DK153657B - APPLICATION OF A POLARIMETRIC PROCEDURE FOR QUANTITATIVE DETERMINATION OF BLOOD GLUCOSE - Google Patents

APPLICATION OF A POLARIMETRIC PROCEDURE FOR QUANTITATIVE DETERMINATION OF BLOOD GLUCOSE Download PDF

Info

Publication number
DK153657B
DK153657B DK230678AA DK230678A DK153657B DK 153657 B DK153657 B DK 153657B DK 230678A A DK230678A A DK 230678AA DK 230678 A DK230678 A DK 230678A DK 153657 B DK153657 B DK 153657B
Authority
DK
Denmark
Prior art keywords
signal
sub
polarimetric
blood glucose
light
Prior art date
Application number
DK230678AA
Other languages
Danish (da)
Other versions
DK153657C (en
DK230678A (en
Inventor
Arno Mueller
Original Assignee
Arno Mueller
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arno Mueller filed Critical Arno Mueller
Publication of DK230678A publication Critical patent/DK230678A/en
Publication of DK153657B publication Critical patent/DK153657B/en
Application granted granted Critical
Publication of DK153657C publication Critical patent/DK153657C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

DK 153657 BDK 153657 B

iin

Opfindelsen angår anvendelsen af en polarime-trisk fremgangsmåde til kvantitativ bestemmelse af blodsukkerindholdet in vivo eller in vitro i overensstemmelse med krav 1.The invention relates to the use of a polarimetric method for quantitatively determining the blood sugar content in vivo or in vitro according to claim 1.

5 Ved opfindelsens anvendelse kan undersøgel sen ske ikke-incisivt in vivo, d.v.s. direkte på en ledende mekanisme uden at der fremkommer noget sår, eller in vitro.In the application of the invention, testing can be performed non-incisively in vivo, i.e. directly on a conductive mechanism without any ulcer, or in vitro.

Det er kendt at bestemme glukosekoncentra-10 tionen, sædvanligvis i serum, enten enzymatisk'" eller ved visuel kolorimetri, titrimetri eller fotometri.It is known to determine the glucose concentration, usually in serum, either enzymatically or by visual colorimetry, titrimetry or photometry.

Eksempler herpå er pikrinsyre-,glukoseoxidase-, peroxidase- og hexokinasemetoderne. Fra f. eks. de offentliggjorte DE patentansøgninger nr. 2 200 119 og 15 2 326 265 er det kendt i en levende organisme at im plantere en brændselscelle, som udgør en signalgiver, der ved hjælp af elektriske signaler afgiver information om nogle karakteristiske måleværdier så som pH-værdien, glukosekoncentrationen m.m. Det er også foreslået at 20 måle blodglukosekoncentrationen ved lysabsorptionsmåling ved en vis bestemt lysbølgelængde på f. eks. 975 nm i henhold til US patentskrift nr. 3 958 560 og 980 nm i henhold til en artikel af N. Kaiser i Optics Communication 11, nr. 2 fra 1974. Til sådanne, målinger er der 25 dog knyttet principielle vanskeligheder, da de pågældende molekyler har en næsten uoverskuelig mangfoldighed af absorptionsbånd, som måleteknisk kun meget vanskeligt kan skilles fra hinanden.Examples include the picric acid, glucose oxidase, peroxidase and hexokinase methods. For example, from published DE patent applications Nos. 2,200,119 and 15,232,265, it is known in a living organism to implant a fuel cell which constitutes a signal generator that provides information on some characteristic measurement values by means of electrical signals. such as pH, glucose concentration, etc. It is also suggested to measure blood glucose concentration by light absorption measurement at a certain determined wavelength of, for example, 975 nm according to U.S. Patent Nos. 3,958,560 and 980 nm, according to an article by N. Kaiser in Optics Communication 11, no. 2 of 1974. However, for such measurements there are 25 fundamental difficulties, since the molecules in question have an almost unmistakable diversity of absorption bands, which measurement techniques can only be very difficult to separate.

Den sædvanlige glukosebestemmelse, f. eks.The usual glucose determination, e.g.

30 blodglukosebestemmelse, forudsætter almindeligvis at der må tages en blodprøve incisivt indgreb i en levende organisme, hvilket indebærer højere materialeforbrug og højere omkostninger samt en vis infektionsfare, f. eks. for hepatitis (virusgulsot). Der er derfor for tiden et 35 stigende ønske om at kunne skabe en ikke-incisiv analysefremgangsmåde og tilsvarende apparater, som kan anvendes af især praktiserende læger og i klinikker samt i I * 230 blood glucose determination, usually requires that a blood test be taken incisively in a living organism, which involves higher material consumption and higher costs as well as a certain infection risk, for example for hepatitis (viral jaundice). Therefore, there is currently a growing desire to create a non-incisive analysis method and similar devices that can be used by especially GPs and clinics as well as in I * 2

DK 153657BDK 153657B

visse tilfælde,endog indenfor det private område, f.eks. ---til blodsukkerbestemmelse for diabetikere. Også indenfor farmakologien, biokemien og den almene kemiske analyseteknik foreligger der tilsvarende behov.certain cases, even within the private domain, e.g. --- for blood sugar determination for diabetics. There are similar needs in the field of pharmacology, biochemistry and the general chemical analysis technique.

5 Opfindelsen ifølge hovedkravet gør det muligt med stor følsomhed, kvantitativt at bestemme blodsukkeret ikke-incisivt in vivo eller uafhængigt heraf in vitro. De kendte fremgangsmåders ulemper undgås, og blodsukkerniveauet kan endog bestemmes ved direkte trans-10 kutan måling.The invention according to the main claim makes it possible with great sensitivity, to quantitatively determine non-incisive blood sugar in vivo or independently thereof in vitro. The disadvantages of the known methods are avoided and the blood sugar level can even be determined by direct transcutaneous measurement.

Opfindelsen bygger på polarimetriens principper. Foruden analyse in vitro er det f. eks. muligt at bestemme blodsukkerindholdet i den menneskelige eller dyriske organisme på et·strålingsgenhemtrængeligt sted, 15 f. eks. ved øreflippen eller en hudfold, og der fås pålidelige måleværdier endog ved meget små analyserumfang. Ved måling ifølge opfindelsen kan måleapparatet være udført til måling in vitro med små krav med hensyn til rumlige dimensioner, hvorved endog kvantitativ 20 analyse af et optisk virksomt stof i en uafhængig prøve bliver mulig med stor nøjagtighed.The invention is based on the principles of polarimetry. In addition to in vitro analysis, it is possible, for example, to determine the blood sugar content of the human or animal organism at a radiation-permeable site, eg at the earlobe or skin fold, and reliable measurement values are obtained even at very small assay volumes. In the measurement according to the invention, the measuring apparatus can be designed for measurement in vitro with small requirements for spatial dimensions, whereby even quantitative analysis of an optically active substance in an independent sample becomes possible with great accuracy.

Opfindelsen går ud på at måle drejningen af en lineært polariseret stråling ved dennes passage gennem et optisk aktivt emne. Drejningsvinkelmålingen skal 25 ske med stor nøjagtighed på 10“^ til 10”^ grader. Hvis analyseområdet omfatter gennemstrålet hud og nær målestedet beliggende vævsdele, virker disse depolariseren-de, men denne effekt kan i høj grad kompenseres ved hjælp af optiske foranstaltninger såsom anvendelse af 30 et transparent lag, der virker som en λ/4-plade.The invention is to measure the rotation of a linearly polarized radiation upon its passage through an optically active blank. The angle of rotation shall be 25 with high accuracy of 10 "^ to 10" ^ degrees. If the assay area comprises irradiated skin and tissue parts located near the site of measurement, these depolarize, but this effect can be greatly compensated by optical measures such as the use of a transparent layer acting as a λ / 4 plate.

Ved blodsukkerbestemmelse bevirker dog andre optisk aktive emner i blodet ligeledes en drejning af polarisationsplanet, hvorfor polarisationsbestemmelsen i det enkleste tilfælde alene giver relative målevær-35 dier. Dette kan dog i henhold til opfindelsen undgås ved at adskille den af glukosen forårsagede drejning fra 3 iIn blood glucose determination, however, other optically active substances in the blood also cause a rotation of the plane of polarization, so the polarization determination, in the simplest case, only gives relative measurement values. However, this can be avoided according to the invention by separating the rotation caused by glucose from 3

DK 153657 BDK 153657 B

drejningen hidrørende fra andre stoffer, hvilket er muligt eftersom de to stofgruppers virkninger har helt forskellige forløb med tiden. En ændring af blodsukkerindholdet sker med en højeste frekvens på ca. 8 mHz me-5 dens f. eks. de optisk aktive blodfedtstoffer såsom kolesterin, lipider osv, ændrer drejningsvinkelmiddelværdien med en højeste frekvens på ca. 0,01 mHz. Ved de frembragte signalers behandling kan man derfor adskille de to drejningsvinkler ved hjælp af denne frekvens-10 forskel. Heri ligger udgangspunktet for den foreliggende opfindelse.the rotation is due to other substances, which is possible since the effects of the two groups of substances have completely different courses of time. A change in blood sugar content occurs at a highest frequency of approx. 8 mHz, for example, the optically active blood fats such as cholesterin, lipids, etc., change the angle of rotation with a maximum frequency of approx. 0.01 mHz. Therefore, in the processing of the generated signals, the two angles of rotation can be separated by this frequency difference. This is the starting point of the present invention.

En måling af den absolutte værdi af glukoseindholdet kan ske ved at signalet differentieres, at de lave frekvenser fjernes og at signalet derefter integre-15 res. Det til fjernelse af de lave frekvenser anvendte højpasfilters amplitude- og faseegenskaber kan vælges således, at der alene fås det af glukose forårsagede vinkeldrejningsfrekvensbånd og at dette fås i sin helhed.A measurement of the absolute value of the glucose content can be made by differentiating the signal, removing the low frequencies and then integrating the signal. The amplitude and phase properties of the high-frequency filter used to remove the low frequencies can be selected so that only the angular rotation frequency band caused by glucose is obtained and is obtained in its entirety.

I et apparat til anvendelse ved fremgangs-20 måden kan den polarimetriske del være adskilt fra den strømforsynende og signalbehandlende del, hvilket er meget ønskværdigt ved målinger in vivo. Ved apparater, der alene skal anvendes til måling in vitro,behøves dog ikke denne foranstaltning.In an apparatus for use in the method, the polarimetric portion may be separate from the power supply and signal processing portion, which is highly desirable for in vivo measurements. However, for devices to be used for in vitro measurement only, this measure is not required.

25 Indikering af koncentrationen af det pågæl dende optisk aktive stof, f. eks. blodsukkeret, kan enten ske i apparatets måledel (strømforsynende del) eller adskilt derfra f. eks. ved digital indikering på samme måde som i et elektrisk armbåndsur. Stigende eller 30 faldende blodsukkerindhold kan indikeres f, eks. ved gentaget betjening af en tangent (trykknap) eller ved hjælp af et optisk signal. Den øvre og den nedre signaltærskelværdi og dermed en koncentrationstærskel kan være indstillelig og et akustisk og/eller optisk advarsels-35 signal kan automatisk udløses, hvis et af niveauerne overskrides.25 Indication of the concentration of the optically active substance concerned, for example blood sugar, can either be done in the measuring part of the device (power supply part) or separated therefrom, eg by digital indication in the same way as in an electrical wrist watch. Increasing or decreasing blood sugar levels may be indicated, for example, by repeatedly pressing a key (pushbutton) or by means of an optical signal. The upper and lower signal threshold and thus a concentration threshold can be adjustable and an acoustic and / or optical warning signal can be automatically triggered if one of the levels is exceeded.

DK 153657BDK 153657B

44

Opfindelsen forklares nærmere i det følgende under henvisning til den skematiske tegning, hvor fig. 1 viser et principdiagram for en polarisationsindretning af kendt type, 5 fig. 2 et polarimeter, fig. 3 et apparat til brug i forbindelse med opfindelsen, fig. 4 et diagram til forklaring af måleprin-The invention is explained in more detail below with reference to the schematic drawing, in which fig. 1 is a schematic diagram of a polarization device of the prior art; FIG. 2 is a polarimeter; FIG. 3 shows an apparatus for use in connection with the invention; FIG. 4 is a diagram for explaining measurement principles.

CC

cippet ifølge opfindelsen til måling af glukosekoncen-10 trationens absolutværdi, fig. 5 den ydre mekaniske udformning af et apparat til en sådan måling og fig 6 et ved anvendelse af opfindelsen fremstillet diagram over måleresulteterne ved en vis meto-15 de til måling in vitro.the chip according to the invention for measuring the absolute value of the glucose concentration; Fig. 5 shows the external mechanical design of an apparatus for such measurement and Fig. 6 shows a diagram of the measurement results prepared by the invention by a certain method for measuring in vitro.

Fig 1 viser en lyskilde 1 for linæert polariseret lys og denne lyskilde kan være en laser, en lysdiode eller en med polarisator forsynet sædvanlig lyskilde, som afgiver lys af en vis bølgelængde. Dette 20 lys passerer gennem en prøve 3, en λ/4-plade 4, en analysator 6 og en detektor 7 i form af en fotomultiplikator, fotodiode, fototransistor eller et lignende element. Denne detektor omformer lyset til et af lysintensiteten afhængigt elektrisk signal, som forstærkes 25 af en forstærker 9 og indikeres og/eller optegnes af en indikerende eller registrerende indretning 10.Fig. 1 shows a light source 1 for linearly polarized light and this light source can be a laser, a light emitting diode or a conventional polarized light source that emits light of a certain wavelength. This light passes through a sample 3, an λ / 4 plate 4, an analyzer 6 and a detector 7 in the form of a photomultiplier, photodiode, phototransistor or similar element. This detector converts the light into an electrical signal dependent on the light intensity which is amplified by an amplifier 9 and indicated and / or recorded by an indicating or recording device 10.

Fig. 2 viser et polarimeter, hvis følsomhed er uafhængigt af den absolutte lysintensitet. Efter at lyset er passeret gennem prøven 3 og pladen 4 rammer 30 det en stråledeler 5, som afgrener en referancestråle og afgiver denne til en detektor 7X, der omdanner re-ferancestrålen til et elektrisk signal. Dette signal tilføres den ene indgang til en forskelsforstærker eller en anden forskelsdannende (sammenlignende) indretning 8.FIG. 2 shows a polarimeter whose sensitivity is independent of the absolute light intensity. After passing the light through sample 3 and plate 4, it strikes a beam splitter 5 which branches a reference beam and outputs it to a detector 7X which converts the reference beam into an electrical signal. This signal is applied to one input of a differential amplifier or other differential (comparative) device 8.

35 Det af den anden detektor 7 afgivne signal tilføres den anden indgang til forstærkeren 8. En efterfølgende forstærker 9 afgiver da et forstærket forskelssignal, derThe signal output from the second detector 7 is applied to the second input of the amplifier 8. A subsequent amplifier 9 then outputs an amplified difference signal which

DK 153657BDK 153657B

5 indikeres og/eller registreres af indretningen 10.5 is indicated and / or recorded by device 10.

Hele apparatets følsomhed kan yderligere forbedres og forøges ved at indrettes som vist i fig. 3.The entire sensitivity of the apparatus can be further enhanced and increased by adjusting as shown in FIG. Third

Det af lyskilden 1 udsendte polariserede lys moduleres 5 af en lysmodulator 2, hvorved der kan frembringes frekvens-, fase- eller amplitudemodulering ved hjælp af en generator 11. Derefter behandles signalerne på samme måde som i fig. 2, men i det foreliggende tilfælde kan forstærkerne 8 og 9 være vekselstrømsforstærkere.The polarized light emitted by the light source 1 is modulated 5 by a light modulator 2, whereby frequency, phase or amplitude modulation can be generated by a generator 11. Thereafter, the signals are processed in the same way as in FIG. 2, but in the present case the amplifiers 8 and 9 may be AC amplifiers.

10 Forstærkeren 9 kan være en selektiv eller såkaldt låst forstærker med frekvens-, fase-eller amplitudemodu-lator, f. eks. en synkronforstærker, afhængigt af den i modulatoren 2 anvendte modulationsform. Herved kan sig-nal/støj- forholdet forøges med mindst én størrelsesor-15 den.The amplifier 9 may be a selective or so-called locked amplifier with frequency, phase or amplitude modulator, for example a synchronous amplifier, depending on the modulation form used in modulator 2. Hereby, the signal-to-noise ratio can be increased by at least one order of magnitude.

Af fig. 4 fremgår, hvorledes den absolutte værdi af et glukoseniveau kan måles i henhold til opfindelsen. Frem til forstærkeren 9's udgang er forløbet det samme som i fig. 3, men derefter følger et differen-20 tierende trin 12 et højpasfilter 13, en integrator 14 og en yderligere forstærker 15, hvis udgangssignal indikeres og/eller registreres af indretningen 10.In FIG. 4 shows how the absolute value of a glucose level can be measured according to the invention. Until the output of the amplifier 9 is the same as in FIG. 3, but then a differentiating step 12 follows a high-pass filter 13, an integrator 14 and an additional amplifier 15, whose output signal is indicated and / or recorded by the device 10.

Fig. 5 viser, hvorledes et apparat ifølge fig. 4 kan være udført med hensyn til ydre form og op-25 deling. En måledel 16 indeholder en miniaturiseret optisk (polarimetrisk) del 17, som kan fastgøres f. eks. til øreflippen. En apparatdel 18 indeholder den elektriske måledel og en signalbehandlende del og kan f. eks. anbringes i en lomme ved anvendelse af det viste apparat.FIG. 5 shows how an apparatus according to FIG. 4 may be made in terms of outer shape and division. A measuring portion 16 contains a miniaturized optical (polarimetric) portion 17 which can be attached, for example, to the earlobe. An apparatus portion 18 contains the electrical measurement portion and a signal processing portion and may, for example, be placed in a pocket using the apparatus shown.

30 Måleresultatet indikeres digitalt af apparatdelen 10, som f. eks. kan anbringes på håndleddet på samme måde som et armbåndsur eller på et andet passende sted. Selve den indikerende del (cifferfeltet) kan eventuelt indgå i et smykke såsom et armbånd eller en fingerring.The measurement result is digitally indicated by the appliance part 10, which can, for example, be placed on the wrist in the same way as a wristwatch or at another suitable location. The indicating part (digit field) itself may be included in a piece of jewelry such as a bracelet or a finger ring.

35 Fig. 6 viser resultatet af en måling in vitro ved hjælp af apparatet ifølge fig. 3, hvor delen 3 erFIG. 6 shows the result of an in vitro measurement using the apparatus of FIG. 3, where the part 3 is

Claims (3)

1. Anvendelse af en polarimetrisk fremgangsmåde til kvantitativ in vivo- eller in vitro-bestemmelse 20 af glukosekoncentrationer i blod, hvorved lineært polariseret lys sendes gennem en prøve (3), hvorefter det lys, som har passeret prøven, opdeles (med 5) i to delstråler og intensiteten af den ene delstråle måles direkte og af den anden delstråle efter passage gennem en 25 analysator (6), hvilke målinger udføres elektrisk og et forskelssignal dannes på grundlag af de målte delintensiteter, kendetegnet ved^t signalet dif-fentieres, at de lave frekvenser fjernes, og at signalet derefter integreres, hvorved det integrerede signal er 30 proportionalt med glukosekoncentrationen.Use of a polarimetric method for quantitative in vivo or in vitro determination of blood glucose concentrations, thereby transmitting linearly polarized light through a sample (3), then dividing the light which has passed the sample (by 5) into two sub-beams and the intensity of one sub-beam are measured directly and by the other sub-beam after passing through an analyzer (6), which measurements are performed electrically and a difference signal is formed on the basis of the measured sub-intensities characterized by the signal being differentiated the low frequencies are removed and the signal is then integrated, whereby the integrated signal is proportional to the glucose concentration. 2. Anvendelse ifølge krav 1, kendetegnet ved, at der benyttes et apparat, hvori lyskilden er en laserdiode og detektorerne er fototransistorer.Use according to claim 1, characterized in that an apparatus is used in which the light source is a laser diode and the detectors are phototransistors. 3. Anvendelse ifølge krav 1 eller 2, k e n-35 detegnet ved, at der benyttes et apparat, som desuden er indrettet til at afgive et optisk eller akustisk signal, når der foreligger en bestemt glukosekoncentration.Use according to claim 1 or 2, characterized in that an apparatus is used which is further adapted to emit an optical or acoustic signal when a certain glucose concentration is present.
DK230678A 1977-05-31 1978-05-24 APPLICATION OF A POLARIMETRIC PROCEDURE FOR QUANTITATIVE DETERMINATION OF BLOOD GLUCOSE DK153657C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2724543 1977-05-31
DE2724543A DE2724543C2 (en) 1977-05-31 1977-05-31 Use of a polarimetric method for the quantitative determination of blood glucose

Publications (3)

Publication Number Publication Date
DK230678A DK230678A (en) 1978-12-01
DK153657B true DK153657B (en) 1988-08-08
DK153657C DK153657C (en) 1988-12-19

Family

ID=6010313

Family Applications (1)

Application Number Title Priority Date Filing Date
DK230678A DK153657C (en) 1977-05-31 1978-05-24 APPLICATION OF A POLARIMETRIC PROCEDURE FOR QUANTITATIVE DETERMINATION OF BLOOD GLUCOSE

Country Status (6)

Country Link
AT (1) AT387858B (en)
CH (1) CH640350A5 (en)
DE (1) DE2724543C2 (en)
DK (1) DK153657C (en)
FR (1) FR2393296A1 (en)
SE (1) SE442919B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944113A1 (en) * 1979-10-31 1981-05-14 Arno Dipl.-Phys. Dr. 7900 Ulm Müller METHOD AND DEVICE FOR THE QUANTITATIVE ABSOLUTE DETERMINATION OF OPTICALLY ACTIVE SUBSTANCES
AU2650484A (en) * 1983-02-25 1984-09-10 Richard Distl Multibeam measuring device
US4570638A (en) 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
DE3541165A1 (en) * 1985-11-21 1987-05-27 Hellige Gmbh DEVICE FOR CONTINUOUSLY DETERMINING CONCENTRATION CHANGES IN MIXTURES
GB8625530D0 (en) * 1986-10-24 1986-11-26 Goodall D M Optical apparatus
DE3908114C1 (en) * 1988-10-07 1990-02-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
FI89412C (en) * 1991-01-25 1993-09-27 Korppi Tommola Jouko Method and polarimeter for measuring widening of the polarization plane in sugar or other solution
DE4128458C2 (en) * 1991-08-28 1994-02-10 Siemens Ag Method and device for determining the concentration of a component, in particular glucose, a liquid optically active substance, in particular the body fluid of a patient, by polarimetry
DE69626960T2 (en) * 1995-11-16 2003-11-06 Matsushita Electric Industrial Co., Ltd. METHOD AND DEVICE FOR URINE ANALYSIS, METHOD FOR MEASURING OPTICAL ROTATION AND POLARIMETER
DE19815932C2 (en) * 1998-04-09 2000-06-21 Glukomeditech Ag Method for miniaturizing a polarimeter for the analysis of low concentration components in the liquid material to be measured on an optical basis and device for carrying it out
DE19826294C1 (en) * 1998-06-12 2000-02-10 Glukomeditech Ag Polarimetric method for determining the (main) vibration plane of polarized light at about 0.1 m DEG and miniaturizable device for its implementation
DE10020613C2 (en) * 2000-04-27 2002-02-28 Glukomeditech Ag Process for the long-term stable and reproducible polarimetric measurement of the concentrations of the components of aqueous solutions and device for carrying out this process
GB0023227D0 (en) * 2000-09-21 2000-11-01 Btg Int Ltd Optical method and apparatus
IL145683A0 (en) * 2001-09-26 2002-06-30 Enoron Technologies Ltd Apparatus and method for measuring optically active materials
MX362047B (en) * 2013-10-16 2019-01-07 Halliburton Energy Services Inc Intensity-independent optical computing device.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441814A (en) * 1965-07-23 1967-08-15 Papirind Forskningsinst Method for the continuous determination of the concentration of fiber suspensions
US3724957A (en) * 1971-03-04 1973-04-03 Yokogawa Electric Works Ltd Concentration measuring apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813579A (en) * 1956-03-27 1959-05-21 Bellingham And Stanley Ltd Improvements in or relating to polarimeters
GB868359A (en) * 1958-04-29 1961-05-17 Joseph Bor Improvements in and relating to polarimetry and polarimeters
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
FR2097232A6 (en) * 1970-06-08 1972-03-03 France Etat
US3837339A (en) * 1972-02-03 1974-09-24 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US3958560A (en) * 1974-11-25 1976-05-25 Wayne Front March Non-invasive automatic glucose sensor system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441814A (en) * 1965-07-23 1967-08-15 Papirind Forskningsinst Method for the continuous determination of the concentration of fiber suspensions
US3724957A (en) * 1971-03-04 1973-04-03 Yokogawa Electric Works Ltd Concentration measuring apparatus

Also Published As

Publication number Publication date
DE2724543A1 (en) 1978-12-07
SE442919B (en) 1986-02-03
DK153657C (en) 1988-12-19
SE7806232L (en) 1978-12-01
ATA388578A (en) 1988-08-15
FR2393296B1 (en) 1983-10-28
DK230678A (en) 1978-12-01
DE2724543C2 (en) 1982-05-13
CH640350A5 (en) 1983-12-30
AT387858B (en) 1989-03-28
FR2393296A1 (en) 1978-12-29

Similar Documents

Publication Publication Date Title
DK153657B (en) APPLICATION OF A POLARIMETRIC PROCEDURE FOR QUANTITATIVE DETERMINATION OF BLOOD GLUCOSE
RU2265827C2 (en) Methods and device of double-ray ir-transform spectroscopy for detecting tested matter in samples with low penetrability
US5372135A (en) Blood constituent determination based on differential spectral analysis
JP3649732B2 (en) Non-invasive non-spectrophotometric infrared measurement of blood analyte concentration
US4854699A (en) Backscatter oximeter
JP3184521B2 (en) Measuring device and measuring system for determining concentration
JP2013009963A (en) Method for noninvasive human body component measurement with optional optical length
EP2909624B1 (en) Simple sugar concentration sensor and method
JPH05507866A (en) Device for measuring blood sugar levels in vivo
JPH11508033A (en) Raman spectroscopy apparatus and method for analysis of blood gases and analytes
US20100279332A1 (en) Method and device for characterizing biological tissue
US20080144004A1 (en) Optical Spectrophotometer
US11744490B2 (en) Non-invasive blood glucose detection device and measurement method based on multi-technology integration
US7107087B2 (en) Method and apparatus for measuring a concentration of a component in a subject
JP3359756B2 (en) Biological light measurement device
US20180317825A1 (en) Device and method for measuring the concentration of a chemical compound in blood
US10835126B1 (en) Implantable micro-spectrophotometer
CN204318763U (en) A kind of checkout gear based near infrared detection human body biochemical parameter
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
KR101792584B1 (en) Apparatus and method of Homodyne-based multi-channel body composition analyzing
WO2022009071A1 (en) Device for non-invasive blood glucose concentration measurement
US20230041114A1 (en) An apparatus for non-invasive measurement of glucose in blood
JP2641575B2 (en) Glucose non-invasive measuring device
CN106889993A (en) FM/cw laser imaging non-blood sampling type blood sugar detection method based on light intensity modulation
RU2515410C2 (en) Method for non-invasive blood glucose concentration measurement and device for implementing it

Legal Events

Date Code Title Description
PUP Patent expired