porosity and had a void greater than 50% by volume.
Eksempel XVIIExample XVII
30 Der blev dannet en dispersion af 0,5 g porøse celluloseperler i 5 ml 0,2 N natriumhydroxid og 5 ml epichlorhydrin. Dispersionen blev så opvarmet i 5 minutter til en tempertur på 80°C. Derefter blev perlerne vasket, og de tværbundne porøse perler udviste større styrke end de porøse celluloseperler før tvær-35 bindingen. Våde celluloseperler fremkommet ved fremgangsmåden i eksempel I blev vasket i acetone.A dispersion of 0.5 g of porous cellulose beads was formed in 5 ml of 0.2 N sodium hydroxide and 5 ml of epichlorohydrin. The dispersion was then heated for 5 minutes to a temperature of 80 ° C. Then, the beads were washed and the cross-linked porous beads exhibited greater strength than the porous cellulose beads prior to the cross-linking. Wet cellulose beads obtained by the procedure of Example I were washed in acetone.
De vaskede perler blev så suspenderet i tør acetone indeholdende 0,6 ml triethylamin for hver gram cellulose. Tolylen- 23The washed beads were then suspended in dry acetone containing 0.6 ml of triethylamine for each gram of cellulose. Tolylene 23
DK 158005 BDK 158005 B
2,4-diisocyanat i en mængde 1,6 ml pr. g celluloseperler blev sat til suspensionen ved 0°C. Efter en periode på 30 minutter blev perlerne vasket med tør acetone og derpå filtreret., De fremkomne porøse celluloseperler indeholder reaktionsdygtige 5 isocyanatgrupper, som så kunne hydrolyseres til en aminogrup-pe ved tilsætning af vand.2,4-diisocyanate in an amount of 1.6 ml. g of cellulose beads were added to the suspension at 0 ° C. After a period of 30 minutes, the beads were washed with dry acetone and then filtered. The resulting porous cellulose beads contained reactive 5 isocyanate groups which could then be hydrolyzed to an amino group by the addition of water.
Eksempel XVIIIExample XVIII
10 0,2 g af celluloseperlerne fremstillet i eksempel I blev sus penderet i 10 ml destilleret vand, pH-værdien blev indstillet til 11,5 ved tilsætning af 1 N NaOH ved 20°C. 0,2 g CNBr blev sat til suspensionen af celluloseperler, lidt ad gangen og pH-værdien blev opretholdt ved hjælp af et autot itrameter med 1 H 15 NaOH. Efter 20 minutter blev perlerne vasket med iskoldt destilleret vand og en passende pufferopløsning. Enzymer opløst 1 en passende pufferopløsning blev sat til de vaskede celluloseperler. Cellulose (Solka floc) anvendt ved denne fremgangsmåde blev merceriseret med 18% (vægt/rumf ang) NaOH i fire 20 timer og blev derefter vasket med destilleret vand.10 0.2 g of the cellulose beads prepared in Example I were suspended in 10 ml of distilled water, the pH was adjusted to 11.5 by the addition of 1 N NaOH at 20 ° C. 0.2 g CNBr was added to the suspension of cellulose beads, slightly at a time, and the pH was maintained by an autothe itrameter with 1 H 15 NaOH. After 20 minutes, the beads were washed with ice-cold distilled water and a suitable buffer solution. Enzymes dissolved in a suitable buffer solution were added to the washed cellulose beads. Cellulose (Solka floc) used in this procedure was mercerized with 18% (w / v) NaOH for four 20 hours and then washed with distilled water.
Eksempel XIXExample XIX
2 g sugetørrede celluloseperler fra eksempel I blev vasket med 25 acetone for at fjerne fugtighed og blev suspenderet i 10 ml acetone. En tiendedel ml triethylamin eller dibutyltindiacetat blev tilsat som katalysator. En tiendedel ml tolylen-2,4-d i -isocyanat eller hexamethy1 end i isocyanat blev sat til cellulo-seperlesuspensionen. Efter 45 minutters reaktion ved omgivel-30 sernes temperatur blev celluloseperlerne vasket med acetone for at fjerne overskud af diisocyanat, og vand blev derefter anvendt til at vaske celluloseperlerne for at fjerne acetone. Enzymer opløst i en passende stødpudeopløsning blev sat til celluloseperlerne. Celluloseperlerne blev lagret ved 4eC nat-35 ten over.2 g of suction-dried cellulose beads of Example I were washed with 25 acetone to remove moisture and suspended in 10 ml of acetone. One tenth ml of triethylamine or dibutyltin diacetate was added as a catalyst. One-tenth ml of tolylene-2,4-d in isocyanate or hexamethyl than in isocyanate was added to the cellulose suspension. After 45 minutes of reaction at ambient temperature, the cellulose beads were washed with acetone to remove excess diisocyanate, and water was then used to wash the cellulose beads to remove acetone. Enzymes dissolved in a suitable buffer solution were added to the cellulose beads. The cellulose beads were stored at 4 ° C overnight.
Eksempel XXExample XX
2424
DK 158005 BDK 158005 B
Aryldiisocyanat blev bundet til celluloseperler som beskrevet 1 eksempel XIX, Før enzymopløsningen blev tilsat, blev cellu-5 loseperlerne suspenderet i destilleret vand. En tiendedel ml triethylamin blev tilsat for at katalysere reaktionen mellem isocyanat og vand til dannelse af arylamincelluloseperler. Arylaminderivatet blev så diazoteret med NaN02 i HC1. Enzymer suspenderet i en passende stødpudeopløsning blev så bundet til 10 cel!uloseperlerne.Aryl diisocyanate was bound to cellulose beads as described in Example XIX. Before adding the enzyme solution, the cellulose beads were suspended in distilled water. One-tenth ml of triethylamine was added to catalyze the isocyanate-water reaction to form arylamine cellulose beads. The arylamine derivative was then diazotized with NaNO 2 in HCl. Enzymes suspended in a suitable buffer solution were then bound to the 10 cellulose beads.
Eksempel XXIExample XXI
Diisocyanat bundet på cellulosen ved fremgangsmåden i eksempel 15 XIX reagerer med vand til dannelse af aminogrupper med eller uden en tertiær amin som katalysator. GIutaraldehyd anvendes til at koble enzymet på celluloseperlerne ved tværbinding af aminogrupper på enzymer og på celluloseperler.Diisocyanate bound to the cellulose by the procedure of Example 15 XIX reacts with water to form amino groups with or without a tertiary amine as catalyst. Gutaraldehyde is used to link the enzyme to the cellulose beads by crosslinking amino groups on enzymes and on cellulose beads.
20 Eksempel XXIIExample XXII
2 g sugetørrede perler fremstillet i eksempel I blev suspenderet i 10 ml 3% glutaraldehyd, som var 0,1 M i Mg Cl2· Suspensionen blev opvarmet til 100eC i 30 minutter. Celluloseperler- 25 ne blev så vasket med destilleret vand. Enzymer opløst i en passende stødpudeopløsning blev sat til celluloseperlerne. Reaktionen fik lov at fortsætte natten over ved 4@C.2 g of suction dried beads prepared in Example I were suspended in 10 ml of 3% glutaraldehyde which was 0.1 M in Mg Cl 2 · The suspension was heated to 100 ° C for 30 minutes. The cellulose beads were then washed with distilled water. Enzymes dissolved in a suitable buffer solution were added to the cellulose beads. The reaction was allowed to continue overnight at 4 @ C.
Eksempel XXIII 30 1 g celluloseperler fremstillet ved fremgangsmåden i eksempel I blev opvarmet under tilbagesvaling med 10 ml 10% 3-amino-propyl triethoxysi1 an i toluol i 4 timer. Cel!uloseprøverne blev så filtreret og vasket med acetone. 2,5% (vægt/rumfang) 35 glutaraldehydopløsning i 0,1 M phosphatstødpude (pH = 7,0) blev sat til cel!uloseperlerne ved omgivelsernes temperatur i en time under lejlighedsvis omrøring. Celluloseperlerne blev så vasket grundigt med vand og en passende stødpudeopløsning.Example XXIII 30 g of cellulose beads prepared by the method of Example I were heated under reflux with 10 ml of 10% 3-amino-propyl triethoxysilane in toluene for 4 hours. The cellulose samples were then filtered and washed with acetone. 2.5% (w / v) of 35 glutaraldehyde solution in 0.1 M phosphate buffer (pH = 7.0) was added to the cellulose beads at ambient temperature for one hour with occasional stirring. The cellulose beads were then thoroughly washed with water and a suitable buffer solution.
2525
DK 158005 BDK 158005 B
Enzymer opløst i en passende stødpudeopløsning blev sat til celluloseperlerne. Reaktionen fik lov at fortsætte natten over ved 4°C.Enzymes dissolved in a suitable buffer solution were added to the cellulose beads. The reaction was allowed to continue overnight at 4 ° C.
5 Eksempel XXIVExample XXIV
Porøse celluloseperler fremstillet ved fremgangsmåden i eksempel I blev først tværbundet med 36% formaldehyd og 37% HC1 med rumfangsforhold på 5 til 1. De tværbundne celluloseperler (5 g 10 tør vægt) blev suspenderet i 50 ml kold 1,5 N NaOH opløsning.Porous cellulose beads prepared by the procedure of Example I were first cross-linked with 36% formaldehyde and 37% HCl with a volume ratio of 5 to 1. The cross-linked cellulose beads (5 g 10 dry weight) were suspended in 50 ml of cold 1.5 N NaOH solution.
6 g 2-chlortriethylaminhydrochlorid blev sat til celluloseper-lerne. Blandingen blev så opvarmet til 80-85°C i 35 minutter. Blandingen blev afkølet i et isbad og filtreret. Celluloseper-lerne blev asket med 500 ml 2M NaCl og blev så vasket med 200 15 ml IN NaOH, og 200 ml IN NaOH skiftevis tre gange. Efter vask med yderligere 200 ml IN NaOH blev celluloseprerlerne vasket med destilleret vand, indtil pH-værdien af vaskevandet blev neutral. Reaktionen med 2-chlortriethylaminhydrochlorid blev gentaget igen for at få højere substitutionsgrad. Enzymer op-20 løst i en passende stødpude blev sat til celluloseperlerne natten over ved 4°C.6 g of 2-chlorotriethylamine hydrochloride were added to the cellulose beads. The mixture was then heated to 80-85 ° C for 35 minutes. The mixture was cooled in an ice bath and filtered. The cellulose beads were ashed with 500 ml of 2M NaCl and then washed with 200 ml of 1N NaOH and 200 ml of 1N NaOH alternately three times. After washing with an additional 200 ml of 1N NaOH, the cellulose beads were washed with distilled water until the pH of the wash water became neutral. The reaction with 2-chlorotriethylamine hydrochloride was repeated again to obtain a higher degree of substitution. Enzymes dissolved in a suitable buffer were added to the cellulose beads overnight at 4 ° C.
Eksempel XXVExample XXV
25 Hexamethylendi isocyanat 'blev bundet til celluloseperler som beskrevet i eksempel 14, og derefter blev isocyanatgrupperne hydrolyseret til dannelse af aminogrupper som beskrevet i eksempel XX. 0-methy1 i sour i nstof blev sat til celluloseperlerne for at inkorporere guanidinofunktionen i de derivatiserende 30 perler.Hexamethylenedi isocyanate was bound to cellulose beads as described in Example 14, and then the isocyanate groups were hydrolyzed to form amino groups as described in Example XX. O-methyl in acid in substance was added to the cellulose beads to incorporate the guanidino function into the derivatizing beads.
Eksemplerne 18-23 beskriver immobilisering af enzymer med kovalent binding, hvorimod eksemplerne 24 og 25 beskriver ionisk adsorption. Glukoamylase, giukoseisomerase og invertase blev 35 fyldt på forskellige af perlerne fra eksempel XVIII til XXV, og omfanget af enzymbelastning blev målt.Examples 18-23 describe immobilization of enzymes with covalent bond, whereas Examples 24 and 25 describe ionic adsorption. Glucoamylase, glucose isomerase and invertase were loaded onto various of the beads of Examples XVIII to XXV and the extent of enzyme loading was measured.
Enzymerne immobi1 i seret ved kovalent binding blev vasket med 2M NaCl opløsning for at fjerne de absorberede enzymer. Nogle 26The enzymes immobilized in the sera by covalent binding were washed with 2M NaCl solution to remove the absorbed enzymes. Some 26
DK 158005 BDK 158005 B
egenskaber af de immobi1iserede enzymer er vist i tabel 2. Den viser, at samme kemi, som anvendes til cellulær cellulose, også kan anvendes til celluloseperler. Den omstændighed, at cel!uloseperlerne har højere kapacitet for belastning med 5 enzym end regulær cellulose, kan tyde på et større overfladeareal i de porøse celluloseperler.properties of the immobilized enzymes are shown in Table 2. It shows that the same chemistry used for cellular cellulose can also be used for cellulose beads. The fact that the cellulose beads have higher capacity for loading with 5 enzyme than regular cellulose may indicate a larger surface area in the porous cellulose beads.
Eksempel XXVIExample XXVI
10 Protein og enzymer kan adskilles og renses ved følgende fremgangsmåde. 2 g glykoseisomerase (Strep, albus fra Miles Laboratory) blev suspenderet i 20 ml 0,01M phosphatstødpude (pH = 7,0) og suspensionen blev centrifugeret. Den overliggende væske blev sat til en søjle af DEAE porøse celluloseperler frem-15 stillet ifølge eksempel XVI. Lejerumfanget var 30 ml og søjlediameteren 1,5 cm. Søjlen blev vasket med 0,01 M phosphatstødpude (pH = 7,0). Søjlen blev elueret med NaCl gradientopløsning i 0,01 M phosphatstødpude. 61ucoseisomerase begynder at elueres ud af søjlen i NaCl fraktionerne med koncentrationer, 20 der ligger fra 0,25 til 0,45 M.Protein and enzymes can be separated and purified by the following procedure. 2 g of glucose isomerase (Strep, Albus from Miles Laboratory) was suspended in 20 ml of 0.01M phosphate buffer (pH = 7.0) and the suspension was centrifuged. The supernatant was added to a column of DEAE porous cellulose beads prepared according to Example XVI. The bearing volume was 30 ml and the column diameter 1.5 cm. The column was washed with 0.01 M phosphate buffer (pH = 7.0). The column was eluted with NaCl gradient solution in 0.01 M phosphate buffer. 61ucose isomerase begins to elute out of the column of the NaCl fractions at concentrations ranging from 0.25 to 0.45 M.
25 30 35 2725 30 35 27
DK 158005 BDK 158005 B
Tabel 2._Enzymbelastning på porøse celluloseperler.Table 2. Enzyme loading on porous cellulose beads.
«r |SoLa:tnln8 på I«R | SoLa: tnln8 on I
5 immobil!- IUX//g (be3fegnet5 immobile! - IUX // g (designated)
Enzymer sering reaktionsgrad)lge PrøvebetingelserEnzymes reaction rate) Sample conditions
Eks. Regulær Porøse cellu- cellulose-lose perlerEx. Regular Porous cellulose-free beads
XVIII 820 1.800 10% maltose, 60°CXVIII 820 1.800 10% maltose, 60 ° C
10 XIX 550 »10 XIX 550 »
Glykoamylase XX 275 10% maltose, 40°CGlycoamylase XX 275 10% maltose, 40 ° C
(A. Oryzae) XXI 550 5% maltose, 60°C(A. Oryzae) XXI 550 5% maltose, 60 ° C
XXII 80 190 10% maltose, 60°CXXII 80 190 10% maltose, 60 ° C
XXIII 200 " 15 Glykoamylase XXIV 3.000 9.000 ” (A. Niger) XXV 1.000 "XXIII 200 "15 Glycoamylase XXIV 3,000 9,000" (A. Niger) XXV 1,000 "
Glukose XIX 90 0,5M fruktose,60°CGlucose XIX 90 0.5M fructose, 60 ° C
Isomerase XXIV 300 " 20 (Strep. XXV 160 " albus)Isomerase XXIV 300 "20 (Strep. XXV 160" albus)
Invertase XIX 1.140 0,125M sakkarose,45°CInvertase XIX 1.140 0.125M sucrose, 45 ° C
(Candida XXIV 2.000 " utilis) XXV 1.840 " 25 * I-U - internationale enheder.(Candida XXIV 2,000 "utilis) XXV 1,840" 25 * I-U - International Units.
Eksempel XXVIIExample XXVII
30 De porøse celluloseperler fra eksempel XIII sættes til en 0,05 M natriumacetatopløsning (pH = 5,2), som indeholder 1.600 dele kupri ion pr. million dele. Efter en time opsamlede cellulose-perlerne 6,3% kupriion beregnet på perlernes vægt.The porous cellulose beads of Example XIII are added to a 0.05 M sodium acetate solution (pH = 5.2) containing 1,600 parts of coprion per million parts. After one hour, the cellulose beads collected 6.3% of cuprion based on the weight of the beads.
35 De har også vist sig, at når de porøse celluloseperler ifølge opfindelsen tørres og/eller opvarmes f.eks. til 100°C før brugen, udviser de fremkomne perler en forøget fysisk styrke.They have also been found that when the porous cellulose beads of the invention are dried and / or heated e.g. to 100 ° C before use, the resulting beads exhibit increased physical strength.
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/679,497 US4063017A (en) | 1976-04-22 | 1976-04-22 | Porous cellulose beads and the immobilization of enzymes therewith |
US67949776 | 1976-04-22 | ||
US77995077 | 1977-03-21 | ||
US05/779,950 US4090022A (en) | 1976-04-22 | 1977-03-21 | Porous cellulose beads |
Publications (3)
Publication Number | Publication Date |
---|---|
DK175777A DK175777A (en) | 1977-10-23 |
DK158005B true DK158005B (en) | 1990-03-12 |
DK158005C DK158005C (en) | 1990-08-27 |
Family
ID=27102254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK175777A DK158005C (en) | 1976-04-22 | 1977-04-21 | PROCEDURE FOR THE PREPARATION OF POROUS CELLULOSE PEARLS AND THE USE OF THESE |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS52129788A (en) |
CA (1) | CA1076047A (en) |
DE (1) | DE2717965C2 (en) |
DK (1) | DK158005C (en) |
FR (1) | FR2348942A1 (en) |
GB (1) | GB1575700A (en) |
SE (2) | SE434848B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2621974A1 (en) * | 1976-05-18 | 1977-11-24 | Max Planck Gesellschaft | PROCESS FOR PRODUCING A COVALENT BOND WITH BIOLOGICALLY ACTIVE MATERIALS |
JPS55129156A (en) * | 1979-03-30 | 1980-10-06 | Chisso Corp | Production of cross-linked cellulosic ion exchange body spherical particle |
JPS5624429A (en) * | 1979-08-03 | 1981-03-09 | Yoshiaki Motozato | Preparation of porous spherical particle of cellulose |
JPS5738801A (en) * | 1980-08-21 | 1982-03-03 | Chisso Corp | Production of porous spherical cellulose particle |
CA1235119A (en) * | 1984-01-24 | 1988-04-12 | Kazuhiro Yamazaki | Porous spherical cellulose acetate particles |
FR2567133A1 (en) * | 1984-07-06 | 1986-01-10 | Inst Nat Sante Rech Med | Process for fixing molecules, especially biological molecules, onto a support, and the filters obtained. |
JPH0629336B2 (en) * | 1986-05-15 | 1994-04-20 | ダイセル化学工業株式会社 | Process for producing cellulose ester ester beads |
JPH0762042B2 (en) * | 1986-05-27 | 1995-07-05 | ダイセル化学工業株式会社 | Manufacturing method of cellulose microspheres |
DE3787700T3 (en) * | 1986-10-29 | 1998-12-24 | Kanegafuchi Kagaku Kogyo K.K., Osaka | Uniform polymer particles. |
JPH01254256A (en) * | 1988-04-05 | 1989-10-11 | Kanebo Ltd | Porous ion exchange cellulose particle and preparation thereof |
US5108596A (en) * | 1988-04-05 | 1992-04-28 | Kanebo Ltd. | Borous ion-exchanged fine cellulose particles, method for production thereof, and affinity carrier |
JPH02208330A (en) * | 1989-02-08 | 1990-08-17 | Asahi Chem Ind Co Ltd | Yarn-like or film-like porous cellulosic material and its production |
JPH02208331A (en) * | 1989-02-08 | 1990-08-17 | Asahi Chem Ind Co Ltd | Modified porous cellulose material |
JPH03290443A (en) * | 1990-04-06 | 1991-12-20 | Sakai Eng Kk | Continuously foamed cellulosic molded material containing functional group having ion exchangeability |
SE9002017D0 (en) * | 1990-06-06 | 1990-06-06 | Kabivitrum Ab | PROCESS FOR MANUFACTURE OF MATRICES |
SE9301220D0 (en) * | 1993-04-14 | 1993-04-14 | Kabi Pharmacia Ab | MANUFACTURING MATRICES |
AT412404B (en) * | 2003-01-20 | 2005-02-25 | Chemiefaser Lenzing Ag | PROCESS FOR PREPARING A POROUS CELLULOSIC BODY |
GB0515577D0 (en) * | 2005-07-29 | 2005-09-07 | Amersham Biosciences Ab | Process for cross-linking cellulose ester membranes |
GB0702504D0 (en) * | 2007-02-09 | 2007-03-21 | Ge Healthcare Bio Sciences Ab | Cross-linked cellulose membranes |
DE102011117136A1 (en) * | 2011-10-25 | 2013-04-25 | JeNaCell GmbH | A process for the generation of dried cellulose and cellulosic material as well as ready-to-use cellulose products prepared by this process |
CN106661263B (en) * | 2014-07-22 | 2020-07-10 | 株式会社大赛璐 | Method for producing porous cellulose medium |
US10695747B2 (en) | 2015-04-03 | 2020-06-30 | Daicel Corporation | Method for producing porous cellulose medium |
CN112279304A (en) * | 2020-08-26 | 2021-01-29 | 甘肃农业职业技术学院 | Fe3O4Porous carbon nanofiber and preparation method and application thereof |
-
1977
- 1977-04-15 SE SE7704338A patent/SE434848B/en not_active IP Right Cessation
- 1977-04-21 DE DE19772717965 patent/DE2717965C2/en not_active Expired
- 1977-04-21 DK DK175777A patent/DK158005C/en not_active IP Right Cessation
- 1977-04-21 JP JP4633477A patent/JPS52129788A/en active Granted
- 1977-04-21 CA CA276,681A patent/CA1076047A/en not_active Expired
- 1977-04-21 FR FR7712046A patent/FR2348942A1/en active Granted
- 1977-04-22 GB GB1686077A patent/GB1575700A/en not_active Expired
-
1982
- 1982-07-20 SE SE8204400A patent/SE452161B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPS638121B2 (en) | 1988-02-20 |
SE7704338L (en) | 1977-10-23 |
SE8204400L (en) | 1982-07-20 |
FR2348942A1 (en) | 1977-11-18 |
FR2348942B3 (en) | 1980-02-29 |
GB1575700A (en) | 1980-09-24 |
SE452161B (en) | 1987-11-16 |
DE2717965C2 (en) | 1986-06-26 |
CA1076047A (en) | 1980-04-22 |
SE434848B (en) | 1984-08-20 |
SE8204400D0 (en) | 1982-07-20 |
JPS52129788A (en) | 1977-10-31 |
DK158005C (en) | 1990-08-27 |
DE2717965A1 (en) | 1977-11-10 |
DK175777A (en) | 1977-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK158005B (en) | PROCEDURE FOR THE PREPARATION OF POROUS CELLULOSE PEARLS AND THE USE OF THESE | |
US4090022A (en) | Porous cellulose beads | |
US4102746A (en) | Immobilized proteins | |
US7763348B2 (en) | Cellulosic particles, spherical object comprising cross-linked polymer particles, and adsorbent for body fluid purification | |
US4169014A (en) | Method of immobilizing proteinaceous substances | |
US4141857A (en) | Support matrices for immobilized enzymes | |
US4438196A (en) | Immobilization of biocatalysts on granular carbon | |
US4713333A (en) | Immobilization of biocatalysts on granular diatomaceous earth | |
US4303787A (en) | Process for recovering cyclodextrins | |
US4033817A (en) | Pressure-driven enzyme-coupled membranes | |
CA2131225A1 (en) | Method for preparing an immobilized enzyme conjugate and immobilized enzyme conjugates prepared thereby | |
IE56079B1 (en) | Method for production of an immobilized enzyme preparation by means of a crosslinking agent | |
US3849253A (en) | Process of immobilizing enzymes | |
US4355117A (en) | Process for preparing agglomerated fibrous cellulose | |
Bahulekar et al. | Immobilization of penicillin G acylase on functionalized macroporous polymer beads | |
Emnéus et al. | Comparison between different inorganic supports for the immobilization of amyloglucosidase and α-amylase to be used in enzyme reactors in flow-injection systems: Part I. Hydrolysis of maltose, maltooligosaccharides and soluble starch | |
US4421850A (en) | Immobilization of enzymes | |
US4206259A (en) | Support matrices for immobilized enzymes | |
US4029546A (en) | Column apparatus and process for immobilized enzyme reactions | |
US4033820A (en) | Starch sponge column apparatus and process for immobilized enzyme reactions | |
US4218363A (en) | Preparation of support matrices for immobilized enzymes | |
JPS5974984A (en) | Preparation of immobilized enzyme or microorganism | |
PL102119B1 (en) | A PROCESS OF PRODUCING THE BASE FOR IMMOBILIZING ENZYMES | |
GB2129809A (en) | Method for production of an immobilized enzyme preparation by means of a crosslinking agent | |
US4757008A (en) | Enzyme immobilization in a macroporous non-ionic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |