DK153536B - COMPOSITION MATERIALS INCLUDING A POLYCRYSTALLIC DIAMOND BODY AND A SILICON CARBID OR SILICON NITRATE SUBSTANCE, AND A PROCEDURE FOR MANUFACTURING THE MATERIAL - Google Patents
COMPOSITION MATERIALS INCLUDING A POLYCRYSTALLIC DIAMOND BODY AND A SILICON CARBID OR SILICON NITRATE SUBSTANCE, AND A PROCEDURE FOR MANUFACTURING THE MATERIAL Download PDFInfo
- Publication number
- DK153536B DK153536B DK469278AA DK469278A DK153536B DK 153536 B DK153536 B DK 153536B DK 469278A A DK469278A A DK 469278AA DK 469278 A DK469278 A DK 469278A DK 153536 B DK153536 B DK 153536B
- Authority
- DK
- Denmark
- Prior art keywords
- silicon
- diamond
- alloy
- substrate
- volume
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
- B24D3/08—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for close-grained structure, e.g. using metal with low melting point
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6316—Binders based on silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/001—Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/062—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/063—Carbides
- B01J2203/0635—Silicon carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/0645—Boronitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/066—Boronitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/0685—Crystal sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
- C04B2235/3843—Titanium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
- C04B2235/3847—Tungsten carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3891—Silicides, e.g. molybdenum disilicide, iron silicide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/408—Noble metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/427—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6587—Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/721—Carbon content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/728—Silicon content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/363—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Ceramic Products (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
DK 153536 BDK 153536 B
Opfindelsen angår et kompositmateriaie omfattende et poiykry-stallinsk diamantiegeme og et siiiciumcarbid- eller siliciumnitrld-substrat.The invention relates to a composite material comprising a poly-crystalline diamond body and a silicon carbide or silicon nitride substrate.
Fra US patentskrift nr. 4.042.347 kendes der polykrystaliinske 5 diamantlegemer, hvori der som bindemiddel anvendes en metal- og poiyrnermatrix, men en teknisk hindring for et diamantkompositmatenaie med høj tæthed (stort volumenindhold af diamant) og fremstillet under diamantstabilitetstrykområdet har hidtil været en manglende udvikling af et egnet bindemiddei, som var 5 stand til at trænge ind i eller 10 infiltrere kaplliarhulrummene i et tætpakket diamantpulver af fin partikelstørreise. Bindemidlet skal endvidere danne en termisk stabii, stærk binding med diamant og må ikke omdanne diamanten ti! grafit eller reagere for vidtgående med diamanten.U.S. Patent No. 4,042,347 discloses polycrystalline 5 diamond bodies in which a metal and polyurethane matrix is used as a binder, but a technical impediment to a high density diamond composite mat (large volume content of diamond) and manufactured below the diamond stability printing range has so far been lacking. developing a suitable binder which was capable of penetrating or infiltrating the capillary cavities in a tightly packed diamond powder of fine particle drying. The binder must also form a thermal stable, strong bond with the diamond and must not transform the diamond ten! graphite or react too far with the diamond.
Denne hindring er nu bievet overvundet med kompositmaterialet 15 ifølge den foreliggende opfindelse, hvilket kompositmateriaie omfatter et polykrystaliinsk diamantiegeme og et siiiciumcarbid- elier siiicium-nitridsubstrat og er ejendommeligt ved, at det polykrystaliinske diamantiegeme er sammenbundet med et polykrystaliinsk substrat af siiiciumcarbid eller siliciumnitrid til et enkelt stykke, hvorhos det 20 polykrystaliinske diamantiegeme består af en masse af diamantkry-staiier, som er solidt bundet ti! hinanden med et siliciumatomhoidigt bindemiddel, der omfatter siiiciumcarbid og et carbid og/ei!er siiicid af en metal komponent, som med silicium danner et siiicid, diamant-krystallerne har en størrelse på fra 1 til 1000 pmf diamantkrv-25 staltætheden udgør fra 70% til 90% af legemets volumen, det siiiciumatomholdsge bindemiddel udgør op til 30% af legemets volumen og er i det mindste i alt væsentligt ensartet fordelt i legemet, den del af bindemidlet, der er i kontakt med diamantkrystallernes overflade, består i det mindste for størstedelen af siiiciumcarbid, 30 diamantiegemet i det mindste i ait væsentligt er porefrit, substratet varierer i tæthed fra 85% til 100% af den teoretiske tæthed for siiiciumcarbid eller fra 80% til 100% af den teoretiske tæthed for siliciumnitrid og indeholder siiiciumcarbid eiier siiiciumnitrid i er· mængde pi mindst 90% af substratets vægt, det polykrystailinske 35 diamantiegeme danner en grænseflade med siiiciumcarbid- eller siliciumnitridsubstratet, og bindemidlet strækker sig fra det krystallinske diamantiegeme tli substratets kontaktflade og udfylder i det mindste i alt væsentligt porerne i grænsefladen, saledes as grænsefladen i det mindste i alt væsentligt er porefri.This barrier has now been overcome by the composite material 15 of the present invention, which comprises a polycrystalline diamond nitride substrate and a silicon carbide or silicon nitride substrate, and is characterized in that the polycrystalline silicon substrate is bonded to a single polycrystalline silicon substrate or piece, wherein the 20 polycrystalline diamond body consists of a mass of diamond cross staii which are firmly bound ten! each other with a silicon atomic binder comprising silicon carbide and a carbide and / or silicon of a metal component forming a silicon with silicon, the diamond crystals having a size of from 1 to 1000 pmf of the diamond requirement of 70% to 90% of the body volume, the silicon atomic binder constitutes up to 30% of the body volume and is at least substantially uniformly distributed within the body, the portion of the binder which contacts the surface of the diamond crystals consists at least for the greater part. of the silicon carbide, the diamond gel is at least substantially free of pore, the substrate varies in density from 85% to 100% of the theoretical density of silicon carbide or from 80% to 100% of the theoretical density of silicon nitride and contains silicon carbide in Si Amount of at least 90% of the weight of the substrate, the polycrystalline diamond body forms an interface with the silicon carbide or silicon nitride substrate, and the binder extends from the crystalline diamond body to the contact surface of the substrate and fills at least substantially the pores of the interface, so that the interface is at least substantially pore-free.
22
DK 153536 BDK 153536 B
I kompositmateriaiet iføige den foreliggende opfindelse anvendes en eutektikumholdig (eng.: eutectiferous), siliciumrig legering, der trænger godt ind i kapillarhulhederne i en komprimeret diamant-krystalmasse, og som væder krystallerne til dannelse af et stærkt, 5 sammenbundet diamantlegeme. Desuden danner den indtrængende legering en stærk binding ]n s itu med et silfciumcarbid- eiler siliciumnitridsubstrat. Den siliciumrige legering kan endvidere indføres i en komprimeret diamantkrystalmasse under tryk, der er væsentfigt lavere end de, der er påkrævet i diamantstabilitets” 10 emrådet, til tilvejebringelse af et "poiykrystallinsk diamantlegeme/ siliciumcarbid- eiler siliciumnitridsubstraf'-kompositmateriaie, der kan have mange forskellige konfigurationer og størrelser inden for et bredt størrelsesområde.In the composite material of the present invention, an eutectiferous, silicon-rich alloy which penetrates well into the capillary cavities of a compacted diamond crystal mass and wets the crystals to form a strong, bonded diamond body is used. In addition, the penetrating alloy forms a strong bond with a silicon carbide or silicon nitride substrate. Furthermore, the silicon-rich alloy can be introduced into a compressed diamond crystal mass under pressure substantially lower than those required in the diamond stability range to provide a "polycrystalline diamond body / silicon carbide or various silicon nitride substrate" composites. configurations and sizes within a wide size range.
Kompositmateriaiet er anvendeligt som slibemateriale, skære” 15 værktøj, dyse eller anden slidbestandig komponent.The composite material is useful as abrasive material, cutting tool, nozzle or other abrasion resistant component.
Opfindelsen angår også en fremgangsmåde ti! fremstilling af kompositmateriaiet iføige opfindelsen, hvilken fremgangsmåde er ejendommelig ved, a) at en eutektikumholdig, siliciumrig faststofiegering eiier 20 faststof komponenter, der frembringer en eutektikumholdig siliciumrig legering, en diamantkrystalmasse og et silicium” carbid- eller siliciumnitridsubstrat anbringes i en beskyttelsesbeholder eller -kop, idet diamantkrystalmassen anbringes mellem og i kontakt med substratet og den 25 eutektikumholdige, siliciumrige faststoflegering eiler mindst en af de komponenter, der frembringer en eutektikumholdig, siiiciumrig legering, og den eutektikumholdige, siliciumrige legering består af silicium og et metal, som med siliciumet danner et siiicid, 30 b) at beholderen og dens indhold anbringes i et tryktrans mitterende pulvermedium, der overfører påført tryk i alt væsentligt uformindsket og forbliver i alt væsentligt usintret under varmepresning, c) at der påføres et tilstrækkeligt, i alt væsentligt isostatisk 35 tryk pi beholderen og dens indhold via puivermediet til i alt væsentligt fuldstændig ensartet stabilisering af dimensionerne af beholderen og indholdet til tilvejebringelse af et forrnstabiit, i alt væsentligt, isostatisk system, der omfatter den puiveromsluttede beholder, hvorved den 3The invention also relates to a method ten. manufacture of the composite material according to the invention, characterized in that: a) a eutectic-containing, silicon-rich solid alloy has 20 solid components which produce a eutectic-containing silicon-rich alloy, a diamond crystal mass and a silicon carbide or silicon nitride substrate or silicon nitride substrate or the diamond crystal mass being placed between and in contact with the substrate and the eutectic-containing, silicon-rich solid alloy, at least one of the components producing a eutectic-containing, silicon-rich alloy, and the eutectic-containing, silicon-rich alloy, consist of silicon and a metal, with silicon d. (B) placing the container and its contents in a pressure transmitting powder medium which transmits applied pressure substantially undiminished and remains substantially unsintered during heat pressing; (c) applying a sufficiently substantially isostatic pressure to the container; and its contents via the powder medium to substantially completely uniformly stabilize the dimensions of the container and the content to provide a front stub, essentially an isostatic system comprising the powder enclosed container, whereby the 3
DK 153536 BDK 153536 B
tilvejebragte; komprimerede diamantkrystalmasses tæthed udgør mere end 70 volumenprocent af voluminet af de komprimerede diamantkrystal ler, d) at det tilvejebragte, i alt væsentligt isostatiske system 5 varmpresses til frembringelse af en flydende, eutektikum- holdig, siiiciumrig legering, som trænger ind i de tomme mellemrum i den komprimerede diamantkrystalmasse og kommer i kontakt med den kontaktoverflade af substratet, der danner en grænseflade til den komprimerede diamant-10 krystalmasse, hvorhos varmpresningen udføres ved en varmpresningstemperatur under 1600°C ved et varmpresningstryk, der er tilstrækkeligt til at bringe den flydende, siliciumrige legering til at trænge ind i de tomme mellemrum i den komprimerede diamantkrystalmasse, og den eutekti-15 kumholdige, siliciumrige faststof legering eiler de ti! frembringelse af en eutektikumhoidig, siliciumrig legering benyttede faststofkomponenter anvendes i en mængde, der er tilstrækkelig til at tilvejebringe tilstrækkeligt med flydende, eutektikumhoidig, siiiciumrig legering til ved 20 varmpresningstemperaturen at fylde de tomme mellemrum i den komprimerede diamantkrystalmasse og befugte substratets kontaktflade, hvorved porerne i grænsefladen udfyldes, således ax denne i det mindste i alt væsentligt bliver porefri. og hvorhos mindre end 5 volumenprocent af 25 diamantkrystal lerne under varmpresningen omdannes til frit, ikke-diamantcarbon, og dette ikke-diamantcarbon elier diamantkrystallernes overflader reagerer med den flydende, siliciumrige legering under dannelse af carbid-, e) at det tilvejebragte, varmpressede, I alt væsentligt 30 isostatiske system afkøles og herunder holdes under et tilstrækkeligt tryk til i det mindste i alt væsentligt at bevare dimensionerne af det varmpressede system, og f) at det frembragte kompositmateriale, hvori det poiykry-stallinske legeme er bundet til et siiiclumcarbld- elier 35 siliciumnitridsubstrat, og diamantkrystal lerne forekommer i en mængde, der udgør mindst 70 volumenprocent af det polykrystaillnske legeme, blotlægges.provided; the density of compressed diamond crystal mass constitutes more than 70% by volume of the volume of the compressed diamond crystal clay; (d) hot-pressed substantially isostatic system 5 to produce a liquid, eutectic-containing, silicon-rich alloy that penetrates into the void. the compressed diamond crystal mass and comes into contact with the contact surface of the substrate which forms an interface to the compressed diamond crystal mass, the hot pressing being carried out at a hot pressing temperature below 1600 ° C at a hot pressing pressure sufficient to bring the liquid silicon-rich alloy to penetrate the voids in the compressed diamond crystal mass and the eutectic-containing silicon-rich solid alloy destroys the ten! producing a eutectic-high silicon-rich alloy used solid components are used in an amount sufficient to provide sufficient liquid, eutectic-high-silicon alloy to fill the voids at the hot-pressing temperature at the contact surface of the substrate and the diamond crystal mass is filled in, so that this at least substantially becomes pore-free. and wherein less than 5% by volume of the 25 diamond crystals during the hot pressing are converted to free, non-diamond carbon, and this non-diamond carbon or diamond surface of the diamond reacts with the liquid silicon-rich alloy to form the carbide; substantially isostatic system is cooled and, below, maintained under sufficient pressure to at least substantially maintain the dimensions of the hot pressed system, and f) the composite material produced in which the polycrystalline body is bonded to a silicon carbide body 35 silicon nitride substrate and the diamond crystals present in an amount constituting at least 70% by volume of the polycrystalline body are exposed.
Varmpresningen i trin d) bør udføres i en atmosfære, som ikke har nogen væsentlig skadelig virkning på diamantkrystallerne ellerThe hot pressing in step d) should be carried out in an atmosphere which has no significant detrimental effect on the diamond crystals or
DK 153536 BDK 153536 B
4 på den indtrængende, flydende, siliciumrige legering eller på siiiciumcarbid- eller slliciumnitridsubstratet.4 on the penetrating, liquid, silicon-rich alloy or on the silicon carbide or silicon nitride substrate.
Ved en udførelsesform for fremgangsmåden ifølge opfindelsen anvendes der i trin a) som beskyttelsesbeholder eller -kop en udspa-5 ring, der er indpresset i det pulvermedium, som overfører påført tryk i alt væsentligt uformindsket, og som forbliver i alt væsentligt usintret under varmpresningen, og i trin b) tildækkes udsparingen og dets indhold med en yderligere mængde trykoverførende pulvermedium, hvorved udsparingen omsluttes af det trykoverførende pul-10 vermedium, og hvorpå trin d) til f) udføres.In one embodiment of the method according to the invention, in step a), as a protective container or cup, a recess is pressed which is pressed into the powder medium which transmits applied pressure substantially undiminished and which remains substantially uninterrupted during the hot pressing; and in step b), the recess and its contents are covered with an additional amount of pressure transmitting powder medium, whereby the recess is enclosed by the pressure transmitting powder medium and then steps d) to f) are performed.
Udsparingen i det tryktransmitterende pulver kan ved denne udførelsesform dannes ved forskellige fremgangsmåder. F.eks. kan det tryktransmitterende pulvermedium anbringes i en matrice, en fast form af ønsket størrelse kan indskydes i pulveret, og det fremkomne 15 system presses ved omgivelsestemperaturen under et tryk, der er tilstrækkeligt til at gøre pulveret stabilt med hensyn til form, dvs. give det pressede pulver tilstrækkelig styrke, således at formen kan fjernes derfra og efterlade den udsparing, som den har udpresset deri, således at den kan fungere som beholder for siliciumcarbid-20 eller siiiciumnitridsubstratet, diamantmassen og den siliciumrige legering. Efter at siiiciumcarbid- eller siiiciumnitridsubstratet, diamantmassen og den siliciumrige legering er anbragt 5 udsparingen med diamantmassen mellem substratet og legeringen, tilføres en yderligere mængde tryktransmitterende pulvermedium til tildækning af udsparin-25 gen, og hele systemet koldpresses ved omgivelsestemperatur tit dimen-slonsmasssig stabilisering af udsparingen og dens indhold under tilvejebringelse af et praktisk taget isostatisk system omfattende den puiveromsiuttede udsparing og indholdet.In this embodiment, the recess in the pressure transmitting powder can be formed by various methods. Eg. For example, the pressure transmitting powder medium can be placed in a die, a solid form of desired size can be inserted into the powder, and the resulting system is pressed at ambient temperature under a pressure sufficient to render the powder stable in shape, i.e. give the pressed powder sufficient strength so that the mold can be removed therefrom leaving the recess it has extruded therein to act as a container for the silicon carbide or silicon nitride substrate, diamond mass and silicon rich alloy. After the silicon carbide or silicon nitride substrate, diamond mass and silicon rich alloy are placed in the recess with the diamond mass between the substrate and the alloy, an additional amount of pressure transmitting powder medium is applied to cover the recess and the whole system is cold pressed at ambient temperature to dim the ambient temperature. and its contents to provide a practically isostatic system comprising the powder-enclosed recess and the contents.
Opfindelsen vil 1 det følgende blive nærmere forklaret i forbin-30 deise med nogle udførelsesformer og under henvisning til tegningen, hvor:The invention will be further explained in the following with reference to some embodiments and with reference to the drawing, in which:
Fig. 1 viser en de! af et fasediagram for en siliclum-2irconiurn-iegering og viser iigevægtsdiagrammet for eutektikumhol-dige, siliciumrige zirconiumlegeringer, der er anvendelig 35 ved den foreliggende opfindelse: fig. 2 viser et tværsnit af en celle, dvs. beholder og indhold til frembringelse af indtrængning af siliciumrig legering ifølge opfindelsen j 5FIG. 1 shows a de! of a phase diagram of a silicon luminaire alloy showing the equilibrium diagram of eutectic-containing, silicon-rich zirconium alloys useful in the present invention: FIG. 2 shows a cross section of a cell, i.e. container and contents for producing penetration of silicon rich alloy according to the invention j 5
DK 153536 BDK 153536 B
fig. 3 viser skematisk et apparat til påføring af et let tryk på cellen i fig. 2 samtidig med, at cellen sættes i vibrerende bevægelse til forøgelse af diamantkrystalmassens tæthed; flg. 4 viser et tværsnit af et apparat til påføring af et i det 5 mindste i alt væsentligt isostatisk tryk pi cellen ved hjælp af et tryktransmitterende pulvermedium til dimensionsmæssig stabilisering af cellen under tilvejebringelse af et i ait væsentligt isostatisk system; fig. 5 viser et tværsnit af en grafitform til samtidig påføring af 10 varme og tryk, dvs. varmpresning, til det i det væsent lige isostatiske system, hvilket tværsnit viser cellen indesluttet deri; fig. 6 viser et lodret snit i et "polykrystallinsk diamantlegeme/ siliciumcarbid- eller siliciumnitridsubstraf-kompositmateria-15 le, der er fremstillet I henhold til den foreliggende opfin delse; og fig. 7 viser et mikrofotograf! (forstørret 690X) af en poleret tværsnitsflade i et kompositmatenaie ifølge den foreliggende opfindelse.FIG. 3 schematically shows an apparatus for applying light pressure to the cell of FIG. 2 while vibrating the cell to increase the density of the diamond crystal mass; Fig. 4 shows a cross section of an apparatus for applying at least 5 substantially isostatic pressure to the cell by means of a pressure transmitting powder medium for dimensional stabilization of the cell to provide a substantially isostatic system; FIG. 5 shows a cross section of a graphite form for simultaneously applying heat and pressure, i.e. hot pressing, to the substantially equal isostatic system, which cross section shows the cell contained therein; FIG. 6 is a vertical sectional view of a "polycrystalline diamond body / silicon carbide or silicon nitride substrate composite material made in accordance with the present invention; and FIG. 7 shows a photomicrograph (enlarged 690X) of a polished cross-sectional surface in a composite mat according to the present invention.
2020
Ved fremgangsmåden ifølge opfindelsen dannes der en tagkonstruktion, i hvilken diamantkrystaimassen er anbragt mellem et siliciumcarbid- eller siliciumnltridsubstrat og en eutektikumholdig, siliciumrig faststoflegering og er i kontakt med substratet og legeringen.In the method according to the invention, a roof structure is formed in which the diamond crystal mass is placed between a silicon carbide or silicon nitride substrate and a eutectic-containing, silicon-rich solid alloy and is in contact with the substrate and the alloy.
25 Ved udførelse af fremgangsmåden underkastes tagkonstruktionen en koldpresning ved omgivelses- eller stuetemperatur til en i ait væsentlig ensartet stabilisering af lag konstruktionens dimensioner. Lagkonstruktionen underkastes derefter en varmpresning, ved hvilken der af siliciumlegeringen frembringes en flydende, siiiciumrig legering, 30 som bringes til at trænge ind mellem de sammenpakkede diamantkrystaller til kontakt med siliciumcarbidsubstratet.In carrying out the method, the roof structure is subjected to cold pressing at ambient or room temperature to a substantially uniform stabilization of the layers of the structure. The layer structure is then subjected to hot pressing, which produces a liquid, silicon-rich alloy, which is caused by the silicon alloy to penetrate between the packed diamond crystals to contact the silicon carbide substrate.
Alternativt kan diamantkrystaimassen være i kontakt med mindst én af de komponenter, der anvendes til dannelse af den eutektikum-holdige, siliciumrige legering in situ, dvs. silicium eller legerende 35 metal, og siiiciumcarbid- eller siliciumnltridsubstratet, diamantkrystaimassen og komponenterne til dannelse af den silicliumrige legering underkastes et koldpresningstrin ved omgivelsestemperatur eiier stuetemperatur til praktisk taget fuldstændig stabilisering af deres dimensioner, og derpå et varmpresningstrin, hvorved der frembringesAlternatively, the diamond crystal mass may be in contact with at least one of the components used to form the eutectic-containing silicon-rich alloy in situ, i.e. silicon or alloy metal, and the silicon carbide or silicon nitride substrate, diamond crystal mass and silicon-rich alloy forming components are subjected to an ambient temperature cold pressing step or room temperature to virtually complete stabilization of their dimensions, and then a hot pressing step
DK 153536 BDK 153536 B
6 flydende, eutektikumholdig, siliciumrig legering, som bringes til at sive ind gennem hele massen af sammenpressede diamantkrystaller og opnå kontakt med siliciumcarbid- eller siliciumnitridsubstratet. Komponenterne til tilvejebringelse af siliciumlegeringen anbringes siledes, 5 at dannelsen af siliciumlegeringen påbegyndes inden varmpresningen, dvs. Inden varmpresningstemperaturen er nået.6 liquid, eutectic-containing, silicon-rich alloy, which is caused to seep through the entire mass of compressed diamond crystals and make contact with the silicon carbide or silicon nitride substrate. The components for providing the silicon alloy are placed silently so that the formation of the silicon alloy begins before the hot pressing, i.e. Before the hot pressing temperature is reached.
Diamantkrystalmassen, massen af fast, siiiciumrig udgangslegering eller faste komponenter til tilvejebringelse af den siliciumrige legering og siliciumcarbid- eller siliciumnitridsubstratet kan have ‘10 mange forskellige former. F.eks. kan hver masse have form af et lag med diamantkrystallaget mellem de andre lag. Alternativt kan den siSiciumrige udgangslegering have form af et rør eller en cylinder med en gennemgående kerne, hvor legeringsrøret er støbt således, at det danner en tæt pasning med beholderens indre væg, og sub-15 stratet kan foreligge i form af en stang, der kan være placeret centra It i legeringsrørets kerne, og det omsluttende rum mellem silicium-iegeringsrøret og substratstangen kan være pakket med diamantkrystaller.The diamond crystal mass, the mass of solid, silicon-rich starting alloy, or solid components to provide the silicon-rich alloy and the silicon carbide or silicon nitride substrate can take many different forms. Eg. each mass may take the form of a diamond crystal layer between the other layers. Alternatively, the silicon-rich starting alloy may be in the form of a through-core tube or cylinder, the alloy tube being molded to form a tight fit with the inner wall of the container, and the substrate may be in the form of a rod capable of be located centers It in the core of the alloy tube, and the enclosing space between the silicon alloy tube and the substrate rod may be packed with diamond crystals.
De diamantkrystaller, der anvendes ved den foreliggende frem-20 gangsmåde, kan være naturlige eller syntetiske, dvs. menneskeskabte. De varierer f størrelse med hensyn tii største dimension fra ca. 1 pm til ca. 1000 pm, cg den bestemte størrelse eller de bestemte størrelser, der anvendes, afhænger i det væsentlige af den nærmere bestemte pakning eller diamantkrystaltæthed, der Ønskes, og også 25 af den nærmere bestemte anvendelse af det frembragte legeme. Ti! de fleste slibemiddelanvendelser foretrækkes f.eks. diamantkrystaller, der ikke er større end omkring 60 pm. For at gøre pakningen af diamantkrystalierne maksimal ved den foreliggende fremgangsmåde, skal diamantkrystalierne fortrinsvis være sorteret efter størrelse, 30 siledes at de indeholder en række størrelser, dvs. krystaller af lilie, middel og stor størrelse. De størrelsessorterede krystaller skal fortrinsvis være på fra ca. 1 pm tii ca, 60 pm, og i dette størrelsesområde skal fortrinsvis fra 60 til 80 volumenprocent af den totale krystalmasse tilhøre den størrelsesmæssigt større del af området, 5 35 tii 10 volumenprocent være af middeistørreise, og resten udgøres af slørrelsesmæssigt små krystaller eller partikler.The diamond crystals used in the present method may be natural or synthetic, i.e. manmade. They vary in size with respect to the largest dimension from ca. 1 pm to approx. 1000 µm, and the particular size or sizes used depend essentially on the specific packing or diamond crystal density desired, and also on the particular use of the body produced. Ten! most abrasive applications are preferred e.g. diamond crystals no larger than about 60 pm. In order to maximize the packing of the diamond crystals by the present method, the diamond crystals must preferably be sorted by size, so as to contain a variety of sizes, i.e. crystals of lily, medium and large size. Preferably, the size-sorted crystals should be from about. 1 µm to about 60 µm, and in this size range, preferably from 60 to 80% by volume of the total crystal mass should belong to the larger proportion of the region, 5 to 35% to 10% by volume is of medium size travel, and the remainder is of slurry crystals or particles.
Klassificeringen af diamantkrystalierne lettes ved behandling af større diamantkrystaller i strålemølle. Diamantkrystalierne er fortrinsvis kemisk rensede, således at eventuelle oxider eller andre urenheder 7The classification of the diamond crystals is facilitated by the treatment of larger diamond crystals in the jet mill. The diamond crystals are preferably chemically purified so that any oxides or other impurities 7
DK 153536 BDK 153536 B
er fjernet fra deres overflade Inden anvendelsen ved den foreliggende fremgangsmåde. Dette kan udføres ved at opvarme diamantkrystallerne i hydrogen ved omkrig 900°C i omkring 1 time.are removed from their surface Prior to use in the present method. This can be done by heating the diamond crystals in hydrogen at about 900 ° C for about 1 hour.
Den ved fremgangsmåden ifølge opfindelsen benyttede faste, 5 eutektikumholdige, siliciumrige udgangslegering, hvor betegnelsen '’legering11 i denne tekst også indbefatter en intermetailisk forbindelse, består af silicium og metal, dvs. et legerende metal, som danner et silicid med siliciumet. Den foreliggende eutektikumholdige, silicium-rige legering omfatter fortrinsvis silicium og et af metallerne kobolt 10 (Co), krom (Cr), jern (Fe), hafnium (Hf), mangan (Mn), molybdæn (Mg), niob (Nb), nikkel (Ni), palladium (Pd), piatin (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), tantal (Ta), thorium (Th), titan (Ti), uran (U), vanadium (V), wolfram (W), yttrium (Y), zirconium (2r) og blandinger heraf.The solid, eutectic-containing, silicon-rich starting alloy used in the process of the invention, wherein the term '' alloy 11 in this text also includes an intermetallic compound, consists of silicon and metal, i.e. an alloy metal which forms a silicide with the silicon. The present eutectic-containing silicon-rich alloy preferably comprises silicon and one of the metals cobalt 10 (Co), chromium (Cr), iron (Fe), hafnium (Hf), manganese (Mn), molybdenum (Mg), niobium (Nb) , nickel (Ni), palladium (Pd), piatin (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), tantalum (Ta), thorium (Th), titanium (Ti), uranium (U) , vanadium (V), tungsten (W), yttrium (Y), zirconium (2r) and mixtures thereof.
15 Den foreiiggende eutektikumholdige, siliciumrige udgangsiege- ring er fast ved stuetemperatur og indeholder over 50 atomprocent men under 100 atomprocent silicium. Sædvanligvis indeholder den maksimalt omkring 99,5 atomprocent silicium, idet siliciumindholdet i stor udstrækning afhænger af den specifikke virkning, som det lege-20 rende metal har på den fremkomne siliciumrige legering. Den foreiiggende faste, siiiciumrige udgangslegering er eutektikumholdig, dvs. den indeholder nogen eutektisk struktur og kan være af hypo-eutektisk, hypereutektisk eller af eutektisk sammensætning.The present eutectic-containing, silicon-rich starting alloy is solid at room temperature and contains more than 50 atomic percent but less than 100 atomic percent silicon. Usually, it contains a maximum of about 99.5 atomic percent silicon, the silicon content being largely dependent on the specific effect of the alloying metal on the resulting silicon-rich alloy. The present solid, silicon-rich starting alloy is eutectic-containing, i.e. it contains some eutectic structure and may be of hypo-eutectic, hypereutectic or eutectic composition.
Af fig. 1 fremgår eksempelvis, at den eutektiske sammensætning 25 2 er en legering med en bestemt sammensætning, som, under lige vægtsbetingelser, ved afkøling størkner ved konstant temperatur under dannelse af et fast stof med mindst to faser, og som ved opvarmning smelter fuldstændigt ved den samme konstante temperatur, hvor denne konstante temperatur, der kaldes den eutektiske tempe-30 ratur, også er betegnet med 2. Den eutektiske sammensætning 2 er den sammensætning, ved hvilken to nedadgående likviduslinier 3 og 4 mødes i det eutektiske punkt 2, og den eutektiske sammensætning har således et iavere smeltepunkt end de tilgrænsende hypoeutek-tiske eller hypereutektiske sammensætninger. Likviduslinien er er.In FIG. 1 shows, for example, that the eutectic composition 25 2 is an alloy of a particular composition which, under equal weight conditions, solidifies at cooling at constant temperature to form a solid with at least two phases and which upon heating completely melts at the same constant temperature, where this constant temperature, called the eutectic temperature, is also denoted by 2. The eutectic composition 2 is the composition at which two downward liquid lines 3 and 4 meet at the eutectic point 2 and the eutectic composition thus has a lower melting point than the adjacent hypoeutectic or hypereutectic compositions. The liquidation line is er.
35 kurve eller linie i et fasediagram, hvor kurven eller linien repræsenterer de temperaturer under ligevægtsbetingelser, ved hvilke smeltning er tilendebragt under opvarmning af siliciumlegeringen eller størkning begynder ved afkøiing af denne. Den ved fremgangsmåden iføige opfindelsen benyttede faste, eutektikumholdige, sificiumhoidigeIn a phase diagram, the curve or line represents the temperatures under equilibrium conditions at which melting is completed during heating of the silicon alloy or solidification begins upon cooling thereof. The solid, eutectic-containing, sulfate-containing solids used in the process of the invention
DK 153536 BDK 153536 B
8 udgangslegering er én af en række legeringer på en vandret eutek-tikumlinie 1, dvs. den vandrette linie, der passerer gennem det eutektiske punkt 2, og som strækker sig fra legeringer, hvis sammensætning ligger til venstre for den eutektiske 2 i et ligevaegtsdiagram, 5 og som indeholder nogen eutektisk struktur, dvs. en hypoeutek-tisk legering, til legeringer, hvis sammensætning ligger til højre for den eutektiske 2 i !igevægtsdiagrammet, og som indeholder nogen eu-tektisk struktur, dvs. en hypereutektisk legering.8 starting alloy is one of a series of alloys on a horizontal eutectic line 1, ie. the horizontal line passing through the eutectic point 2, extending from alloys whose composition lies to the left of the eutectic 2 in an equilibrium diagram, 5 and which contains some eutectic structure, i. a hypoeutectic alloy, for alloys, the composition of which is to the right of the eutectic 2-in-balance diagram and which contains some eutectic structure, i. a hypereutectic alloy.
Den faste, siiiciumrige udgangslegering kan, men behøver det 10 ikke, være af samme sammensætning som den indtrængende, silicium-rige legering. Hvis ai fast, siiiciumrig udgangslegering bliver flydende ved varmpresningstemperaturen, vil den have samme sammensætning som den indtrængende, siliciumrige legering. Hvis imidlertid kun en del af den siiiciumrige udgangslegering, dvs. et hypoeu-15 tektlkum eller hypereutektikum, bliver flydende ved varmpresningstemperaturen, har udgangslegeringen ikke samme sammensætning som den flydende, indtrængende, siliciumrige legering, og i så fald vil den indtrængende, siiiciumrige legering indeholde mere silicium end den hypoeutektiske; eutektiske udgangslegering, men indeholde mindre 20 silicium end den hvpereutektiske siliciumholdige udgangslegering.The solid silicon-rich starting alloy may, but does not need it, be of the same composition as the penetrating silicon-rich alloy. If a solid, silicon-rich starting alloy becomes liquid at the hot-pressing temperature, it will have the same composition as the penetrating silicon-rich alloy. However, if only part of the silicon-rich starting alloy, viz. a hypoeutectic or hypereutectic fluid becomes liquid at the hot pressing temperature, the starting alloy does not have the same composition as the liquid, penetrating, silicon-rich alloy, and in this case the penetrating, silicon-rich alloy will contain more silicon than the hypoeutectic; eutectic starting alloy, but containing less silicon than the wasp eutectic silicon containing alloy.
Af fig. 1 fremgår endvidere, at sammensætningen af den ifølge opfindelsen anvendte indtrængende eutektikumhoidige, siliciumrige legering og dennes smeltetemperatur findes på likviduslinlerne 3 og 4 og omfatter det eutektiske punkt 2. Området 5, der afgrænses af 1, 25 2 og 4, omfatter en fast fase (51) og en væskefase, dvs. en fly dende, indtrængnlngsiegeringsfase, hvor mængden af fast fase stiger, og mængden af væskefase falder tilsvarende, når afstanden til højre fra det eutektiske punkt 2 langs den vandrette linie 1 øges, dvs. nar mængden af silicium i legeringen øges fra den mængde, der er 30 indeholdt i eutektikumet. På samme måde omfatter området 6, der afgraenses ved 1, 2 og 3, en fast fase ZrSi^ og en væskefase, dvs. en flydende, indtrængnlngsiegeringsfase, hvor mængden af fast fase stiger cg mængden af væskefase falder tilsvarende, når afstanden til venstre fra det eutektiske punkt 2 langs den vandrette linie 1 øges, 35 dvs. når mængden af silicium i legeringen mindskes fra den mængde, dm- er indeholdt i eutektikumet.In FIG. 1 further states that the composition of the penetrating eutectic-containing, silicon-rich alloy and its melting temperature used in the present invention is found on the liquid lines 3 and 4 and comprises the eutectic point 2. The region 5, delimited by 1, 25 2 and 4, comprises a solid phase ( 51) and a liquid phase, i.e. an airborne, penetration-sealing phase where the amount of solid phase increases and the amount of liquid phase decreases correspondingly as the distance to the right from eutectic point 2 along the horizontal line 1 increases, i. when the amount of silicon in the alloy is increased from the amount contained in the eutectic. Similarly, the region 6 bounded at 1, 2 and 3 comprises a solid phase ZrSi 2 and a liquid phase, i.e. a liquid penetration sealing phase where the amount of solid phase increases and the amount of liquid phase decreases correspondingly as the distance to the left of the eutectic point 2 along the horizontal line 1 increases, i.e. when the amount of silicon in the alloy is reduced from the amount of dm- contained in the eutectic.
Ved udøvelse af den foreliggende fremgangsmåde findes den ønskede sammensætning af den foreliggende eutektikumhoidige, siiiciumrige indtrængningslegering og dens smeltepunkt som et punkt 9In practicing the present process, the desired composition of the present eutectic-containing, silicon-rich penetration alloy and its melting point are found as a point 9.
DK 153536 BDK 153536 B
på likviduslinierne, herunder det eutektiske punkt, i fasediagrammet for den foreliggende siliciumrige legering, og varmpresningstemperaturen er den temperatur, ved hvilken en sådan ønsket siliciumrig indtrængningslegeringssammensætning er flydende, dvs.on the liquidus lines, including the eutectic point, in the phase diagram of the present silicon-rich alloy, and the hot-pressing temperature is the temperature at which such a desired silicon-rich penetration alloy composition is liquid, i.
5 tilstrækkeligt i stand til at flyde og trænge ind gennem den komprimerede diamantmasse. Når der anvendes en fast, siliciumrig udgangslegering, som har samme sammensætning som den Ønskede indtrængningslegering, er varmpresningstemperaturen den temperatur, ved hvilken legeringen er flydende, hvilken temperatur ligger 10 meliem fra ca. 10°C tii fortrinsvis et maksimum på ca. 100°C over legeringens smeltepunkt, men om ønsker er varmpresningstemperaturer over dette foretrukne maksimum anvendelige ait i afhængighed af den særlige iegering, der anvendes. Dog er varmpresningstemperaturer over 1600°C ikke anvendelige, eftersom sådanne tempera-15 turer har tilbøjelighed ti! at omdanne diamanterne til grafit i for vidtgående udstrækning.5 sufficiently capable of flowing and penetrating through the compacted diamond mass. When a solid silicon-rich starting alloy having the same composition as the desired penetration alloy is used, the hot-pressing temperature is the temperature at which the alloy is liquid, which temperature is 10 m Preferably a maximum of about 10 ° C. 100 ° C above the melting point of the alloy, but if desired, hot pressing temperatures above this preferred maximum are useful depending on the particular alloy used. However, hot pressing temperatures above 1600 ° C are not applicable, since such temperatures tend to to transform the diamonds into graphite to a great extent.
Har udgangslegeringen imidlertid ikke samme sammensætning som den ønskede indtrængningsiegering, men tilvejebringer den en sidan indtrængningslegering som væskefase, når den opvarmes tit 20 smeltepunktet for den ønskede indtrængningsiegering, da er varmpresningstemperaturen en temperatur, ved hvilken en sådan indtrængningslegeringsfase tilvejebringes i flydende form, dvs. omkring 10°C over smeltepunktet for indtrængningsiegeringsfasen.However, if the starting alloy does not have the same composition as the desired penetration alloy, it does provide a side penetration alloy as liquid phase when heated to the melting point of the desired penetration alloy, then the hot pressing temperature is a temperature at which such penetration alloy phase is formed, i.e. about 10 ° C above the melting point of the penetration alloy phase.
Af fig, 1 fremgår også, at for en bestemt indtrængningsiegering 25 af hypereutektisk sammensætning findes smeltepunktet pi iikvidus-iinie 4. Hvis f.eks. den ønskede Indtrængende, hypereutektiske isgering indeholder 95 atomprocent Si, findes dens smeltepunkt på itkvidusiinien 4 at være ca. 1400°C, som det er vist ved linien 7. Når den siliciumrige udgangslegering har samme sammensætning som den 30 ønskede indtrængningsiegering, som det er vist ved linien 7, vil al udgangslegering smelte ved smeltetemperaturen pi 1400°C, og væske- eller varmpresningstemperaturen vil ligge mellem 1410°C og fortrinsvis 1510°C, elier om ønsket op til højst 1600°C. Når der. siliciumrige udgangslegering imidlertid er en hypereutektisk iegering 35 til højre for linien 7 på den vandrette linie 1 i ligevægtsdiagrammet i fig. 1, er varmpresningstemperaturen den temperatur, ved hvilken den ønskede indtrængningsiegering indeholdende 95 atomprocent Si og 5 atomprocent Zr tilvejebringes i væskeform, hvilket vil væreFigure 1 also shows that for a particular penetration alloy 25 of hypereutectic composition, the melting point is pi iikvidus line 4. If e.g. the desired penetrating, hypereutectic icing contains 95 atomic percent Si, its melting point on the ITQ 4 is found to be approx. 1400 ° C, as shown on line 7. When the silicon-rich starting alloy has the same composition as the desired penetration alloy as shown on line 7, all starting alloy will melt at the melting temperature of 1400 ° C and the liquid or hot pressing temperature will be between 1410 ° C and preferably 1510 ° C, or up to a maximum of 1600 ° C if desired. When there. however, a silicon-rich starting alloy is a hypereutectic alloy 35 to the right of line 7 on the horizontal line 1 of the equilibrium diagram of FIG. 1, the hot pressing temperature is the temperature at which the desired penetration alloy containing 95 atomic percent Si and 5 atomic percent Zr is provided in liquid form, which will be
omkring 1410 C.about 1410 C.
DK 153536 BDK 153536 B
1010
Ved varmpresningstemperaturen skal udgangsiegeringen tilvejebringe den ønskede indtrængningslegering i væskeform i en mængde, aer er tilstrækkelig ti! at fylde hulrummene i den foreliggende komprimerede diamantmasse, der har en krystaitæthed pi over 70 5 volumenprocent, og frembringe kontakt med kontaktfladerne af sili-ciumcarbidsubstratet under udfyldning af porerne eller hulrummene I grænsefladen mellem det kontaktdannende poly kry stal! i nske legeme og substratet, således at det resulterende kompositmateriale har en grænseflade, som er porefri eller i hvert fald i alt væsentligt porefri.At the hot-pressing temperature, the starting alloy should provide the desired liquid alloy penetration in an amount sufficient to ten. filling the voids in the present compacted diamond mass having a crystalline density of over 70% by volume, and contacting the contact surfaces of the silicon carbide substrate while filling the pores or voids in the interface between the contact forming poly crystals! in the body and substrate so that the resulting composite has an interface which is pore-free or at least substantially pore-free.
'0 I praksis bør den flydende indtrængningslegering ved varmpresningstemperaturen tilvejebringes i en mængde på mindst ca. 1 volumenprocent af den siiiciumholdige udgangslegering.In practice, the liquid penetration alloy at the hot-pressing temperature should be provided in an amount of at least approx. 1% by volume of the silicon-containing starting alloy.
Varmpresningen udføres ved en temperatur, ved hvilken den indtrængende siliciumhoidige legering er fiydende under et tryk, der 15 kun behøver at være tilstrækkeligt tii ved varmpresningstemperaturen at nedbryde modstandsdygtige grænsefiadelejringer (eng.: interfaciai refractory layers) I diamantmassen, som forhindrer penetrering med den flydende legering gennem hulrummene deri, og sædvanligvis kræver dette et minimumstryk på omkring 34,5 bar overtryk. Specielt 20 kan varmpresningstrykket iigge mellem ca. 34,5 bar overtryk cg 1,4 kilobar overtryk, men sædvanligvis ligger det meliam ca. SS bar overtryk og S90 bar overtryk. Varmpresningstryk ved fremgangsmåden ifølge den foreliggende opfindelse over 1,4 kiiobar overtryk tilveje-bringer ingen væsentlig fordel.The hot pressing is carried out at a temperature at which the penetrating silicon alloy is subjected to a pressure which only needs to be sufficient to break down resistant interfacial layers in the diamond mass which prevents penetration with the liquid mass at the hot pressing temperature. through the cavities therein, and usually this requires a minimum pressure of about 34.5 bar overpressure. Especially 20, the hot pressing pressure can be between approx. 34.5 bar overpressure and 1.4 kilobar overpressure, but usually it is between approx. SS carried overpressure and S90 carried overpressure. Hot pressing pressure in the method of the present invention over 1.4 kbbar overpressure provides no significant advantage.
25 Med en temperatur, ved hvilken den indtrængende legering er flydende, menes i denne tekst en temperatur, ved hvilken den indtrængende legering er i stand til at fiyde let. Specielt er den indtrængende legering ved sit på Hkvlduslinien givne smeltepunkt eller ved det eutektiske punkt i tilfælde af en eutektisk legering en væs-30 keformig, tyk, viskøs substans, men når dens temperatur øges fra smeltepunktet, biiver den indtrængende legering mindre viskøs, og ved en temperatur omkring 10 C over sit smeltepunkt bliver den væskeformige, indtrængende legering villigt i stand ti! at flyde, dvs. flydende. Den temperatur, ved hvilken den indtrængende, silicium-35 rige legering er flydende, er den temperatur, ved hvilken den vil gennemtrænge eller sive ind gennem de kapiliarstore passager, hulrum eller tomme mellemrum i den foreliggende komprimerede diamant-krystaimasse, der har en krystaitæthed på over 70 volumenprocent.By a temperature at which the penetrating alloy is liquid, in this text is meant a temperature at which the penetrating alloy is able to disperse easily. In particular, the penetrating alloy at its melting point given on the Hkvlduslin or at the eutectic point in the case of a eutectic alloy is a liquid, thick, viscous substance, but as its temperature increases from the melting point, the penetrating alloy becomes less viscous, and at at a temperature of about 10 ° C above its melting point, the liquid penetrating alloy is readily capable of being maintained. to flow, i.e. liquid. The temperature at which the penetrating silicon-rich alloy is liquid is the temperature at which it will penetrate or seep through the capillary-sized passages, voids, or voids in the present compacted diamond crystal mass having a crystalline density of over 70% by volume.
Ved stadig yderi [gere temperaturstigning stiger flydeevnen for den 11At still further temperature rise, the flowability of the 11
DK 153536 BDK 153536 B
flydende, indtrængende, siliciumrige legering, hvilket medfører en øget penetrationshastighed igennem heie diamantkrystalmassen, og ved en temperatur omkring 10G°C over sit smeltepunkt har den indtrængende legering sædvanligvis sin største flydeevne, og tempera-5 turer over dette maksimum er det almindeligvis ikke nødvendigt at anvende.liquid, penetrating, silicon-rich alloy, resulting in an increased penetration rate through the hot diamond crystal mass, and at a temperature about 10G ° C above its melting point, the penetrating alloy usually has its greatest flowability, and temperatures above this maximum are generally not necessary to apply.
Den foreliggende siliciumrige legering af eutektisk sammensætning smelter ved en temperatur under omkring 1430°C. For den foretrukne gruppe af siliciumholdige legeringer ifølge opfindelsen ligger 10 det eutektiske smeltepunkt mellem 870°C for en eutektisk SiPd-lege-ring, nemlig ved omkring 56 atornprocent Si, og 1410°C for en eutektisk SiMo-legeringssammensætning, nemlig ved omkring 97 atomprocent Si. Som vist i fig. 1 indeholder den eutektiske SiZr-!egering 2 90,4 atomprocent Si og har en eutektisk smeitetemperatur pi 1360°C.The present silicon-rich alloy of eutectic composition melts at a temperature below about 1430 ° C. For the preferred group of silicon-containing alloys according to the invention, the eutectic melting point is between 870 ° C for a eutectic SiPd alloy, namely at about 56% Si, and 1410 ° C for a eutectic SiMo alloy composition, namely at about 97 atomic percent. Si. As shown in FIG. 1, the eutectic SiZr alloy contains 2 90.4 atomic percent Si and has a eutectic melting temperature of 1360 ° C.
15 Hovedfasen af den foreliggende faste, siliciumrige eutektiske legering er næsten rent silicium.The main phase of the present solid, silicon-rich eutectic alloy is almost pure silicon.
Den foreliggende indtrængende eutektikumhoidige, siliciumrige legering har et smeltepunkt på under 1500°C, sædvanligvis mellem O o 850 C og 1450 C, og den temperatur, ved hvilken den bliver tydende, 20 er mindst omkring 10°C over smeltepunktet.The present penetrating eutectic-rich silicon-rich alloy has a melting point of less than 1500 ° C, usually between 0 and 850 C and 1450 C, and the temperature at which it becomes apparent is at least about 10 ° C above the melting point.
Den faste, siiiciumrige udgangsiegering eller de ti! tilvejebringelse af den foreliggende siiiciumrige legering faste komponenter kan foreligge i form af et kontinuert fast legeme eller i form af et puiver.The solid, silicon-rich starting alloy or the ten! providing the present silicon-rich alloy solid components may be in the form of a continuous solid body or in the form of a powder.
Den bestemte mængde eller det bestemte rumfang af fast, siliciumrig 25 udgangslegering, der anvendes, kan variere i afhængighed af den mængde af flydende, siliciumrig ind+rængningslegering, som den tilvejebringer, og af materiellets kapacitet. Almindeligvis ligger mængden af den indtrængende siliciumholdige legering på fra 25 volumenprocent til 80 volumenprocent, men for at opnå de bedste resultater 30 ligger den fortrinsvis mellem 30 og 60 volumenprocent af den foreliggende komprimerede diamantkrystaimasse, der har en krystaltæthed pi over 70 volumenprocent.The particular amount or volume of solid silicon-rich starting alloy used may vary depending on the amount of liquid, silicon-rich + intrusion alloy it provides and the capacity of the material. Generally, the amount of the penetrating silicon alloy is from 25% to 80% by volume, but for best results 30 it is preferably between 30 and 60% by volume of the present compacted diamond crystal mass having a crystal density of over 70% by volume.
Det benyttede varmpresningstrin udføres i en atmosfære, der ikke har nogen væsentlig skadelig effekt på dismantkrystallerne eller 35 den indtrængende, siliciumrige legering eiier siliciumcarbidsubstratet. Specielt kan varmpresningstrinnet udføres i praktisk taget vakuum eller i en inert gas, som f.eks. argon eller helium, eller det kan udføres i nitrogen eller hydrogen. Den foreliggende varmpresning udføres tilstrækkeligt hurtigt, således at der ikke finder nogenThe hot pressing step used is carried out in an atmosphere which has no significant detrimental effect on the dismantling crystals or the penetrating silicon-rich alloy or the silicon carbide substrate. In particular, the hot pressing step may be carried out in practically a vacuum or in an inert gas, e.g. argon or helium, or it can be carried out in nitrogen or hydrogen. The present hot pressing is carried out sufficiently quickly so that none can be found
DK 153536 BDK 153536 B
12 væsentlig reaktion sted mellem den indtrængende, siliciumrige legering og nitrogenet eller hydrogenet. Varmpresningstrinnet kan ikke udføres i atmosfærisk luft, da diamant i atmosfærisk luft ved mere end 800°C hurtigt omdannes til grafit, og den flydende, ind-5 trængende, siliciumrige legering ville oxyderes under dannelse af fast kiselsyreanhydrid inden nogen væsentlig infusion af flydende legering i diamantmassen har fundet sted.12 significant reaction occurs between the penetrating, silicon-rich alloy and the nitrogen or hydrogen. The hot pressing step cannot be carried out in atmospheric air since diamond in atmospheric air at more than 800 ° C is rapidly converted to graphite and the liquid, penetrating, silicon-rich alloy would be oxidized to form solid silicic anhydride before any substantial infusion of liquid alloy into the diamond mass has taken place.
Siliciumcarbidsubstratet er et poiykrystailinsk legeme, der har en tæthed på mellem 85% og 100% af den teoretiske tæthed for silicium-10 carbid. Den siiiciumcarbidtæthed, der er angivet heri, er den relative tæthed baseret på siiiciumcarbids teoretiske tæthed, som er 3,21 3 g/cm . Et polykrystailinske siliciumcarbidlegeme med en tæthed under 85% er ikke anvendeligt, da det ikke vil have den til de fleste anvendelser, som f.eks. anvendelse som værktøjsindsats, påkrævede 15 mekaniske styrke. Almindeligvis gælder, at jo større sliiciumcarbid-iegemets tæthed er, desto større er dets mekaniske styrke.The silicon carbide substrate is a polycrystalline body having a density of between 85% and 100% of the theoretical density of silicon carbide. The silicon carbide density given herein is the relative density based on the theoretical density of silicon carbide, which is 3.21 3 g / cm. A polycrystalline silicon carbide body with a density less than 85% is not applicable as it does not have it for most applications, such as use as a tool insert required 15 mechanical strengths. Generally, the greater the density of the silicon carbide egg, the greater its mechanical strength.
Siiiciumnitridsubstratet er et poiykrystailinsk legeme med en tæthed pi meiiem 80% og 100% af slliciumnitrids teoretiske tæthed.The silicon nitride substrate is a polycrystalline body having a density of between 80% and 100% of the theoretical density of silicon nitride.
Den siliciummtndtæthed, der er angivet heri, er den relative tæthed 20 baseret på siiiciumnitrids teoretiske tæthed, der er 3,18 g/cm . Et poiykrystailinsk siiiciumnitridlegeme med en tæthed under 80% er ikke anvendeligt, da det ikke vil' have den for de fieste anvendelser, f.eks. til anvendelse som værktøjsindsats, påkrævede mekaniske styrke. Almindeligvis gælder, at jo større siliciumnitridlegemets tæt-hed er, desto større er dets mekaniske styrke.The silicon density indicated herein is the relative density 20 based on the theoretical density of silicon nitride, which is 3.18 g / cm. A polycrystalline silicon nitride body having a density below 80% is not usable as it will not have it for most applications, e.g. for use as tool insert, mechanical strength required. Generally, the greater the density of the silicon nitride body, the greater its mechanical strength.
i forbindelse med den foreliggende opfindelse er det polykrys-tai’inske siliciumcarbid- eller sillciumnitridsubstrat et varmpresset eller sintret iegeme, der indeholder siliciumnitnd, dvs, det indeholder siliciumnitrid i en mængde pi mindst 90 vægtprocent og sæd-30 vanligvis mindst 95 vægtprocent og almindeligvis meilem 96 vægtprocent og 99 vægtprocent eller mere af substratlegemets vægt. Andre bestanddele eller komponenter ud over siliciumnitrid i det foreliggende polykrystailinske siiiciumnitridlegeme bør ikke have nogen væsentlig forringende effekt på de mekaniske egenskaber af det resul-35 terende kompositmateriaie. Specielt bør de ikke have nogen væsentlig forringende effekt på egenskaberne af siiiciumnitridet og alle de øvrige materialer, der anvendes ved den foreliggende fremgangsmåde til fremstilling af kompositmateriaiet, eiler på selve kompositmaterialets egenskaber.For the purposes of the present invention, the polycrystalline silicon carbide or silicon nitride substrate is a hot pressed or sintered element containing silicon nitride, i.e., it contains silicon nitride in an amount of at least 90% by weight and usually at least 95% by weight and usually millimeters. 96% by weight and 99% by weight or more by weight of the substrate body. Other constituents or components other than silicon nitride in the present polycrystalline silicon nitride body should have no significant deteriorating effect on the mechanical properties of the resulting composite material. In particular, they should have no significant deteriorating effect on the properties of the silicon nitride and all the other materials used in the present process for the manufacture of the composite material or the properties of the composite material itself.
1313
DK 153536 BDK 153536 B
Det foreliggende siliciumcerbidlegeme kan fremstilles ved sintringsprocesser, der er kendt fra U.S.A. patent nr. 4.004.934.The present silicon carbide body can be prepared by sintering processes known from U.S.A. Patent No. 4,004,934.
Kort beskrevet kan det sintrede siliciumcarbidiegeme fremstilles ved tilvejebringelse af en submikronpartikelblanding af B-si!icium~ 5 carbid, boradditiv og et carbonholdigt additiv i form af frit kulstof eller et carbonholdigt organisk materiale, der er varmenedbrydeiigt under dannelse af frit carbon, og formning af blandingen til et ’’grønt11 iegeme. Ved en alternativ metode blandes A-SiC af submi- kronstørrelse, men med en gennemsnitlig partikelstørrelse lig to '10 gange partikelstørrefsen for B-SiC, med partikelblandingen i en mængde på meliem 0,05 vægtprocent og 5 vægtprocent på basis af A-SiC’et. Det "grønne" iegeme sintres ved en temperatur på mellem 1900°C og 2300°C til den påkrævede tæthed.Briefly, the sintered silicon carbide body can be prepared by providing a submicron particle mixture of B-silicon ~ 5 carbide, boron additive, and a carbonaceous additive in the form of free carbon or a carbonaceous organic material which is heat decomposable to form free carbon and form the mixture into a green vegetable. In an alternative method, A-SiC of submicron size but with an average particle size equal to two-ten times the particle size of B-SiC is mixed with the particle mixture in an amount of 0.05% by weight and 5% by weight based on A-SiC. one. The "green" element is sintered at a temperature of between 1900 ° C and 2300 ° C to the required density.
Boradditivet kan foreligge som rent borcarbid eller som en bor-15 forbindelse, der dekomponerer ved en temperatur under sintringstemperaturen under dannelse af bor eller borcarbid og gasformige nedbrydningsprodukter, og anvendes i en mængde svarende til 0.3 til 3,0 vægtprocent rent bor beregnet ud fra mængden af silicium-earbid. Under sintringen går boradditivet i fast opløsning med sin-20 ciumcarbidet, og når der anvendes mængder af additivet, der overstiger hvad der svarer ti i omkring 1 vægtprocent rent bor, udskilles der desuden en borcarbidfase.The boron additive may be present as pure boron carbide or as a boron compound which decomposes at a temperature below the sintering temperature to form boron or boron carbide and gaseous decomposition products, and is used in an amount equal to 0.3 to 3.0% by weight of pure boron calculated from the amount of silicon wrist. During sintering, the boron additive goes into solid solution with the syncium carbide, and when amounts of the additive exceeding what corresponds to ten in about 1% by weight of pure boron are additionally a boron carbide phase is excreted.
Det carbonholdige additiv anvendes i en mængde svarende tit fra ca. 0,1 til ca. 1,0 vægtprocent fmt carbon beregnet ud fra 25 mængden af siliciumcarbid. Additivet kan være frit carbon eller et fast eller væskeformigt, carbonholdigt organisk materiale, der dekomponerer fuldstændigt ved en temperatur på 50°C - 1000°C til frit carbon af submikronstørrelse og gasformige nedbrydningsprodukter. Eksempler på carbonholdige additiver er polymere af aromatiske car-30 bonhydrider som f.eks. polyphenylen eller polymethyiphenylen, som er opløselig i aromatiske carbonhydrider.The carbonaceous additive is used in an amount corresponding to often from ca. 0.1 to approx. 1.0 percent by weight of carbon calculated from the amount of silicon carbide. The additive may be free carbon or a solid or liquid carbonaceous organic material which completely decomposes at a temperature of 50 ° C - 1000 ° C to submicron free carbon and gaseous decomposition products. Examples of carbonaceous additives are polymers of aromatic hydrocarbons such as e.g. polyphenylene or polymethylphenylene, which is soluble in aromatic hydrocarbons.
Det sintrede iegeme omfatter siliciumcarbid og beregnet ud fra mængden af siliciumcarbid fra 0,3 til 3,0 vægtprocent bor og indtil 1 vægtprocent frit carbon. Boret foreligger i fast opløsning med siii-35 ciumcarbidet eller alternativt som borcarbidfase i fast opløsning med siliciumcarbidet. Det frie carbon foreligger, såfremt det kan detek» teres, som submikronpartikler spredt fordelt i hele det sintrede gerne.The sintered elements comprise silicon carbide and calculated from the amount of silicon carbide from 0.3 to 3.0 weight percent boron and up to 1 weight percent free carbon. The drill is in solid solution with the silicon carbide or alternatively as the solid carbide phase in solid solution with the silicon carbide. The free carbon is present if it can be detected as submicron particles dispersed throughout the sintered solid.
De varmpressede siiiciumcarbidlegemer kan fortrinsvis fremstilesPreferably, the hot pressed silicon carbide bodies can be prepared
DK 153536 BDK 153536 B
14 ved fremgangsmåder, der er beskrevet i beskrivelsen ti! US patent nr. 3.853.566 og US patent nr. 4.108.929.14 by methods described in the specification ten! U.S. Patent No. 3,853,566 and U.S. Patent No. 4,108,929.
En dispersion af siliciumcarbidsubmikronpulver og en bor- eller borcarbidmængde svarende ti! 0,5 - 3,0 vægtprocent bor varmpresses 5 ved en varmpresningsproces ved 1900 - 2000°C og 345 - 690 bar overtryk til tilvejebringelse af et borholdigt siliciumcarbidlegeme. Ved en anden varmpresningsproces Inkluderes der 0,5 - 3,0 vægtprocent frit carbon eller carbonholdigt additiv, der kan varmedekomponeres til frit carbon, i dispersionen.A dispersion of silicon carbide sub-micron powder and a boron or boron carbide amount corresponding to ten! 0.5-3.0% by weight of boron is hot pressed 5 by a hot pressing process at 1900-2000 ° C and 345-690 bar overpressure to provide a boron-containing silicon carbide body. In another hot pressing process, 0.5 - 3.0% by weight of free carbon or carbonaceous additive, which can be heat-decomposed to free carbon, is included in the dispersion.
Det polykrystai'inske siiiciumnitridlegeme kan fremstilles ved sintringsprocesserne, der er beskrevet i beskrivelsen ti! US patent nr. 4.119.689 og nr. 4.119.690.The polycrystalline silicon nitride body can be prepared by the sintering processes described in the specification described above. U.S. Patent Nos. 4,119,689 and 4,119,690.
I beskrivelsen til US patent nr. 4.119.689 beskrives et sintret siiiciumnitridlegeme, der fremstilles ved tilvejebringelse af en homo-"'5 gen dispersion af suhmikronstørreise, og som omfatter siiiciumnitrid og et berylliumadditiv, der kan være beryllium, beryHiumcarbid, beryiiiumfluorid, berylUumnitrid, berylliumsiiiciumnitrid og blandinger heraf i en mængde, hvori beryllium komponenten svarer til fra 0,1 vægtprocent ti! 2 vægtprocent rent beryllium på basis af mængden af siiiciumnitrid, formning af dispersionen ti! et “grønt legeme" og sintring af det "grønne legeme" ved fra 1S00°C ti! 2200°C i en nitrogen-sintringsatmosfærs ved et superatmosfærisk tryk, der ved sintringstemperaturen forhindrer væsentlig termisk dekotnponering af silicium-nitridet og tilvejsbringer et sintret legeme med en tætned på mindst 25 ca. 80% af den teoretiske tæthed for siiiciumnitrid, hvor minimumstrykket for det nævnte nitrogen ligger på mellem ca. 20 atmosfære ved en sintringsterr.peratur pi 19G0°C og et tryk på ca. 130 atmosfære ved en sintringstemperatur på 2200°C.In the specification of U.S. Patent No. 4,119,689, a sintered silicon nitride body is prepared which is produced by providing a homogeneous dispersion of suction micron drying and comprising silicon nitride and a beryllium additive which may be beryllium, beryllium carbide, beryllium fluoride, beryllium silicon nitride and mixtures thereof in an amount in which the beryllium component corresponds to from 0.1 wt% to 2 wt% pure beryllium on the basis of the amount of silicon nitride, forming the dispersion to a "green body" and sintering the "green body" by from 1S00 ° C ti! 2200 ° C in a nitrogen sintering atmosphere at a superatmospheric pressure which at the sintering temperature prevents substantial thermal decomposition of the silicon nitride and provides a sintered body having a seal of at least 25 80% of the theoretical density of silicon nitride, where the minimum pressure of said nitrogen is between approx. 20 atmosphere at a sintering temperature of 19G0 ° C and a pressure of approx. 130 atmosphere at a sintering temperature of 2200 ° C.
Fremgangsmåden ifølge US patentskrift nr. 4 119.6S0 svarer til ^ fremgangsmåden iføige US patentskrift nr. 4.119.689 bortset fra, at der inkluderes et magnesiumadditiv i dispersionen, som omfatter sili-ciumnitrid og berytSiumadditiv, at det. grønne legeme sintres ved fra ca. 1800°C tii ca. 2200°C i en nitrogensintringsatmosfære ved et su-peratmosfærlsk. tryk, der ligger mellem et minimum på 10 atmosfære 43 ved en sintringstemperatur på 1800 C og et minimum pa 130 atmosfære ved en sintringstemperatur på 2200°C. Magnesiumadditivet er udvalgt fra gruppen, der omfatter magnesium, magnesiumcarbid, magnesiumnitrld, magnesiumcyanid, magnesiumfluorid, magnesium-siiicid, magnesiumsiliclumnltrid og blandinger heraf. Magnesium- 15The process of U.S. Patent No. 4,119,6S0 is similar to that of U.S. Patent No. 4,119,689 except that a magnesium additive is included in the dispersion which comprises silicon nitride and beritium additive. green body sintered by from approx. 1800 ° C for approx. 2200 ° C in a nitrogen sintering atmosphere at a superatmospheric. pressures ranging from a minimum of 10 atmospheres 43 at a sintering temperature of 1800 C to a minimum of 130 atmospheres at a sintering temperature of 2200 ° C. The magnesium additive is selected from the group comprising magnesium, magnesium carbide, magnesium nitride, magnesium cyanide, magnesium fluoride, magnesium silicide, magnesium silicon nitride and mixtures thereof. Magnesium 15
DK 153536 BDK 153536 B
addivet anvendes i en mængde, hvori magnesiumkomponenten svarer lii fra 0,5 vægtprocent ti! 4 vægtprocent rent magnesium på basis af mængden af sUiciumnitrid,the additive is used in an amount in which the magnesium component corresponds to from 0.5 wt. 4% by weight of pure magnesium based on the amount of silicon nitride,
Det poiykrystailinske legeme, der beskrives i US patentskrift 5 nr, 4.119.689, har en tæthed på mellem 80% og 100% af den teoretiske tæthed af siliciumnitrid og indeholder siliciumnitrid og beryllium i en mængde på fra mindre end 0,1 vægtprocent, til mindre end 2 vægtprocent af siliciumnitridet. Det poiykrystailinske legeme, der er beskrevet I US patentskrift nr. 4.119.690 svarer til det, der er be-10 skrevet i US patentskrift nr. 4.119.689 bortset fra. at det også indeholder magnesium i ert mængde på fra mindre end 0,5 vægtprocent dl mindre end 4,0 vægtprocent af siliciumnitridet.The polycrystalline body described in U.S. Patent No. 5,119,689 has a density of between 80% and 100% of the theoretical density of silicon nitride and contains silicon nitride and beryllium in an amount of less than 0.1% by weight to less than 2% by weight of the silicon nitride. The polycrystalline body disclosed in U.S. Patent No. 4,119,690 is similar to that described in U.S. Patent No. 4,119,689 except. it also contains magnesium in pea amount of less than 0.5% by weight dl less than 4.0% by weight of the silicon nitride.
De varmpressede, poiykrystailinske siliciumnitridlegemer kan fremstilles ved fremgangsmåder, der er beskrevet I beskrivelserne tii 15 US patentskrift nr. 4.093.687 og US patent nr. 4.122,140, I US patentskrift nr. 4.093.687 beskrives et varmpresset sil·'-ciumnttridlegeme, der fremstilles ved tilvejebringelse af en homogen puiverdispersion af submikronstørrelse af siliciumnitrid og magnesium-silicid i en mængde på mellem 0,5 og 3,0 vægtprocent på basis af 20 mængden af siliciumnitrid og varmpresning af dispersionen i en ni-trogenatmosfæ^e ved fra 1600°C tii 1850°C under et minimumstryk på 138 bar overtryk. Det resulterende poiykrystailinske siliciumnitrid-legeme har en tæthed på 80 tii 100 procent af den teoretiske tæthed for siliciumnitrid og indeholder siliciumnitrid og magnesium i en 25 mængde på fra 0,3 vægtprocent tii ca i,9 vægtprocent af siliciumnitridet.The hot-pressed, polycrystalline silicon nitride bodies can be prepared by methods described in the disclosures of U.S. Patent No. 4,093,687 and U.S. Patent No. 4,122,140, U.S. Patent No. 4,093,687 to a hot-pressed silicon-cesium nitride body. prepared by providing a homogeneous powder dispersion of submicron size of silicon nitride and magnesium silicide in an amount of between 0.5 and 3.0% by weight based on the amount of silicon nitride and hot pressing the dispersion in a nitrogen atmosphere at 1600 ° C to 1850 ° C under a minimum pressure of 138 bar overpressure. The resulting polycrystalline silicon nitride body has a density of 80 to 100 percent of the theoretical density of silicon nitride and contains silicon nitride and magnesium in an amount of from 0.3 wt% to about 9 wt% of the silicon nitride.
! US patentskrift nr, 4.122.140 beskrives et varmpresset poiy-krystailinsk siliciumnitridiegeme, der fremstilles ved tilvejebringelse af en puiverdispersion af submikronstørrelse, og som indeholder sili-30 ciumnitrid og et beryiiiumadditiv, der er udvaigt fra gruppen bestående af beryllium, berylliumnitrid, beryliiumfluond, berylirum-siiiciumnitrid og blandinger heraf, i en mængde, hvori beryliiumkom-ponenten svarer til fra 0,1 vægtprocent til 2 vægtprocent rent beryllium på basis af mængden af siliciumnitrid, og varmpresning af dis-35 persionen i en nitrogenatmosfære ved fra 1600 C tii 1850 C under et minimumstryk på 138 bar overtryk. Det resulterende poly-krystailsnske siliciumnitridiegeme har en tæthed på fra ca. 80% til cs. 100% af den teoretiske tæthed for siliciumnitrid og indeholder siliciumnitrid og beryllium i en mængde på fra 0,1 vægtprocent til ?.f) af cilir.mmnitridet! U.S. Patent No. 4,122,140 discloses a hot-pressed poly-crystalline silicon nitride body produced by providing a submicron size powder dispersion containing silicon nitride and a beryllium additive selected from the group consisting of beryllium, beryllium nitride, berylium nitride, -silicon nitride and mixtures thereof, in an amount in which the beryllium component corresponds to from 0.1% to 2% by weight of pure beryllium on the basis of the amount of silicon nitride, and hot pressing the dispersion in a nitrogen atmosphere at from 1600 C to 1850 C under a minimum pressure of 138 bar overpressure. The resulting poly-crystalline silicon nitride body has a density of from approx. 80% to cs. 100% of the theoretical density of silicon nitride and contains silicon nitride and beryllium in an amount of 0.1% by weight to? F) of the silicon nitride
DK 153536 BDK 153536 B
1616
Tykkeisen af siliciumnitridsubstratet kan variere i afhængighed aF slutanvendelsen af det tilvejebragte kompositmateriale, men det bør mindst være tilstrækkeligt tykt tii at tilvejebringe et tilstrækkeligt stærkt bærerunderiag for det poiykrystaiiinske diamantlegeme, ^ der fastgøres hertil. For at tilvejebringe en tilstrækkelig stærk understøttelse af det fastgjorte poiykrystaiiinske diamantiegeme er sili-ciumnitridsubstratet tii de fleste anvendelser fortrinsvis mindst dobbelt så tykt som det fastgjorte poiykrystaiiinske diamantiegeme.The thickness of the silicon nitride substrate may vary depending on the end use of the composite material provided, but it should be at least sufficiently thick to provide a sufficiently strong support substrate for the polycrystalline diamond body attached thereto. In order to provide sufficiently strong support for the attached poly-crystalline diamond body, the silicon nitride substrate for most applications is preferably at least twice as thick as the fixed poly-crystalline diamond body.
I opstillingen, der er vist i figur 2, består en celle 10 af et ',J kopformet organ 11 (retvinklet, cirkulær, cylindrisk væg med bund).In the arrangement shown in Figure 2, a cell 10 consists of a ', J cup-shaped member 11 (right angled, circular cylindrical wall with bottom).
I det kopformede organ 11 er der anbragt en skive 12 af en eutek-tikumholdig, siliciumrig legering, en masse 13 af diamantkrystaller i kontakt med den siiiciumrlge legering 12 og en tyk prop 14, f.eks. en cylinder af polykrystaliinsk siiiciumnitridsubstrat, hvilken cylinder passer nøje Ind i det kopformede organ 11 og fungerer som et lukke derfor.In the cup-shaped member 11 is placed a disc 12 of a eutectic-containing silicon-rich alloy, a mass 13 of diamond crystals in contact with the silicon-rich alloy 12 and a thick plug 14, e.g. a cylinder of polycrystalline silicon nitride substrate, which cylinder fits snugly into cup-shaped member 11 and acts as a closure therefor.
Det kopfcrrnede organ 11 er fremstillet af et materiale, der stort set er inert under varmpresningstrsnet, dvs. et materiale, som ikke har nogen væsentlig forringende effekt på det foreliggende dia-^ mantiegemes egenskaber. Et sådant materiale kan være et Ikke-metai som f.eks. komprimeret hexagonalt bornitrid, men det er fortrinsvis et metal og fortrinsvis et af metallerne fra gruppen, der omfatter wolfram, yttrium, vanadium, tantal og molybdæn.The copper-lined member 11 is made of a material which is substantially inert under the hot-pressing network, i.e. a material which has no significant deteriorating effect on the properties of the present diamond. Such a material may be a non-meta such as e.g. compressed hexagonal boron nitride, but it is preferably a metal and preferably one of the metals of the group comprising tungsten, yttrium, vanadium, tantalum and molybdenum.
Der bør, da dette ville muliggøre en sammenblanding eller fri bevægelse af -ndholdet i det kopformede organ, ikke være fri plads tH overs i det tiiproppede kopformede organ, således at. indholdet udsættes for det i alt væsentligt isostatiske tryk under koidpres-ningstrinet 1 det mindste i alt væsentligt i den oprindelige placering.Since this would allow for a mixing or free movement of the contents of the cup-shaped member, there should be no free space in the cup-shaped member left over so that. the content is subjected to the substantially isostatic pressure during the co-pressing step 1 at least substantially in the original location.
Formålet med at anvende størrelsessorterede diamantkrystaller ^ er 3t tilvejebringe en maksimal pakning af diamantkrystallerne. Alternativt eller herudover er den opstilling, der er vist i figur 3, anvendelig tii at øge diamantkrystallernes tæthed eller pakning. Cellen 10 er anbragt på en vibrerende plade 16 og holdes dér under let trykpåføring (ca. 3,45 bar) under vlbrering af cellen 10 tii fremme af & repiacering af diamantkrystaiierne eller partiklerne til udfyldning af mellemrummene og nedsættelse af hulrumsindhoidet til øgning diamant-krystalmassens tæthed til over 70 volumenprocent af diamantmassen.The purpose of using size-sorted diamond crystals is to provide a maximum packing of the diamond crystals. Alternatively or additionally, the arrangement shown in Figure 3 is useful for increasing the density or packing of the diamond crystals. The cell 10 is placed on a vibrating plate 16 and is held there under light pressure application (about 3.45 bar) while vibrating the cell 10 to promote and repackage the diamond crystals or particles to fill the gaps and decrease the cavity content to increase the diamond crystal mass. density to over 70% by volume of the diamond mass.
Den fornødne komprimeringsgrad kan bestemmes ved en uafhængig 17The required compression ratio can be determined by an independent 17
DK 153536 BDK 153536 B
undersøgelse udført på diamanter af ens størrelse i en matrice med faste dimensioner.study done on diamonds of similar size in a fixed-size matrix.
Ceiien 10 underkastes et koidpresningstrin som vist i figur 4, hvilket koldpresningstrin udføres ved stue- eiler omgivelsestempera-5 tur, hvorved det kun er påkrævet, at der påføres et tilstrækkeligt tryk til at tilvejebringe et dimensionsmæssigt stabiliseret praktisk taget isostatisk system. Ceiien 10 er anbragt i den cylindriske kerne af en trykform 20 og er omgivet af en masse 19 bestående af fine partikler (fortrinsvis sigtestørrelse 0,037 rnm ( -400 mesh)) og helst 10 med størrelser fra ca. 2 pm til ca. 20 pm af et tryktransmitterende pulvermedium, der som f.eks. hexagonalt bornitrid og siiiciumnitnd forbliver praktisk caget usintret under tryk- og ternperaturbetingel· serne ved den foreliggende fremgangsmåde. Dette tryktransmitterende pulver eller pufvermedium sørger for påføring af et tilnærmelsesvis 15 eller i alt væsentligt isostatisk tryk på ceiien 10, hvorved ceiien 10 og dens indhold stabiliseres dimensionsmæssigt, dvs. densificeres, i alt væsentligt ensartet under tilvejebringelse af et formet, i alt væsentligt isostatisk system bestående af den puiveromsiuttede cehe, hvori tætheden af det frembragte komprimerede k^ystallag er over 70 20 voulmervprocent af de komprimerede krystallers rumfang. Trykformen 20 (ring 22 og stemplerne 23, 23a) kan være fremstillet af værktøjs-stål og om ønsket kan ringen 22 som vist anbringes ; en sintercarbid-bøsning 22a for af muliggøre påføring af tryk på indtil 13.7S0 bar overtryk. Tryk over 13.790 bar overtryk tilvejebringer Ingen væsent-25 lig fordel. Inden for rammerne af stemplet 23, bøsningen 22a og stemplet 23a udøves der fortrinsvis tryk <' området fra 1380 bar overtryk og indtil 6,895 bar overtryk og sædvanligvis indtil 3.447 bar overtryk på det tryktransmitterende pulvermedium ved hjæip af stemplerne, der drives på konventionel måde, Indtil det påførte tryk bliver 20 stabilt, således som det gøres ved konventionel puiverpakningstek-nologi.The cue 10 is subjected to a co-pressing step as shown in Figure 4, which cold pressing step is carried out at room-temperature ambient temperature, whereby only sufficient pressure is required to provide a dimensionally stabilized practically isostatic system. The cage 10 is disposed in the cylindrical core of a printing mold 20 and is surrounded by a mass 19 of fine particles (preferably sieve size 0.037 rnm (-400 mesh)) and most preferably 10 with sizes of approx. 2 pm to approx. 20 µm of a pressure transmitting powder medium which, e.g. hexagonal boron nitride and silicon nitride remain practically sintered under the pressure and room temperature conditions of the present process. This pressure transmitting powder or buffer medium provides for the application of approximately 15 or substantially isostatic pressure to the cage 10, whereby the cage 10 and its contents are dimensionally stabilized, i.e. is densified, substantially uniformly, to provide a shaped, substantially isostatic system consisting of the powder-enclosed cehe, wherein the density of the generated compressed crystal layer is over 70 to 20 vol% of the volume of the compressed crystals. The pressure mold 20 (ring 22 and pistons 23, 23a) may be made of tool steel and if desired, the ring 22 may be arranged as shown; a sinter carbide bushing 22a to enable application of pressure up to 13.7S0 bar overpressure. Pressure above 13,790 bar overpressure provides no significant advantage. Within the confines of piston 23, bush 22a and piston 23a, pressure is preferably exerted from the range of 1380 bar overpressure to up to 6.895 bar overpressure and usually up to 3,447 bar overpressure on the pressure transmitting powder medium using the pistons operated in a conventional manner. the applied pressure becomes stable, as is done by conventional powder packing technology.
Det kan bemærkes, at det specifikt påførte koldpresningstryk,, der anvendes, kan bestemmes empirisk, og tryk over det tryk, de*-frembringer et dirnensionsmæssigt stabiliseret, i alt væsentligt iso-35 statisk system, tilvejebringer ingen væsentlig yderligere densrikation eiier dimensionsmæssig stabilisering af cellen 10 og dens indhold.It can be noted that the specifically applied cold-pressing pressure used can be determined empirically, and pressure over the pressure they produce a conductively stabilized, substantially isostatic system, provides no significant additional densification or dimensional stabilization of cell 10 and its contents.
Det foreliggende tryktransmitterende puivermediurn, som f.eks. hexagonalt bornitrid og siliciumnitrid, er af en sådan natur, at det resulterer i en tilnærmelsesvis hydrostatisk virkning scm reaktion påThe present pressure transmitting powder media, e.g. hexagonal boron nitride and silicon nitride, are of such a nature that it results in an approximately hydrostatic effect upon reaction to
DK 153536 BDK 153536 B
18 et uniaksiait påført tryk ti! udøvelse af et i alt væsentligt isostatisk tryk på hele overfladen af cellen 10. Det antages, at det påførte tryk transmitteres i alt væsentligt uformindsket til cellen 10. Koldpresningstrinet mindsker størrelsen af mellemrummene og gør 5 derved forekomsten af porer med kapilarstørrelse i dimantmassen maksimal, og det frembringer ligeledes den fornødne diamantkrystal-tæthed på over 70. volumenprocent af diamantmassen. Denne reduktion af porevoiuminet nedsætter også det endelige indhold af ikke-diamantmateriale i diamantmassen og tilvejebringer tiere, for effektiv 10 binding til hinanden passende placerede, side om side stillede, krystal-mod-krysta! områder.18 a uniaxial applied pressure ten! exerting a substantially isostatic pressure on the entire surface of cell 10. It is assumed that the applied pressure is transmitted substantially undiminished to cell 10. The cold pressing step reduces the size of the gaps, maximizing the presence of capillary size pores in the diman mass, and it also produces the required diamond crystal density of over 70% by volume of the diamond mass. This reduction of the pore void also decreases the final content of non-diamond material in the diamond mass and provides tens, for effective bonding to each other appropriately placed, side by side, crystal-to-crystal! areas.
Efter afslutning af koide^esningstrinet skal tætheden af de komprimerede diamantkrystalier * cellen 10 være over 70 volumenprocent af krystallernes rumfang. Tætheden af det komprimerede I5 diamantkrystalmasseiag er pi fra 71 volumenprocent til højst 95 volumenprocent og ofte fra 75 volumenprocent til SO volumenprocent af diamantkrystaliernes rumfang. Jo større krystaltælheden er, desto mindre vil mængden af ikke-diamar.tmatsriaie, der forekommer mellem krystallerne vær®, hvilket resulterer ' et forholdsvis hårdere 23 diamantlegeme.At the end of the coasting step, the density of the compressed diamond crystals * cell 10 should be over 70% by volume of the volume of the crystals. The density of the compacted I5 diamond crystal mass layer is pi from 71% by volume to not more than 95% by volume and often from 75% by volume to SO% by volume of the diamond crystals. The greater the crystal count, the less the amount of non-diamond matrices occurring between the crystals will be, resulting in a relatively tougher 23 diamond body.
Det ved koidpresningstrinet frembragte, i alt væsentligt iso-statike sysler.·. 21, som omfatte.·· den puiveromsluttede beholder, underkastes et varmpresn.ngstrin, hvorved det underkastes varmpresningstemperatur og -tryk samtidigt, cb Når koidpresningstrinet er tilendebragt, trækkes et af stemplerne 23, 23a tilbage, og det- resulterende konsoliderede, S alt væsentligt isostatiske, formede system 21 tvinges ud sf foringsrøret 22a og snd i et hul med identisk diameter i en grafit form 30, således at det overførte system 21 nu indesluttes af væggene i hullet 31 30 mellem to grafitstempier 32, 32a. Grafitformen 30 er forsynet med et termoelement 33, til tilvejebringelse af en angivelse af den temperatur, der påføres det dimensionsmæssigt stabiliserede, i alt væsentligt isostatiske system 21. Formen 30 med det i ait væsentligt isostatiske system 21, vier er Indesluttet på den ovenfor omtalte 35 måde, anbringes I en ikke vist konventionel varmpresningsovn. Ovnkammeret evakueres eller evakueres i det mindste næsten fuldstændigt, hvilket medfører evakuering af systemet 21 inklusive cellen 10, og derved forsynes systemet 21 og ceiien 10 med et næsten fuldstændigt vakuum, i hvilket varrnpresningstrinet kan ud- 19The essentially iso-static pursuits produced during the co-pressing step. 21, comprising: ·· the powder enclosed container is subjected to a hot pressing step thereby subjected to hot pressing temperature and pressure simultaneously, cb. When the coiding pressing step is completed, one of the pistons 23, 23a is withdrawn, and the resulting consolidated, substantially isostatic shaped system 21 is forced out of casing 22a and then into a hole of identical diameter in a graphite form 30, so that the transferred system 21 is now enclosed by the walls of the hole 31 30 between two graphite pistons 32, 32a. The graphite mold 30 is provided with a thermocouple 33 to provide an indication of the temperature applied to the dimensionally stabilized, substantially isostatic system 21. The mold 30, with the substantially isostatic system 21, is enclosed on the aforementioned 35 way, is placed in a conventional hot-pressing oven not shown. The furnace chamber is evacuated or evacuated at least almost completely, causing evacuation of the system 21 including the cell 10, thereby providing the system 21 and the cell 10 with an almost complete vacuum in which the hot pressing step may be effected.
DK 153536 BDK 153536 B
føres. På dette sted kan der imidlertid otrt ønsket ledes nitrogen eller hydrogen eller en inert gas, som f.eks. argon, ind i ovnkammeret til tilvejebringelse af en passende varmpresningsatmosfære i ovn kammeret såve! som i systemet 21, inklusive det indre af cellen 10. Mens 5 stemplerne 32, 32a påfører et uniaksialt tryk, nemlig varmpresningstrykket, på systemet 21. hæves dets temperatur til en værdi, ved hvilken den siliciumrige legeringsskive 12 frembringer flydende siliciumrig indtrængningslegering.fed. However, at this point, nitrogen or hydrogen or an inert gas such as e.g. argon, into the furnace chamber to provide a suitable hot pressing atmosphere in the furnace chamber as well! as in the system 21, including the interior of the cell 10. While the pistons 32, 32a apply a uniaxial pressure, namely the hot pressing pressure, on the system 21. its temperature is raised to a value at which the silicon-rich alloy disk 12 produces liquid silicon-rich penetration alloy.
Under varmpresningstrinet skal varmpresningstemperaturen nås 10 hurtigt og opretholdes i almindeligvis mindst 1 minut på denne værdi under varmpresningstrykket for at sikre tilfredsstillende indtrængning gennem hulrummene i diamantkrystaimassen. Almindeligvis er en varmpresningstidsperiode på fra omkring 1 minut til omkring 5 minutter tilfredsstillende. Eftersom omdannelse af diamant ti! frit Ikke-15 diamantcarbon stort sel afhænger af tid og temperatur, dvs. jo højere temperatur og jo længere tid ved en sadan temperatur, jo mene sandsynlig er omdannelsen til frit ikke-diamantcarbon, må varmpres-ningstrinet udføres inden 5 volumenprocent, af diamanten er omdannet tli frit ikke-diamantcarbon, og dette kan bestemmes empirisk. Omdan-£0 nesse af 5 volumenprocent eller mere af diamanten ti! frit Ikke-diamant-carbon fører sandsynligvis til, at der vi i være en fr; ikke-diamantcar-bonfase tilbage i slutproduktet, hvilket vi; have en væsentlig skadelig .virkning på dets mekaniske egenskaber.During the hot pressing step, the hot pressing temperature must be reached 10 quickly and maintained for generally at least 1 minute at this value below the hot pressing pressure to ensure satisfactory penetration through the cavities of the diamond crystal mass. Generally, a hot pressing time period of from about 1 minute to about 5 minutes is satisfactory. Since the transformation of diamond ten! free Non-15 diamond carbon large seal depends on time and temperature, ie. the higher the temperature and the longer the time at such a temperature, the more likely the conversion to free non-diamond carbon, the hot pressing step must be carried out within 5% by volume, of the diamond converted to free non-diamond carbon, and this can be determined empirically. Convert- £ 0 nesse of 5% by volume or more of the diamond ten! free Non-diamond carbon probably leads to us being a fr; non-diamond carbone phase back into the final product, which we; have a significant detrimental effect on its mechanical properties.
Under varmpresningstrinet fører udøvelse af varmpresningstrvK-25 ket på den flydende, indtrængende, sii-ciumrige legering til opbrydning af det modstandsdygtige grænsefladeiag eller grænsefladeslaggen, som hovedsagelig består af oxid eller -carbid, der sædvanligvis dannes mellem den flydende, siliciumrige legering og diamantfladerne, og herved udsættes kapillarporesystemet for den siliciumrige legering, 30 hvorefter indtrængning ved hårrørsvirkning finder sted. Undersøgelser har vist, at indtrængning af siliciumrig legering i diamantmassen ikke vil finde sted, med mindre der under hele varmpresningen, og medens den siliciumrige legering er flydende, på systemet 21 udøves og opretholdes et tryk, som er tilstrækkeligt til at opbryde 35 slaggen.During the hot-pressing step, the application of the hot-pressing force on the liquid, penetrating, silicon-rich alloy leads to breaking of the resistant interface layer or interface layer, which is mainly composed of oxide or carbide, usually formed between the liquid-rich, silicon-rich and silicon-rich alloy. thereby exposing the capillary pore system to the silicon-rich alloy, after which penetration by hair-tube action takes place. Studies have shown that penetration of silicon-rich alloy into the diamond mass will not occur unless during the entire hot pressing, and while the silicon-rich alloy is liquid, a pressure sufficient to break the slag is maintained and maintained on system 21.
Når den flydende, siliciumrige legering under varmpresningen siver og strømmer gennem diamantmassen og kommer i kontakt mec substratet, indkapsler det de komprimerede diamantkrystallers overflader og reagerer med diamantoverfladerne eller det eventuel se frieAs the liquid, silicon-rich alloy, during hot pressing, seeps and flows through the diamond mass and comes into contact with the substrate, it encapsulates the surfaces of the compressed diamond crystals and reacts with the diamond surfaces or possibly look free
DK 153536 BDK 153536 B
20 ikke-diamantcarbon, som eventuelt dannes, og tiivejebringer derved et carbid, der i det mindste for en stor dei og sædvanligvis overvejende er siliciumcarbid. Under varmpresningen fylder denne indtrængningslegering ligeledes grænsefladen mellem kontaktfladerne af 5 det polykrystallinske diamantlegeme og substratet, hvilket resulterer i frembringelse af en stærk sammenbinding in situ. Det frembragte produkt er et velsammenbundet integrai-kompositmateriale. Den indtrængende legering kan ogs! penetrere eller difundere ind i substratet.20 non-diamond carbon, optionally formed, thereby producing a carbide which is at least for a large day and usually predominantly silicon carbide. During hot pressing, this penetration alloy also fills the interface between the contact surfaces of the polycrystalline diamond body and the substrate, resulting in the formation of a strong bond in situ. The product produced is a well-connected integral composite material. The penetrating alloy can also! penetrate or diffuse into the substrate.
10 Det er under dette varmpresningstrin, at det er særligt vigtigt, at der opretholdes i alt væsentligt isostatiske betingelser således, at når den siiiciumrigs legering er omdannet til det flydende stadium, vil denne væske ikke >,æra * stand til at passere mellem massen '13 og det kopformede organ Π :,y undslippe i væsentligt omfang men vil ’S tvinges ti! at bevæge sig gennem hele diamantkrystalmassers 13.It is during this hot pressing step that it is particularly important to maintain essentially isostatic conditions such that when the alloy of the silicon-rich state is converted to the liquid stage, this liquid will not be able to pass between the masses. 13 and the cup-shaped organ Π:, y escape substantially but will be forced ten! to move through the entire diamond crystal mass 13.
Når varmpresningstr.net er tilendebragt, skal der I det mindste opretholdes et tlitrækkeligt tryk under afkøling af det varmpressede system 21 tb. at den varmpressede ceiie 10 udsættes for et · alt væsentligt isostalisk tryk., der e?‘ tilstrækkeligt stort til at bevare dets 20 dlmensionsmæssige stabilitet. Det varmpressede system ?:' får fortrinsvis lov tli at køle ned til stuetemperatur. Den varmpressede ceiie fjernes derpå fra systemet, og det frembragte kompcsitmateriaie 36 afdækkes og omfatter et poly krystallinsk diamantlegeme 13a, der er bundet in situ direkte u> et substrat 14a. Eventuelt „ednængende 25 metal fra beskytteisesbehclderen og eventuelt udpresset overskuds-siticiumlegering på de ydre flader af komposftmateriaiet kan fjernes ved konventionelle metoder, som f.eks ved slibning. Nå- den foreliggende fremgangsmåde gennemføres med komponenterne forliggends som lag, der alle har samme udstrækning, kan det frembragte kom-30 positmaterialestykke have mange forskellige former, som f.eks. en skive, en terning eller et rektangel, en stav eller stang., og kan have en plan flade af bundne diamanter.When the hot pressing step is completed, at least a drawable pressure must be maintained while cooling the hot pressed system 21 tb. that the hot-pressed cell 10 is subjected to a substantial isostal pressure sufficiently large to maintain its 20-dimensional stability. The hot-pressed system?: 'Is preferably allowed to cool down to room temperature. The hot pressed mold is then removed from the system and the generated composite material 36 is uncovered and comprises a poly crystalline diamond body 13a which is bonded in situ directly to a substrate 14a. Optionally, non-penetrating metal from the protective container and optionally extruded surplus-site alloy on the outer surfaces of the composite material can be removed by conventional methods, such as by grinding. When the present process is carried out with the components as layers having all the same extent, the composite piece produced can have many different forms, such as e.g. a disc, a cube or a rectangle, a rod or rod, and may have a flat surface of bound diamonds.
Når den foreliggende fremgangsmåde gennemføres med deri sUi-ciumrige legering foreliggende som et rør eller en cylinder med en 35 gennemgående kerne eller et gennemgående hul, og når substratet har stangform og er placeret centralt i rørets kerne, og det omsluttende rum mellem siliciumlegeringsrøret og substratet er pakket med diamantkrystaller, opnås det resulterende kompositmateriaie i form af en cirkulær stang.When the present process is carried out with the silicon-rich alloy present as a tube or cylinder having a through-core or through-hole, and when the substrate is rod-shaped and located centrally in the core of the tube, and the enclosing space between the silicon alloy tube and the substrate is packed with diamond crystals, the resulting composite material is obtained in the form of a circular rod.
2121
DK 153536 BDK 153536 B
Det foreliggende kompositmateriale omfatter et poiykrystallinsk diamantlegeme, som integrait er bundet til et substrat af polykrystal-iinsk siliciumcarbid eller et siliciumnitridlegeme ved en binding dannet in situ.The present composite material comprises a polycrystalline diamond body which is integrally bonded to a polycrystalline silicon carbide substrate or a silicon nitride body by a bond formed in situ.
5 Det adhærerede polykrystailinske diamantiegeme i det foreliggende kompositmateriale omfatter diamantkrystailer, der er stærkt bundne til hinanden af et siliciumatomholdigt bindemedium, hvor diamantkrystallerne med hensyn til størrelse er på fra omkring 1 pm til omkring 1000 pm, tætheden af de nævnte diamantkrystailer er på fra 10 mindst 70 volumenprocent ti! højst 90 volumenprocent og ofte ca. 89 volumenprocent af det polykrystailinske diamantlegeme, hvor det sili-ciumatomhoidige bindemedium forekommer s det nævnte diamantiegeme i en mængde på ind tii 30 volumenprocent af legemet, hvor binde-mediet er I alt væsentlig ensartet fordelt igennem hele det poiykrys-15 tallinske diamantiegeme, hvor den de! eller overflade af det nævnte oinderr.edium, der er i kontakt med de bundne diamanters overflader, I det mindste for en større del er siliciumcarbid, dvs. at over 50 volumenprocent af den de! siler den overflade af bindemediet, der er i direkte kontakt med diarosntkrys fallernes overflader, er silicium-20 carbid- Fortrinsvis er den de! eller der overflade af det nævnte bin-demedium, der er i kontakt med de bundne diamantkrystaliers overflader, i det mindste for er. større del siiic-iumcarbid, dvs. at i det mindste 85 volumenprocent og fortrinsvis 100 volumenprocent af det bindemedium, der er i direkte kontakt med ae bundne diamantkrys-25 tallers overflader, er siliciumcarbid. Dsamantiegemet i det foreliggende kompositmateriale er poret rit eller I det mindste praktisk talt porefrit.The adhered polycrystalline diamond body of the present composite material comprises diamond crystals which are strongly bonded to each other by a silicon atom-containing binder, the size of the diamond crystals being from about 1 µm to about 1000 µm, the density of said diamond crystals being from at least 10 70% by volume ten! maximum 90% by volume and often approx. 89% by volume of the polycrystalline diamond body, where the silicon atomic binder is present, said diamond body in an amount of up to 30% by volume of the body, wherein the bonding medium is substantially uniformly distributed throughout the polychrysalinic diamond body. the! or surface of said non-contact medium which contacts the surfaces of the bound diamonds. At least to a greater extent, silicon carbide, i.e. that over 50% by volume of the de! if the surface of the binder that is in direct contact with the surfaces of the diarosntcry falls, is silicon-20 carbide- Preferably they are! or that surface of said binder medium which is in contact with the surfaces of the bonded diamond crystals, at least for. greater part of silicon carbide, viz. at least 85% by volume and preferably 100% by volume of the binder that is in direct contact with ae bonded diamond crystal surfaces is silicon carbide. The composition of the present composite material is pore-ridden or at least practically pore-free.
1 kompositmaterialet er tætheden af det polykrystailinske sliici-umnitridsubstrat på mellem 80% og 100% af den teoretiske tæthed for 59 siiiciumnitrid, og det indeholder siliciumnitrid i en mængde på mindst 90 vægtprocent af legemet og indeholder ikke bestanddele, der har nogen væsentlig skadelig virkning på kompositmaterialets mekaniske egenskaber.In the composite, the density of the polycrystalline silicon nitride substrate is between 80% and 100% of the theoretical density of 59 silicon nitride, and it contains silicon nitride in at least 90% by weight of the body and does not contain any components having any significant adverse effect on the mechanical properties of the composite.
I kompositmaterialet er tætheden af det polykrystailinske stlici-55 umcarbidsubstrat pi mellem 85% og 100% af den teoretiske tæthed for siliciumcarbid og det polykrystailinske siliciumcarbidsubstrat indeholder siliciumcarbid i en mængde på mindst 90 vægtprocent af legemet og indeholder ikke bestanddele, der har nogen væsentlig skadelig virkning pi de mekaniske egenskaber af kompositmaterialet.In the composite, the density of the polycrystalline silicon carbide substrate pi is between 85% and 100% of the theoretical density of silicon carbide and the polycrystalline silicon carbide substrate contains silicon carbide in an amount of at least 90% by weight of the body and does not contain any constituents, p in the mechanical properties of the composite material.
DK 153536 BDK 153536 B
22 I kompositmaterialet strækker bindemediet sig i grænsefladen mellem det poiykrystaiiinske diamantlegeme og siiiciumcarbid- eller siiiciumnitridsubstratet fra det poiykrystaiiinske diamantlegeme til kontakt med substratet og udfylder i det mindste i alt væsentligt alle 5 porer i heie grænsefladen, således at grænsefladen er porefri eller i det mindste i alt væsentligt porefri, det vi! sige, at forudsat at sådanne hulrum eller porer er små (mindre end 0,5 pm) og tilstrækkelig ensartet fordelt over hele grænsefladen, således at de ikke har nogen væsentlig skadelig virkning pi den stærke binding i grænse-10 fladen, kan grænsefladen indeholde hulrum eller porer i en mængde pi under 1 volumenprocent af grænsefladens totale rumfang. Hulrums-eller poreindholdet i grænsefladen kan bestemmes ved metal I ografiske standardmetoder, som f.eks. optisk undersøgelse af et tværsnit af kompositmaterialet. Generelt er fordelingen og tykkelsen af binde-15 mediet i grænsefladen i ait væsentligt som fordelingen og tykkeisen af bindemediet i heie det poiykrystaiiinske diamantlegeme i komposit-materiaiet. Betragtet pa et poleret tværsnit i kompositmaterialet vil den gennemsnitlige tykkelse af bindemediet i grænsefladen være i alt væsentligt som den gennemsnitlige tykkelse af bindemediet mellem de 20 kontaktdannende diamantkrystailer i det poiykrystaiiinske diamantlegeme i kompositmaterialet. Tilsvarende vil den maksimale tykkelse af bindemediet i grænsefladen pi et poleret tværsnit i kompositmaterialet være praktisk taget ækvivalent med tykkelsen af bindemediet meliem de største kontaktdannende diamantkrystailer i det polykrys-25 tailinske diamantlegeme i kompositmaterialet. Alternativt kan maksimaltykkelsen af bindemediet ved grænsefladen angives som ca. 50% af de største diamantkrystallers størrelse i det poiykrystaiiinske diamant-legeme, nar disses størrelse måles langs deres længste dimension. Siiiciumcarbidsubstratet kan også indeholde bindemedium tilvejebragt 30 ved penetration eller diffusion deri af indtrængningslegeringen under varmpresningen.22 In the composite material, the binder extends in the interface between the polycrystalline diamond body and the silicon carbide or silicon nitride substrate of the polycrystalline diamond body to contact the substrate, filling at least substantially all of the pores in the entire interface. all essentially pore-free, we! say that provided that such voids or pores are small (less than 0.5 µm) and sufficiently uniformly distributed throughout the interface so that they have no significant detrimental effect on the strong bond in the interface, the interface may contain voids or pores in an amount of pi less than 1% by volume of the total volume of the interface. The void or pore content of the interface can be determined by metal I standard graphical methods such as e.g. optical examination of a cross section of the composite material. Generally, the distribution and thickness of the binder medium in the interface is substantially the same as the distribution and thickness of the binder medium in the poly-crystalline diamond body of the composite. Considering a polished cross section of the composite material, the average thickness of the binder in the interface will be substantially as the average thickness of the binder between the 20 contact-forming diamond crystals in the polycrystalline diamond body of the composite. Similarly, the maximum thickness of the binder in the interface p in a polished cross section of the composite will be practically equivalent to the thickness of the binder between the largest contact forming diamond crystals in the polycrystalline diamond body of the composite. Alternatively, the maximum thickness of the binder at the interface can be stated as approx. 50% of the size of the largest diamond crystals in the diamond crystalline diamond body when measured in size along their longest dimension. The silicon carbide substrate may also contain binder provided by penetration or diffusion therein of the penetration alloy during hot pressing.
Det siiiciumatomholdige bindemedium indeholder altid silicium-carbid. I en udførelsesform indeholder bindemediet siiiciumcarbid og metalsiiicid. i en anden udføreisesform indeholder bindemediet siiici-35 umcarbid, metalsiiicid og frit silicium. I endnu en udførelsesform indeholder bindemediet siiiciumcarbid, metalsiiicid og metalcarbid. I en yderligere udførelsesform indeholder bindemediet siiiciumcarbid, metalsiiicid, metalcarbid og frit silicium. I yderligere en udføreisesform indeholder bindemediet siiiciumcarbid, metalcarbid og frit silicium.The silicon atom-containing binder always contains silicon carbide. In one embodiment, the binder contains silicon carbide and metal silicide. In another embodiment, the binder contains silicon carbide, metal silicon and free silicon. In yet another embodiment, the binder contains silicon carbide, metal silicon and metal carbide. In a further embodiment, the binder contains silicon carbide, metal silicon, metal carbide and free silicon. In yet another embodiment, the binder contains silicon carbide, metal carbide and free silicon.
2323
DK 153536 BDK 153536 B
Metal komponenten f metalsilicidet og metalcarbidet i bindemediet tilvejebringes af det legerende metal eller de legerende metaller, der forekommer i den indtrængende legering.The metal component of the metal silicide and metal carbide in the binder is provided by the alloy metal or metals present in the penetrating alloy.
Metal komponenten i metalsilicidet i bindemediet er fortrinsvis 5 udvalgt fra gruppen bestående af cobalt, krom, jern, hafnium, mangan, rhenium, rhodium, ruthenium, tantal, thorium, titan, uran, vanadium, wolfram, yttrium, zirconium og legeringer heraf.The metal component of the metal silicide in the binder is preferably selected from the group consisting of cobalt, chromium, iron, hafnium, manganese, rhenium, rhodium, ruthenium, tantalum, thorium, titanium, uranium, vanadium, tungsten, yttrium, zirconium and their alloys.
Metal komponenten i metalcarbidet i bindemediet er en stærk car-biddanner, der danner et stabilt carbid og er fortrinsvis udvalgt fra 10 gruppen bestående af krom, hafnium, titan, zirconium, tantal, vanadium, wolfram, molybdæn og legeringer heraf.The metal component of the metal carbide in the binder is a strong carbide forming a stable carbide and is preferably selected from the group consisting of chromium, hafnium, titanium, zirconium, tantalum, vanadium, tungsten, molybdenum and their alloys.
Den eventuelle andel af frit silicium og siliciumcarbid i bindemediet i det adhærerede polykrystallinske diamantiegeme kan variere i afhængighed af graden af reaktion mellem diamantkrystallernes over-15 flader og den indtrængende, siliciumrige legering og af reaktionen mellem frit ikke-diamantcarbon og indtrængende siliciumrig legering.The optional proportion of free silicon and silicon carbide in the binder in the adhered polycrystalline diamond body may vary depending upon the degree of reaction between the surfaces of the diamond crystals and the penetrating, silicon-rich alloy and the reaction between free non-diamond carbon and penetrating silicon-rich alloy.
Alt andet lige afhænger den specifikke andel af siliciumcarbid, der forekommer i bindemediet i det adhærerede polykrystallinske diamantlegeme i alt væsentligt af den specifikke varmpresningstemperatur, 20 der anvendes, og af opholdstiden ved denne temperatur. Specielt øges andelen af siliciumcarbid, mens andelene af frit silicium aftager eller reduceres til en ikke-detekterbar mængde, nar tiden og/el!er temperaturen øges. Fremstillingen af et legeme af sammenbundne diamantkrystaller med et bestemt ønsket siliciumcarbidindhold, f.eks. til 25 opnåelse af visse ønskelige egenskaber, kan bestemmes empirisk.All else being equal, the specific proportion of silicon carbide present in the binder in the adhered polycrystalline diamond body depends essentially on the specific hot pressing temperature used and the residence time at that temperature. In particular, the proportion of silicon carbide increases, while the proportion of free silicon decreases or decreases to an undetectable amount as time and / or temperature increases. The preparation of a body of bonded diamond crystals having a certain desired silicon carbide content, e.g. to achieve certain desirable properties can be determined empirically.
Bindemediet i det adhærerede polykrystallinske diamantlegeme vil altid indeholde i det mindste en detekterbar mængde siliciumcarbid og i det mindste en detekterbar mængde silicid og/eller carbid af det legerende metal, der forekommer i den indtrængende legering. Metal-30 silicidet foreligger sædvanligvis, afhængig af den nærmere bestemte indtrængende legering, der anvendes, som et disilicid. Bindemediet kan desuden indeholde i det mindste en detekterbar mængde frit silicium. Ved en detekterbar mængde siliciumcarbid, metalsilicid, metal-csrbid eiler frit silicium forstås her en mængde, der er detekterbar 35 ved selektiv overfladediffraktionsanalyse ved transmissionseiektron-mikroskopi af et tyndt snit af diamantlegemet. Almindeligvis indeholder bindemediet i diamantlegemet imidlertid siliciumcarbid i en mængde på fra 1 volumenprocent til 25 volumenprocent af det polykrystallinske diamantiegeme og sædvanligvis metalsilicid i i det mindste enThe binder in the adhered polycrystalline diamond body will always contain at least a detectable amount of silicon carbide and at least a detectable amount of silicon and / or carbide of the alloy metal present in the penetrating alloy. The metal silicide is usually present, depending on the particular penetrating alloy used, as a disilicide. In addition, the binder may contain at least a detectable amount of free silicon. By a detectable amount of silicon carbide, metal silicide, metal csrbid or free silicon is understood herein an amount detectable by selective surface diffraction analysis by transmission electron microscopy of a thin section of the diamond body. Generally, however, the binder in the diamond body contains silicon carbide in an amount of from 1% to 25% by volume of the polycrystalline diamond body and usually metal silicide in at least one
DK 153536 BDK 153536 B
24 detekterbar mængde og ofte i en minimumsmængde på omkring 0,1 volumenprocent af det polykrystailinske diamantiegeme. Den nærmere bestemte mængde metalsilicid, der forekommer, afhænger i det væsentlige af den indtrængende siliciumhoidige legerings sammensætning.24, and often in a minimum amount of about 0.1% by volume of the polycrystalline diamond body. The specific amount of metal silicide present depends essentially on the composition of the penetrating silicon alloy.
5 Metalsiliciderne er hårde og har desuden ofte, som f.eks, rhenium, en mindre varmelængdeudvidelseskoefficient end metallerne eller i nogle tilfælde mindre end diamant, hvilket er en ønskelig egenskab for en fase i et polykrystallinsk diamantlegeme. Den bestemte mængde siliciumcarbid og frit silicium, der forekommer, afhænger i stor ud-10 strækning af den indtrængende, siliciumrige legerings sammensætning og af graden af reaktion mellem den indtrængende siliciumrige legering og diamant eller ikke-diamantcarbon. Den bestemte mængde me-talcarbid, der forekommer, afhænger stort set af sammensætningen af den indtrængende siiiciumrige legering.The metal silicides are hard and, moreover, often, such as, for example, rhenium, have a smaller coefficient of thermal expansion than the metals or in some cases less than diamond, which is a desirable property for a phase in a polycrystalline diamond body. The amount of silicon carbide and free silicon present depends to a large extent on the composition of the penetrating silicon-rich alloy and the degree of reaction between the penetrating silicon-rich alloy and diamond or non-diamond carbon. The particular amount of metal carbide present depends largely on the composition of the penetrating silicon-rich alloy.
15 Selektiv overftadediffraktionsanalyse ved transmissionseiektron- mikroskopi af et tyndt snit af det foreliggende kompositmateriale viser, at den del af bindemediet, der er i kontakt med de bundne diamanters overflader, for i det mindste en større del udgøres af sHicium-carbid.Selective surface diffraction analysis by transmission electron microscopy of a thin section of the present composite shows that the part of the binder that contacts the surfaces of the bound diamonds is at least a major part of silicon carbide.
20 Det foreliggende adhærerede legeme af bundne diamantkrystaifer er hulrums- eller porefrit eiier i det mindste i alt væsentligt porefrit, det vi! sige, at det, forudsat at hulrummene eller porerne er små (mindre end 0,5 pm) og tilstrækkelig ensartet fordeit igennem hele legemet, således at de ikke har nogen væsentlig skadelig virkning pi 25 dets mekaniske egenskaber, kan indeholde hulrum eller porer i en mængde på under 1 volumenprocent af legemet. Hulrums- eller poreindholdet i det foreliggende legeme kan bestemmes ved metal log raf i ske standardmetoder, som f.eks. optisk undersøgelse af et poleret tværsnit af legemet.The present adhered body of bound diamond cruciferous is void or pore-free or at least substantially pore-free, the we! say that, provided that the voids or pores are small (less than 0.5 µm) and sufficiently uniform throughout the body so that they have no significant detrimental effect on its mechanical properties, it may contain voids or pores in a amount less than 1% by volume of the body. The void or pore content of the present body may be determined by metal log raf in standard methods such as e.g. optical examination of a polished cross section of the body.
30 Det foreliggende adhærerede diamantlegeme indeholder heller ingen ikke-diamant carbonfase, da det ikke indeholder nogen fase af frit ikke-diamantcarbon i mængder, der kan detekteres ved røntgendiffraktionsanaiyse.30 The present adhered diamond body also contains no non-diamond carbon phase, as it contains no free non-diamond carbon phase in amounts detectable by X-ray diffraction analysis.
Et særligt fordelagtigt træk ved den foreliggende opfindelse er, 35 at det polykrystailinske diamantlegeme i det foreliggende kompositmateriale kan tilvejebringes i mange forskellige størrelser og former.A particularly advantageous feature of the present invention is that the polycrystalline diamond body of the present composite material can be provided in many different sizes and shapes.
F.eks. kan det adhærerede diamantlegeme være så bredt eller så langt som 25 mm eller mere. Polykrystailinske diamantlegemer på 25 mm eller mere i længden og med den foreliggende diamanttæthed kan, 25Eg. For example, the adhered diamond body may be as wide or as long as 25 mm or more. Polycrystalline diamond bodies of 25 mm or more in length and with the present diamond density can, 25
DK 153536 BDK 153536 B
på grund af begrænsningerne i den indretning, der er nødvendig for at modstå de høje tryk- og temperaturkrav i den påkrævede tid i praksis ikke fremstilles eller lader sig overhovedet ikke fremstille ved fremgangsmåder, der benytter de ultrahøje tryk og temperaturer 5 i diamantstabiiitetsornrådet, da fremstillingsapparaturet bliver så kompleks og massiv, at dets kapacitet bliver begrænset. På den anden side kan det foreliggende adhærerede polykrystallinske diamantlegeme være så lille eller så tyndt som ønsket, men det vil dog altid svare ti! mere end et lag diamantkrystailer.due to the limitations of the device necessary to withstand the high pressure and temperature requirements in the required time, in practice, neither are manufactured nor at all produced by processes utilizing the ultra-high pressures and temperatures 5 in the diamond stability region, since the manufacturing apparatus becomes so complex and massive that its capacity becomes limited. On the other hand, the present adhered polycrystalline diamond body may be as small or as thin as desired, but it will always answer ten! more than one layer of diamond crystals.
10 Det foreliggende kompositmateriale er meget anvendeligt som slibemiddel, skærende værktøj, dyse eller anden slidbestandig komponent.The present composite material is very useful as an abrasive, cutting tool, nozzle or other abrasion resistant component.
Opfindelsen belyses yderligere af de følgende eksempler, hvor fremgangsmåden, med mindre andet er angivet, var som følger: 15The invention is further illustrated by the following examples, the method, unless otherwise stated, was as follows:
SI LI CIUMCARB IDSUBSTRATIF LI CIUMCARB IDSUBSTRATE
Hexagonait bornitridpuiver af fin partikelstørrelse, f.eks. størrelser på fra omkring 2 pm til omkring 20 pm, anvendtes som det tryktransmitterende pulvermedium.Hexagonaite boron nitride powders of fine particle size, e.g. sizes of from about 2 µm to about 20 µm were used as the pressure transmitting powder medium.
20 Det polykrystallinske siliciumcarbidsubstrat havde form af en skive, der var omkring 3,05 mm tyk.The polycrystalline silicon carbide substrate was in the form of a disc about 3.05 mm thick.
Det apparatur, der anvendtes, var praktisk taget magen til det, der er vist i figurerne 4 og 5.The apparatus used was practically similar to that shown in Figures 4 and 5.
Koldpresning af chargen udførtes ved stuetemperatur som vist i 25 figur 4 ved indtil omkring 5,5 kilobar overtryk.Cold pressing of the batch was carried out at room temperature as shown in Figure 4 at up to about 5.5 kilobars overpressure.
Mængden af indtrængningslegering var tilstrækkelig til fuldstændig at gennemtrænge den komprimerede diamantmasse og frembringe kontakt med kontaktfladen af substratet og fylde porerne i grænsefladen.The amount of penetration alloy was sufficient to completely penetrate the compacted diamond mass and make contact with the contact surface of the substrate and fill the pores in the interface.
30 Den indtrængende legering var en eutektikumholdig, siliciumrig legering.The penetrating alloy was a eutectic-containing, silicon-rich alloy.
Den tæthed, der angives heri, for det polykrystallinske siii-ciumcarbidlegeme, der anvendes som substrat, er den relative tæthed beregnet ud fra den teoretiske tæthed på 3,21 g/cm for silicium-35 carbid.The density indicated herein for the polycrystalline silicon carbide body used as the substrate is the relative density calculated from the theoretical density of 3.21 g / cm for silicon carbide.
Alle de polykrystallinske siliciumcarbidlegemer, sintrede såvel som varmpressede, der anvendtes som substrater, var af i alt væsentligt samme sammensætning og indeholdt siliciumcarbid, 1-2 vægtprocent bor beregnet på grundlag af siliciumcarbidet og mindre endAll the polycrystalline silicon carbide bodies, sintered as well as hot pressed used as substrates, were of substantially the same composition and contained silicon carbide, 1-2% by weight boron based on the silicon carbide and less than
DK 153536 BDK 153536 B
26 1 vægtprocent submikront, frit carbon, beregnet på grundlag af sili-ciumcarbidet. Carbonet forelå i partikelform af submikron størrelse.26 1% by weight submicron, free carbon, calculated on the basis of the silicon carbide. The carbon was available in submicron size particle form.
Det anvendte diamantpulver var af partikelstørrelse fra 1 pm til omkring 60 pm, og heraf var mindst 40 vægtprocent af diamantpul-5 veret mindre end 10 pm.The diamond powder used was of particle size from 1 µm to about 60 µm, of which at least 40% by weight of the diamond powder was less than 10 µm.
Hvor en bestemt diamanttæthed er angivet som volumenprocent af det polykrystallinske diamantlegeme, bestemtes denne ved stan-dardpunkttællemetoden (eng.: the standard point count technique) ved anvendelse af et mikrofotograf) af en poleret overflade forstørret 10 690 gange, og det overfladeareal, der undersøgtes, var tilstrækkeligt stort til at repræsentere hele legemets mikrostruktur.Where a particular diamond density is given as the volume percentage of the polycrystalline diamond body, this was determined by the standard point count technique (using a photographer) of a polished surface enlarged 10,690 times and the surface area examined , was sufficiently large to represent the whole body microstructure.
Hvor diamanttastheden er angivet som et interval på fra over 70 volumenprocent til under 90 volumenprocent af det polykrystallinske diamantlegeme, er dette interval baseret pi erfaring, resultater fra 15 tilsvarende arbejdsgange, navnlig arbejdsgange, ved hvilke alene det polykrystallinske diamantlegeme fremstilledes, og på udseendet af det adhærerede polykrystallinske legeme taget som et hele og desuden på rumfanget af den afdækkede rensede, polykrystallinske diamantiege-medel af kompositmaterialet sammenlignet med rumfanget af udgangs-20 diamantpul veret ud fra den forudsætning, at mindre end 5 volumenprocent af diamantpuiveret var omdannet til en fase af ikke-diamant frit carbon.Where the diamond velocity is indicated as an interval of more than 70% by volume to less than 90% by volume of the polycrystalline diamond body, this range is based on experience, results from 15 corresponding workflows, in particular workflows in which only the polycrystalline diamond body was made, and on the appearance of the adhered polycrystalline body taken as a whole and in addition to the volume of the uncovered purified polycrystalline diamond agent of the composite material, compared to the volume of the starting diamond powder, assuming that less than 5% by volume of diamond powder was not converted to a phase of diamond free carbon.
I tabe! i i eksemplerne 1 til 5 anvendtes et kopformet moiyb-dænorgan med et zirconium foringsrør, og en støbt legering i skive-25 form af den angivne sammensætning og tykkelse og med i alt væsentligt samme diameter som zirconiumforingsrøret blev anbragt i zirconi-umforingsrøret i bunden af det kopformede organ. Den angivne mængde af diamantpuiveret blev pakket oven på skiven. Endelig biev den angivne polykrystallinske siiiciumcarbidskive anbragt oven på 30 diamantpuiveret for at udgøre en prop i det kopformede organ, som det er vist ved 14 i figur 2.I lose! In Examples 1 to 5, a cup-shaped laminated denture member with a zirconium casing was used, and a cast alloy in disc form of the composition and thickness indicated and of substantially the same diameter as the zirconium casing was placed in the zirconium casing at the bottom of it. cup-shaped organ. The specified amount of diamond powder was packed on top of the disc. Finally, the indicated polycrystalline silicon carbide disk placed on top of 30 diamond powdered to form a plug in the cup-shaped member as shown at 14 in Figure 2.
Det resulterende tiiproppede kopformede organ biev som vist i figur 4 derpå pakket i hexagonalt bornitridpulver, og hele chargen blev presset ved stuetemperatur, dvs. koldpresset, i en stålma-35 trice til omkring 5,5 kilobar overtryk på en sådan mide, at det kopformede organ og indholdet udsattes for et i alt væsentligt isostatisk tryk, indtil trykket blev stabiliseret, og derved tilvejebragtes et dimensionsmæssigt stabiliseret, formet, praktisk taget isostatisk system omfattende det pulveromsluttede, tilproppede, kopformede organ.The resulting cup-shaped cup-shaped body, as shown in Figure 4, was then packed in hexagonal boron nitride powder, and the entire batch was pressed at room temperature, ie. cold pressed, in a steel matrix to about 5.5 kilobar overpressure in such a manner that the cup-shaped member and contents were subjected to substantially isostatic pressure until the pressure was stabilized, thereby providing a dimensionally stabilized, shaped, practical taken isostatic system comprising the powder-enclosed, plugged cup-shaped member.
2727
DK 153536 BDK 153536 B
Fra tidligere eksperimenter var det kendt, at den resulterende pressede samling af elementer, dvs. det resulterende formede, i alt væsentligt isostatiske system omfattende det pulveromsluttede, tilproppede, kopformede organ havde en diamantkrystaltæthed på over 75 5 volumenprocent af den komprimerede diamantmasse.From previous experiments it was known that the resulting pressed collection of elements, viz. the resulting shaped, substantially isostatic system comprising the powder-enclosed, plugged cup-shaped member had a diamond crystal density greater than 75% by volume of the compacted diamond mass.
Den resulterende pressede samling af elementer 21 omfattende det pulveromsluttede, tilproppede, kopformede organ blev derpå varmpresset, dvs. den blev skubbet ind i en grafitform af samme diameterstørrelse som stilmatricen, som det er vist i figur 5, og gra-10 fitformen blev anbragt i en induktionsvarmeovn. Det indre af det tilproppede kopformede organ evakueredes og en nitrogenatmosfære blev indledt deri ved evakuering af varmeovnen ti! omkring 1.330 Pa (10 torr), inden den blev fyldt igen med nitrogen. Et tryk på omkring 345 bar overtryk blev/ påført den pressede samling elementer 15 21 og opretholdt pi den ved hjælp af grafitmatricen, som derpå op varmedes af induktionsvarmeovnen med en sådan hastighed, at den givne maksimalvarmpresningstemperatur nåedes i løbet af omkring 5 til 7 minutter. Efterhånden som samlingen af elementer opvarmedes, steg trykket til de givne maksimalvarmpresningstryk på grund af 20 systemets ekspansion.The resulting pressed assembly of elements 21 comprising the powder-enclosed, plugged cup-shaped member was then hot-pressed, i.e. it was pushed into a graphite mold of the same diameter size as the style matrix as shown in Figure 5, and the graphite mold was placed in an induction heater. The interior of the plugged cup-shaped member was evacuated and a nitrogen atmosphere was introduced therein by evacuation of the heater ten! about 1,330 Pa (10 torr) before being refilled with nitrogen. A pressure of about 345 bar overpressure was applied to the pressed assembly of elements 21 and maintained on it by the graphite matrix which was then heated by the induction heater at such a rate that the given maximum heat pressing temperature was reached in about 5 to 7 minutes. As the assembly of elements warmed, the pressure increased to the given maximum heat compressive pressure due to the expansion of the system.
Ved den givne temperatur, ved hvilken en indsivning begyndte eller skred frem, sank stemplet, og trykket faldt til omkring 345 bar overtryk, hvilket viste, at legeringen var blevet flydende og fortsatte med at sive ind gennem den komprimerede diamantmasse. Tryk-25 ket. blev derpå igen hævet til det givne maksimalvarmpresningstryk, og blev holdt på denne værdi ved den givne maksimalvarmpresnings-temperatur Ϊ 1 minut til sikring af fuldstændig indtrængning af legeringen i de små kapillarhulrum i den komprimerede diamantmasse. Energitilførslen blev derpå afbrudt, men der blev ikke påført yder-30 ligere tryk. Dette frembragte et fast tryk ved høj temperatur, men nedsat tryk ved lav temperatur, og derved tilvejebragtes fyldestgørende geometrisk stabilitet, dvs. det bevarede dimensionerne af den varmpressede samling af elementer, indtil den var tilstrækkelig kold til at kunne håndteres.At the given temperature at which a grinding began or progressed, the piston sank and the pressure dropped to about 345 bar overpressure, indicating that the alloy had become liquid and continued to seep through the compressed diamond mass. Pressure. was then raised again to the given maximum hot pressing pressure, and kept at this value at the given maximum hot pressing temperature Ϊ 1 minute to ensure complete penetration of the alloy into the small capillary cavities of the compressed diamond mass. The energy supply was then interrupted, but no further pressure was applied. This produced a fixed pressure at high temperature but reduced pressure at low temperature, thereby providing adequate geometric stability, ie. it retained the dimensions of the hot pressed assembly of elements until it was sufficiently cold to handle.
35 Det fremkomne kompositmateriale blev blotlagt ved at kappemetal, dvs. det kopformede molybdænorgan og zirconiumbøsningen, og overskudslegering på kompositmaterialets ydre overflader blev slebet eller sandblæst væk.The resulting composite material was exposed by cutting metal, i.e. the cup-shaped molybdenum member and the zirconium sleeve, and excess alloy on the outer surfaces of the composite were sanded or sandblasted away.
DK 153536 BDK 153536 B
2828
Det fremkomne rensede integralkompositmatenafeiegeme havde form som en i alt væsentligt jævn skive, der i eksemplerne 1 til 3 havde en tykkelse på tilnærmelsesvis 4,95 mm og i eksempel 4 tilnærmelsesvis 4,06 mm.The resulting purified integral composite matte body was in the form of a substantially smooth disk having in thicknesses of Examples 1 to 3 approximately 4.95 mm and in Example 4 approximately 4.06 mm.
5 I eksempel 6 og 7 i tabel I anvendtes der ingen metallisk beholder, foring eller substrat, men det udstyr, der anvendtes, var i alt væsentligt magen til det, der er vist i figur 4 og 5. Ved gennemførelsen af eksemplerne 6 og 7 blev det hexagonale bornitridpulver pakket i matricen i figur 4, og en som form anvendt cylinder blev presset ind 10 i pulveret. Cylinderen var fremstillet af sintret hårdtmetal (eng.: cemented metal carbide) og var omkring 8,89 mm i diameter og 6,35 mm i tykkelsen. Cylinderens akse bragtes til at flugte tilnærmelsesvis med matricens centerakse.In Examples 6 and 7 of Table I, no metallic container, liner or substrate was used, but the equipment used was substantially similar to that shown in Figures 4 and 5. In carrying out Examples 6 and 7 For example, the hexagonal boron nitride powder was packed in the matrix of Figure 4 and a cylinder used as a mold was pressed into the powder. The cylinder was made of sintered cemented metal carbide and was about 8.89 mm in diameter and 6.35 mm in thickness. The axis of the cylinder is brought about to align approximately with the center axis of the matrix.
Efter at cylinderen var indført i pulveret, anbragtes yderligere 15 hexagonalt bornitridpuiver i matricen, således at det dækkede cylinderen fuldstændigt, og den fremkomne pulveromsluttede cylinder blev presset ved stuetemperatur under et tryk på 3,45 kilobar overtryk. Stemplet 23a blev derpå trukket tilbage, og stemplet 23 anvendtes til at skubbe den fremkomne pressede pulveromsluttede cylinder delvis 20 ud af matricen.After the cylinder was introduced into the powder, an additional 15 hexagonal boron nitride powders were placed in the matrix to completely cover the cylinder and the resulting powder-enclosed cylinder was pressed at room temperature under a pressure of 3.45 kilobar overpressure. The plunger 23a was then retracted and the plunger 23 was used to push the resulting pressed powder-wrapped cylinder partially 20 out of the die.
Den blottede de! af det pressede pulver blev fjernet således at cylinderen blev efterladt delvis blottet. Cylinderen blev derpå fjernet, og efterlod hulheden, som den havde udpresset deri. I eksemplerne 6 og 7 blev en støbt legeringsskive af den givne sammensætning og 25 tykkelse og med i alt væsentligt samme diameter som hulhedens indre diameter anbragt i bunden af hulheden. Et diamantpuiverlag af given størrelse, mængde og tykkelse blev pakket oven pi legeringen.They exposed it! of the pressed powder was removed so that the cylinder was left partially exposed. The cylinder was then removed leaving the cavity it had extruded therein. In Examples 6 and 7, a cast alloy disc of the given composition and thickness and having substantially the same diameter as the inner diameter of the cavity was placed at the bottom of the cavity. A diamond powder layer of the given size, quantity and thickness was packed on top of the alloy.
En skive varmpresset hexagonalt bornitridpuiver med omtrent samme diamanter som hulhedens indre diameter blev anbragt i huihe-30 cien oven pi dtamantpulveret som en prop til sikring af, at overfladen af det resulterende polykrystaliinske diamantlegeme ville blive plant.A disc of hot pressed hexagonal boron nitride powder of approximately the same diamonds as the inner diameter of the cavity was placed in the housing above the diamond powder as a plug to ensure that the surface of the resulting polycrystalline diamond body would become flat.
Hele massen blev derpå skubbet ind i matricens center ved hjælp af stemplet 23a, som derpå blev trukket tilbage. En yderligere mæng-35 de hexagonalt bornitridpuiver tiiførtes matricen til dækning af den varmpressede skive af hexagonalt bornitrid, hvorved hulheden og indholdet blev omsluttet af hexagonalt bornitrid, som det er illustreret i figur 4. Den resulterende charge blev derpå presset ved stuetemperatur, dvs. koldpresset, i stålmatricen under et tryk på 5,5 ktlobar 29The entire mass was then pushed into the center of the die by means of the plunger 23a, which was then withdrawn. An additional amount of hexagonal boron nitride powder was added to the matrix to cover the hot pressed disc of hexagonal boron nitride, thereby enclosing the cavity and contents of hexagonal boron nitride, as illustrated in Figure 4. The resulting charge was then pressed at room temperature, i. cold pressed, in the steel matrix under a pressure of 5.5 ktlobar 29
DK 153536 BDK 153536 B
overtryk som vist i figur 4, idet hulheden og dens indhold udsattes for et i a!t væsentligt isostatisk tryk indtil trykket stabiliseredes, hvorved der tilvejebragtes et dimensionsmæssigt stabiliseret, formet, praktisk talt isostatisk system omfattende den pulveromsluttede hulhed 5 og indeholdet. Fra tidligere eksperimenter var det kendt, at diamant-krystaltætheden i den frembragte pressede samling af elementer, dvs. i det frembragte formede, i alt væsentligt isostatiske system omfattende den pulveromsluttede hulhed og indholdet, var over 75 volumenprocent af den komprimerede diamantmasse.overpressure as shown in Figure 4, subjecting the cavity and its contents to a substantially isostatic pressure until the pressure stabilized, thereby providing a dimensionally stabilized, shaped, practically isostatic system comprising the powder-enclosed cavity 5 and the contents. From previous experiments, it was known that the diamond crystal density in the produced pressed collection of elements, ie. in the formed, substantially isostatic system comprising the powder-enclosed cavity and contents, was over 75% by volume of the compacted diamond mass.
10 Den fremkomne pressede samling af elementer omfattende den pulveromsluttede hulhed og indholdet, der var tilnærmelsesvis magen til 21 bortset fra, at der ikke anvendtes nogen metaibeholder, blev derpå varmpresset, dvs. den blev skubbet ind i en grafitform af samme diameterstørrelse som stilmatricen, som vist i figur 5, og an-15 bragt i en induktionsvarmeovn. Hulhedens indre evakueredes og en riitrogenatmosfære blev indledt deri, idet varmeovnen blev evakueret til omkring 1.330 Pa (10 torr), inden den blev fyldt igen med flydende, tør nitrogen. Et tryk på omkring 345 bar overtryk blev afgivet ti! den pressede samling af elementer og opretholdt på denne 20 ved hjælp af grafitmatricen, som derpå opvarmedes af induktionsvarmeovnen med en sådan hastighed, at den nåede den givne maksi-malvarmpresningstemperatur i løbet af omkring 5 til 7 minutter. Efterhånden som samlingen af elementer blev opvarmet, steg trykket til det givne maksimalvarmpresningstryk på grund af hele systemets 25 ekspansion.The resulting pressed assembly of elements comprising the powder-encased cavity and contents approximately equal to 21 except that no meta container was used was then hot pressed, i.e. it was pushed into a graphite shape of the same diameter size as the style matrix, as shown in Figure 5, and placed in an induction heater. The interior of the cavity was evacuated and a nitrogen atmosphere was initiated therein, evacuating the heater to about 1,330 Pa (10 torr) before being refilled with liquid dry nitrogen. A pressure of about 345 bar overpressure was released ten! the pressed assembly of elements and maintained thereon by the graphite matrix, which was then heated by the induction heater at such a rate that it reached the given maximum heat compression temperature in about 5 to 7 minutes. As the assembly of elements was heated, the pressure increased to the given maximum heat compressive pressure due to the expansion of the entire system.
Ved den givne temperatur, ved hvilken infiltrering begynder eller skrider frem, sank stemplet og trykket faldt til omkring 345 bar overtryk, hvilket viste, at den givne legering var smeltet og blevet flydende og var trængt ind i diamantmassen. Trykket blev 30 derpå hævet, ti! det igen var lig det givne maksimalvarmpresningstryk, på hvilken værdi det blev holdt i 1 minut til sikring af fuldstændig indtrængning af legeringen i de mindre kapillarhulrum i den komprimerede diamantmasse. Energitilførslen blev derpå afbrudt, men der blev ikke påført yderligere tryk. Dette tilvejebragte et fast tryk 35 ved høj temperatur, men nedsat tryk ved lavere temperatur, og derved tilvejebragtes fyldestgørende geometrisk stabilitet. Ved stuetemperatur blev det frembragte poiykrystallinske diamantlegeme afdækket. Proppen bandt ikke til diamantlegemet. Efter fjernelse af overflade-skaller af hexagonalt bornitridpulver og overskudslegering ved slib-At the given temperature at which infiltration begins or progresses, the piston sank and the pressure dropped to about 345 bar overpressure, indicating that the given alloy had melted and become liquid and had penetrated the diamond mass. The pressure was then raised, ten! it was again equal to the given maximum hot compress pressure at which value it was held for 1 minute to ensure complete penetration of the alloy into the smaller capillary cavities of the compressed diamond mass. The energy supply was then interrupted, but no further pressure was applied. This provided a fixed pressure 35 at high temperature but lower pressure at lower temperature, thereby providing adequate geometric stability. At room temperature, the polycrystalline diamond body produced was uncovered. The plug did not attach to the diamond body. After removal of hexagonal boron nitride powder surface shells and excess alloy by grinding,
DK 153536 BDK 153536 B
30 ning og sandblæsning havde det fremkomne polykrystaiiinske integral-diamantlegeme skiveform med den givne tykkelse.30 and sandblasting had the resulting polycrystalline integral diamond body disc shape of the given thickness.
I tabel I er den varmpresningstemperatur, ved hvilken indtrængningen begynder, den temperatur, ved hvilken legeringen er flydende og vedbliver at sive ind gennem den komprimerede diamantmasse.In Table I, the hot pressing temperature at which penetration begins is the temperature at which the alloy is liquid and continues to seep through the compressed diamond mass.
Den givne maksimalvarmpresningstemperatur og maksimalvarmpres-ningstrykket blev opretholdt samtidigt i 1 minut til sikring af fuldstændig indtrængning i de mindre kapillarhulrum Ϊ den komprimerede diamantmasse.The given maximum hot pressing temperature and maximum hot pressing pressure were maintained simultaneously for 1 minute to ensure complete penetration into the smaller capillary cavities Ϊ the compressed diamond mass.
De i tabel I angivne røntgendiffraktionsanalyser for eksemplerne 6 og 7 blev udført på det polykrystaiiinske diamantlegeme i knust form.The X-ray diffraction analyzes of Examples 6 and 7 listed in Table I were performed on the polycrystalline diamond body in crushed form.
DK 153536 BDK 153536 B
3131
OISLAND
O HO H
w <o • o. irt in in irt o ir» ow <o • o. irt in an irt o ir »o
Cl «o S rt* r·* cn r-*. © O' -i a^iwfrt cn tn co <t '•f irtCl «o S rt * r · * cn r- *. © O '-i a ^ iwfrt cn tn co <t' • f irt
U S] rH rH rH H rH T*H rHU S] rH rH rH H rH T * H rH
*> S3 oc*> S3 oc
Pi 00Pi 00
•HØM• Hoem
0 ·η « Μ 0 Ό irt »Λ irtirtO O irt 0 > ø cn rt* r-* f- m cr> *3* Μ ·Η p« ¢0 M co cn o> cn co0 · η «Μ 0 Ό irt» Λ irtirtO O irt 0> ø cn rt * r- * f- m cr> * 3 * Μ · Η p «¢ 0 M co cn o> cn co
O. Λ OC rH rH *h *h rH rHO. Λ OC rH rH * h * h rH rH
EU« S a XiEU «S and Xi
«0 M«0 M
> /-v> / -v
1 Μ M1 Μ M
g fr &g fr &
(0 P <M(0 P <M
> tn M <t* co %* co cn <0 rH 00 O *· *· - ~ ~ ~ «J 0 > 00 00 rH 00 rH \£> S ·Η O irt irt vø m Ό O' O' •Hørt* r* eo r* 00. 00 00> tn M <t * co% * co cn <0 rH 00 O * · * · - ~ ~ ~ «J 0> 00 00 rH 00 rH \ £> S · Η O irt irt vø m Ό O 'O' • Heard * r * eo r * 00.00 00 00
tn w Mtn w M
M o; « tt u & 1 XS Ck ^ ΌM o; «Tt u & 1 XS Ck ^ Ό
I -HI H
O MABOUT
I 00 -HI 00 -H
•U I /Η N CN CN S « ·Η \f> <0 1 O Ό Μ X 0• U I / Η N CN CN S «· Η \ f> <0 1 O Ό Μ X 0
+J & 4J M *J »H O* · * «UH+ J & 4J M * J »H O * · *« UH
« O O 4J « CO H Xl CO CO to >,00 to MMtOtoZl « 4-> Jtf Λί Ai X3«O O 4J« CO H Xl CO CO to>, 00 to MMtOtoZl «4-> Jtf Λί Ai X3
4-> a CO XJ 4J M (U U o O «H-Μ O4-> a CO XJ 4J M (U U o O «H-Μ O
<0 4» ø 3* O 4-1 +J « ty *J H<0 4 »ø 3 * O 4-1 + J« ty * J H
£l · M CO 00 M 0J *H ‘Η Ή t# Η ϋ ·Η ØrHpilcnr-s+J.Øa* ft W W > „ CO U B CJ *000106 G G OUdtHØ£ l · M CO 00 M 0J * H 'Η Ή t # Η ϋ · Η ØrHpilcnr-s + J.Øa * ft W W> „CO U B CJ * 000106 G G OUdtHØ
Η ·Η l OJ -H W O' O O o MWOØOΗ · Η l OJ -H W O 'O O o MWOØO
CO w ^ x: W 03 CO CO pLiAMacOCO w ^ x: W 03 CO CO pLiAMacO
> I> I
w M 4J ow M 4J o
! O 01 0 l« M! O 01 0 l «M
iHOEcCIO. rH rH rH rHiHOEcCIO. rH rH rH rH
• « r-i M 00 Η Η ·Η ·Η ·Η ·Η C 0 *J +J Ο Q Η CN « . . · · U 0) ? 4) Λ ή o mb« B w B w S « «ο eo weaifti'ddojii o jrf o a: o j* ø ø χ> o o <υ -π co <u w u co o w u w m• «r-i M 00 Η Η · Η · Η · Η · Η C 0 * J + J Ο Q Η CN«. . · · U 0)? 4) Λ ή o mb «B w B w S« «ο eo weaifti'ddojii o jrf o a: o j * ø ø χ> o o <υ -π co <u w u co o w u w m
Μ « X G MX «X G M
hø ω oo i >—vh ω oo i> —v
cq Ή X Sc Ή X S
5 rH >» E5 rH> »E
Η M jJ ' O ti M rH rH rHCN|lrtrt* Γ"*· > jj 4j dj in in m Ό r- σι σ'Η M jJ 'O ti M rH rH rHCN | lrtrt * Γ "* ·> jj 4j dj in a m Ό r- σι σ'
r-H Μ > CQ νθ νθ νθ rt* irt <rt COr-H Μ> CQ νθ νθ νθ rt * irt <rt CO
ØjJrHrH»· * * » » «· *ØjJrHrH »· * *» »« · *
P< 6 ø 0 rH rH rH O rH rH rHP <6 ø 0 rH rH rH O rH rH rH
4.) O p< X4.) O p <X
øisland
<Q<Q
S CJS CJ
«3 Ό /—\«3 Ό / - \
•HCOOCO O O O O O O• HCOOCO O O O O O O
Q06O O 0<-O0irt irt 8 ^ cn co ro «-η es cn csi 00 •η oj rH «Q06O O 0 <-O0irt irt 8 ^ cn co ro «-η es cn csi 00 • η oj rH«
tatHrsvO vO Ό v£> vO vrt vDtatHrsvO vO Ό v £> vO vrt vD
G ti 1) E rH rH rH rH rH rH rHG ti 1) E rH rH rH rH rH rH rH
•h od o ^ s o o o o o o o β K ϋ ^ - - r - -• h od o ^ s o o o o o o o β K ϋ ^ - - r - -
h H 4) > H rH rH rH rH rH rHh H 4)> H rH rH rH rH rH rH
<U H g 4*1<U H g 4 * 1
rH OJ O rH OCrH OJ O rH OC
1) 0)1) 0)
rH 4) OVCOOCOO OrH 4) OVCOOCOO O
U *0/-nvO irt <N CO rH VO rHU * 0 / -nvO irt <N CO rH VO rH
C 4J 00 0C CN CN cn CN CO CN CNC 4J 00 0C CN CN cn CN CO CN CN
GO 0 S CNGO 0 S CN
0 0 Jj ^0 0 Jj ^
00 D S00 D S
ØMSORE
W li -HØ ·Η Μ ·ιΗ 4-> ·Η iH -rH JØ *H 1) -Η ·ΗW li -HØ · Η Μ · ιΗ 4-> · Η iH -rH JØ * H 1) -Η · Η
MM CO 0 CO CJ COCMOOHCÆOicnpi COHMM CO 0 CO CJ COCMOOHCÆOicnpi COH
4J *J4J * J
Ό rH Λ ** S* 3* 3* a^a^S·*********** frS 3« ti ή e s se sbsssbss se h-H m O O O O OQOOOOOO 00Ό rH Λ ** S * 3 * 3 * a ^ a ^ S · *********** frS 3 «ti ή e s see sbsssbss see h-H m O O O O OQOOOOOO 00
6 4-> «Μ 4J4H +J4_>+J+J4-»4J4-J4-> 4-> 4J6 4-> «Μ 4J4H + J4 _> + J + J4-» 4J4-J4-> 4-> 4J
O <3 (Q <Q flj ««««««ti« <Q<QO <3 (Q <Q flj «« «« «« ti «<Q <Q
4J4J
<3 in in mm oovo<fro\rHtnin vont<3 in in mm oovo <fro \ rHtnin font
O' CQ rH O' rH 00 rH rt* CN O' ¢0 rHO 'CQ rH O' rH 00 rH rt * CN O '¢ 0 rH
tn X r-< cn ro <r in Ό r*.tn X r- <cn ro <r in Ό r *.
b3 32b3 32
DK 153536 BDK 153536 B
OISLAND
til ft OQ I * Ito ft OQ I * I
x p i w i o ti «η <u ffl ft CJ P P M W 00 a W ft <H CO Ή fl 5J tix p i w i o ti «η <u ffl ft CJ P P M W 00 a W ft <H CO Ή fl 5J ti
ft O W W O W W rH ft Hft O W W O W W rH ft H
ft tf O OP P « Pft tf O OP P «P
ft E 60 tf ft tf tf d ti <ooo a w β « P (0 ρ X o o BO s 63 P X - X P IQ P< ti ο» p e p a ή β *h P ti « Ρ β Ρ « Ό T3 X Ρ B ti ® ti Θ 00ft E 60 tf ft tf tf d ti <ooo aw β «P (0 ρ X oo BO s 63 PX - XP IQ P <ti ο» pepa ή β * h P ti «Ρ β Ρ« Ό T3 X Ρ B ti ® ti Θ 00
>i ti « PEP« X O X CM> i ti «PEP« X O X CM
ft ti Ρ ·Η ti « ti ft tt W ft OSfljn P ft P Q ti CM au ft ti Λ S Q S ‘«H ft ft ftft ti Ρ · Η ti «ti ft tt W ft OSfljn P ft P Q ti CM au ft ti Λ S Q S '« H ft ft ft
6C T3 /-> Λ j3 ft W ft H6C T3 / -> Λ j3 ft W ft H
^ O Q (I *3 ti *3 ti ft ti ft II H e ti B ti B titf «00 »3 Ρ ft ti ti ti Ρ p o ti ti oo ft 00 ft 00 tt 09^ O Q (I * 3 ti * 3 ti ft ti ft II H e ti B ti B titf «00» 3 Ρ ft ti ti ti Ρ p o ti ti oo ft 00 ft 00 tt 09
ft « ti CJ ti ti ti >v U >vUft «ti CJ ti ti ti> v U> vU
ti S ti rH 1-4 ft M ft W Ήti S ti rH 1-4 ft M ft W Ή
« *3 Ρ ti P ti P X W X W«* 3 Ρ ti P ti P X W X W
ti ti ·Η ti fl Ό C Ό fl >i >> E W Ό iH ti ti« titi ft r ftti ti · Η ti fl Ό C Ό fl> i >> E W Ό iH ti ti «titi ft r ft
ti >* ft S ft β rH E OP OPti> * ft S ft β rH E OP OP
et h « ft « m « ft α ftd ti W P ft ft ·Η ti ti ft d ti ·3 P *3 Ρ Ό Ρ E p a Ρ « M ti ti ti ti ti Uti (0 ti aadr-t U ft tt t—i 3 ft 3 ft ti ti ti «3 c ti a « d ο ae e 00 P ft ti ft ti ft x xa h «ft« m «ft α ftd ti WP ft ft · Η ti ti ft d ti · 3 P * 3 Ρ Ό Ρ E pa Ρ« M ti ti ti ti ti Uti (0 ti aadr-t U ft tt t —I 3 ft 3 ft ti ti ti «3 c ti a« d o ae e 00 P ft ti ft ti ft xx
«4-) P P P P P«4-) P P P P P
••H d 4-i ti ti ti* ft ft r"\ T3 Ό. « P ft P ft Ρ O I I «ti «ti•• H d 4-i ti ti ti * ft ft r "\ T3 Ό.« P ft P ft Ρ O I I «ti« ti
tf '-'ti «« ««•Hii'-'B ' Etf '-'ti «« «« • Hii' - 'B' E
x s ^ e ^ a w a co a o i a o ·η p i •h · to α ti e ft P O *P> 3 1 I-i I ti Ρ P ft ft « « *3 fl ti P U ti P ft fi ti O ft > tt Ό CQ 3 00 P ti ft ft t>. ti ti pQ O tt *3 ft 00 P ft ft ft -Η α ti W · oxs ^ e ^ awa co aoiao · η pi • h · to α ti e ft PO * P> 3 1 Ii I ti Ρ P ft ft «« * 3 fl ti PU ti P ft fi ti O ft> tt Ό CQ 3 00 P ti ft ft t>. ti ti pQ O tt * 3 ft 00 P ft ft ft -Η α ti W · o
X 03 d i ti P CD ti tt PX 03 d i ti P CD ti tt P
Ρ» fl ft iO d > »3 ti ft ft Ό ti ft ft X P tt ti Ρ P 60 ti ti ft ti s-\ O ft ti 00 0i ft rH ftftO«tiCPfiX> P ft p P p rH o Λ tf « ft Ή ·Η « tt 03 ti ti · · · · ft Β B 00 P tt tt ·η s a > p to α uttrpH co a p a P P P ti OCX X XXP tt *3 *3 ft « ti P ti ft 60 ti β ti ti ti ti ft ti 3 rH di d · 0 ft tt ti Ρ B P ft > »3 *3 d ft ρ x o ft w p ft ή ft ft ft x p d ft ti ti w « tf ft > ft tiPfttitttfOO'e p ε d a a a aepwwptfpftdΡ »fl ft iO d>» 3 ti ft ft Ό ti ft ft XP tt ti Ρ P 60 ti ti ft ti s- \ O ft ti 00 0i ft rH ftftO «tiCPfiX> P ft p P p rH o Λ tf« ft Ή · Η «tt 03 ti ti · · · · ft Β B 00 P tt tt · η sa> p to α uttrpH co apa PPP ti OCX X XXP tt * 3 * 3 ft« ti P ti ft 60 ti β ti ti ti ti ft ti 3 rH di d · 0 ft tt ti Ρ BP ft> »3 * 3 d ft ρ xo ft wp ft ή ft ft ft xpd ft ti ti w« tf ft> ft tiPfttitttfOO'e p ε daaa aepwwptfpftd
i-i «OttPtiO O OOOPftft«J«tiPi-i «OttPtiO O OOOPftft« J «tiP
tf « E 03 d CO CO WMtftt>titfti>tftf «E 03 d CO CO WMtftt> titfti> tf
>P> P
tf tftf tf
PP
titi ε tt o?titi ε tt o?
P Η A CO CO CO a\ <t CMP Η A CO CO CO a \ <t CM
«tiBr^ r-. r- co cm in d X B r*- f-* r** co t in -«TiBr ^ r-. r- co cm in d X B r * - f- * r ** co t in -
rH X ' - - - I rHrH X '- - - I rH
•H >» ft rH rH O rH• H> »ft rH rH O rH
Ε-» PΕ- »P
ti Ό a /-* ti ft oo »O ti a p tf a a ρ > ftp ft •tid CO /-> r-s r-\ti Ό a / - * ti ft oo »O ti a p tf a a ρ> ftp ft • time CO / -> r-s r- \
a P w p Vi Pand P w p Vi P
ft « WWWft «WWW
ρ p /-% a a a p p ti 00 P ft ft ft oo 0PA->«a tf *q tf « ft ρ a to c w ft Ο Ό ft P P ft Όρ p / -% a a a p p ti 00 P ft ft ft oo 0PA -> «a tf * q tf« ft ρ a to c w ft Ο Ό ft P P ft Ό
PrHw3^3 O tf H 3PrHw3 ^ 3 O tf H 3
X w p PX w p P
a O - ·> - Oa O - ·> - O
3 00 ft ft ft ft ft3 00 ft ft ft ft ft
Pi β WWWPi β WWW
ti ft y-s W W W /-sti ft y-s W W W / -s
p P O Op P O O
ft ti m w o o in o ti oo cm co w cn cm <oft ti m w o o in o ti oo cm co w cn cm <o
Stift co co co i ft co Μ H v ft ft ft I s—' ft tt X rH CM CO -*tf· in '«P h" tfPin co co co i ft co Μ H v ft ft ft I s— 'ft tt X rH CM CO - * tf · in' «P h" tf
DK 153536 BDK 153536 B
33 i eksemplerne 1 til 5 kunne grænsefladen for hver komposlt-materialeskive mellem det adhærerede poiy krystal linske diamantiegeme og siliciumcarbidsubstratet ikke detekteres. Hvert kompositmateriale syntes at være en kontinuert struktur gennem hele sin tykkelse, og 5 kun kornstørrelsen i diamantdelen adskilte denne fra substratet. Den ydre overflade af hvert adhæreret poly krystal linsk diamantiegeme syntes at være velgennemtrængt af bindemedium, som syntes at være jævnt fordelt. Diamanterne forekom at være velbundet til hinanden.33 in Examples 1 to 5, the interface of each composite material disc between the adhered polymeric crystal diamond body and the silicon carbide substrate could not be detected. Each composite material appeared to be a continuous structure throughout its thickness, and only the grain size in the diamond part separated it from the substrate. The outer surface of each adhered poly crystal lens diamond body appeared to be well penetrated by binder which appeared to be evenly distributed. The diamonds seemed to be well bonded to each other.
Det adhærerede polykrystaliinske diamantiegeme i kompositmate-10 rialerne i eksempel 1 til 4 havde en diamanttæthed på over 70 volumenprocent men under 90 volumenprocent af det polykrystaliinske legemes rumfang.The adhered polycrystalline diamond body in the composite materials of Examples 1 to 4 had a diamond density greater than 70% by volume but less than 90% by volume of the polycrystalline body.
Diamantfladen af kompositmaterialet i eksempel 5 blev poleret på et støbejernsdiamantpoleringsapparat. Undersøgelse af den polerede 15 fiade viste ingen hulrækker dannet ved udtrækning af diamantfragmenter, hvilket viser den stærke binding deri. Diamantkrystaltætheden var omkring 73 volumenprocent af det adhærerede polykrystaliinske diamantiegeme.The diamond surface of the composite material of Example 5 was polished on a cast iron diamond polishing apparatus. Examination of the polished 15 facade showed no rows of holes formed by extracting diamond fragments, showing the strong bond therein. The diamond crystal density was about 73% by volume of the adhered polycrystalline diamond body.
I eksempel 6 og 7 var de polykrystaliinske diamantlegemer vel-20 gennemtrængte og velbundne. Under anvendelse af en hammer og en kile blev' hver skive, dvs. det polykrystaliinske diamantiegeme, fraktureret så at sige midt over og brudfiaderne blev undersøgt optisk forstørret omkring 100 gange under et mikroskop. Undersøgelse af disse brudflader viste, at de var porefri, at bindemediet var ens-25 artet fordelt igennem hele legemet, og at bruddene var transgranulære snarere end intergranulære, dvs. at hvert legeme var fraktureret igennem diamantkornene snarere end langs korngrænserne. Dette viser, at bindemediet var stærkt vedhængende og var lige så stærkt som selve diamantkornene eller krystallerne.In Examples 6 and 7, the polycrystalline diamond bodies were well penetrated and well bonded. Using a hammer and a wedge, each disc, i.e. the polycrystalline diamond body, so to speak, fractured midway and the bridesmaids were examined optically enlarged about 100 times under a microscope. Examination of these fracture surfaces revealed that they were pore-free, that the binder was uniformly distributed throughout the body, and that the fractures were transgranular rather than intergranular, ie. that each body was fractured through the diamond grains rather than along the grain boundaries. This shows that the binder was strongly adherent and was as strong as the diamond grains or crystals themselves.
30 Skivens diamanttæthed i eksempel 6 var over 70 volumenprocent men mindre end 90 volumenprocent af legemet.The diamond density of the disc in Example 6 was over 70% by volume but less than 90% by volume of the body.
En brudflade i skiven i eksempel 7 poleredes på et støbejerns-diamantpoleringsapparat, og undersøgelse af den polerede flade viste ingen hul rækker dannet ved udtrækning af diamantfragmenter, hvilket 35 viser den stærke binding deri. Diamantkrystaltætheden var omkring 80 volumenprocent af det polykrystaliinske diamantiegeme.A fracture surface of the disc of Example 7 was polished on a cast-diamond diamond polisher, and examination of the polished surface showed no hollow rows formed by extracting diamond fragments, showing the strong bond therein. The diamond crystal density was about 80% by volume of the polycrystalline diamond body.
η 34η 34
DK 1535S6BDK 1535S6B
EKSEMPEL 8EXAMPLE 8
Det i eksempel 1 frembragte kompositmateriale blev bedømt som skæreværktøj. Den blottede flade af det polykrystalllnske diamantlegeme i kompositmaterialet blev slebet med en diamantslibeskive for 5 at gøre den glat og tilvejebringe en skarp skærende kant. Substratet af kompositmateriale blev derpå fastgjort i en værktøjsholder.The composite material produced in Example 1 was rated as a cutting tool. The exposed surface of the polycrystalline diamond body in the composite was sanded with a diamond grinding wheel to smooth it and provide a sharp cutting edge. The composite material substrate was then attached to a tool holder.
En dei af den skærende kant blev vurderet på en drejebænk (eng.: lathe turning) fra Jackfork Sandstone ved en fødehastighed pr. omdrejning på 0,127 mm og en skæredybde på 0,508 mm.One of the cutting edges was evaluated on a lathe turning from Jackfork Sandstone at a feed rate per minute. rotation of 0.127 mm and a cutting depth of 0.508 mm.
10 Ved skærehastigheden 49,8 cm/s blev slidhastigheden bestemt til -6 3 at være 0,0210 X 10 cm/s. En anden del af den skærende kant vurderedes ved skærehastigheden 140,2 cm/s og bestemtes til at have —6 3 en slidhastighed på 0,145 X 10 cm /s. Endnu en anden del af den skærende kant vurderedes ved skærehastigheden 147,3 cm/s og be- -6 3 15 stemtes til at have en slidhastighed pi 0,3988 X 10 cm /s.At the cutting speed of 49.8 cm / s, the wear rate was determined to be -6 3 to be 0.0210 X 10 cm / s. Another portion of the cutting edge was assessed at the cutting speed of 140.2 cm / s and determined to have —6 3 a wear rate of 0.145 x 10 cm / s. Yet another portion of the cutting edge was assessed at the cutting speed of 147.3 cm / s and was determined to have a wear rate of 0.3988 x 10 cm / s.
Kompositmaterialet fjernedes fra værktøjsholderen, og undersøgelse af grænsefladen mellem diamantlegemet og substratet viste, at det ikke var blevet påvirket af disse undersøgelser ved spåntagende bearbejdning.The composite material was removed from the tool holder, and examination of the interface between the diamond body and the substrate revealed that it had not been affected by these studies in machining.
20 EKSEMPEL 9EXAMPLE 9
Den i dette eksempel benyttede fremgangsmåde var magen til den i eksempel 8 beskrevne fremgangsmåde bortset fra, at det anvendte kompositmateriale var det i eksempel 2 fremstillede.The method used in this example was similar to the method described in Example 8 except that the composite material used was the one prepared in Example 2.
25 En del af den skærende kant havde ved skærehastigheden 55,88 cm/s en slidhastighed på 0,0554 X 10 3 cm3/s. En anden del af den skærende kant havde ved skærehastigheden 162,6 cm/s en slidhastighed på 0,4042 X 10 3 cm3/s.A portion of the cutting edge had a wear rate of 0.0554 X 10 3 cm3 / s at the cutting speed of 55.88 cm / s. Another portion of the cutting edge had a wear rate of 0.4042 X 10 3 cm3 / s at the cutting speed of 162.6 cm / s.
Undersøgelse af kompositmaterialet efter den spåntagende bear-30 bejdning viste, at grænsefladen mellem det polykrystallinske diamantlegeme og siliciumcarbidsubstratet ikke var påvirket af disse spåntagende bearbejdningsafprøvninger.Examination of the composite after the machining process showed that the interface between the polycrystalline diamond body and the silicon carbide substrate was not affected by these machining machining tests.
3535
DK 153536 BDK 153536 B
35 EKSEMPEL 10EXAMPLE 10
Fremgangsmåden, der anvendtes i dette eksempel, var magen til den i eksempel 8 beskrevne fremgangsmåde bortset fra, at koposittet 5 tfølge eksempel 3 anvendtes.The method used in this example was similar to the method described in Example 8 except that the coposite 5 according to Example 3 was used.
En del af den skærende kant udviste ved skærehastigheden “fi o 55,88 cm/s en slidhastighed 0,06391 X 10 cm /s. En anden del af den skærende kant udviste ved skærehastigheden 162,6 cm/s en slidhastighed på 0,5053 X 10 ® cm3/s.Part of the cutting edge exhibited a wear rate of 0.06391 X 10 cm / s at the cutting speed of “55.88 cm / s. Another portion of the cutting edge exhibited a wear rate of 0.5053 X 10® cm3 / s at the cutting speed of 162.6 cm / s.
10 Undersøgelse af kompositmaterialet efter den spåntagende bear bejdning viste, at grænsefladen mellem det polykrystallinske diamantlegeme og siliciumcarbidsubstratet ikke var påvirket af disse spåntagende bearbejdningsafprøvninger.Examination of the composite material after the machining machining showed that the interface between the polycrystalline diamond body and the silicon carbide substrate was not affected by these machining machining tests.
15 EKSEMPEL 11EXAMPLE 11
Den i dette eksempel anvendte fremgangsmåde var magen tii den i eksempel 8 beskrevne fremgangsmåde bortset fra, at kompositmaterialet ifølge eksempel 4 anvendtes.The method used in this example was similar to the method described in Example 8 except that the composite material of Example 4 was used.
Efter 4 minutter vellykket skæring ved skærehastigheden 49,8 20 cm/s (98 surface feet per minute) brækkede små stykker af den skærende kant. Ved anvendelse af en anden del af den skærende kant brækkede efter 6 minutters vellykket skæring ved skærehastigheden 142,2 cm/s små stykker af den skærende kant. Det menes, at brud-det pi den skærende kant skyldtes, at varmpresningstemperaturerne 25 ikke havde været tilstrækkeligt høje til at opnå fuldstændig indtrængning i de små kapillarhulrum i den polykrystallinske diamantmasse under varmpresningen. Sammenligning med eksempef 7 i tabel i viser, at de højere varmpresningstemperaturer tilvejebringer et velgennem-trængt og velbundet polykrystallinsk diamantlegeme.After 4 minutes of successful cutting at the cutting speed 49.8 20 cm / s (98 surface feet per minute), small pieces of the cutting edge broke. Using another part of the cutting edge, after 6 minutes of successful cutting at the cutting speed, 142.2 cm / s of small pieces of the cutting edge broke. It is believed that the fracture at the cutting edge was due to the fact that the hot pressing temperatures 25 had not been sufficiently high to achieve complete penetration into the small capillary cavities of the polycrystalline diamond mass during the hot pressing. Comparison with Example 7 of Table I shows that the higher hot pressing temperatures provide a well-penetrated and well bonded polycrystalline diamond body.
30 EKSEMPEL 12EXAMPLE 12
Fremgangsmåden tii fremstilling af kompositmaterialet svarede i alt væsentligt til den i eksempel 2 beskrevne fremgangsmåde bortset fra, at der anvendtes 260 mg af silicium-cromlegeringen, og lege-35 ringsskiven var 1,270 mm tyk.The process for preparing the composite material was substantially similar to the procedure described in Example 2 except that 260 mg of the silicon chromium alloy was used and the alloy disc was 1,270 mm thick.
Desuden anvendtes 250 mg diamantpulver, hvori 60 vægtprocent var af størrelser fra 53 til 62 pm, 30 vægtprocent var mellem 8 og 22 pm og 10 vægtprocent var mellem 1 og ca. 5 pm. Diamantpul veret blev pakket til en omtrentlig tykkelse pi omkring 1,397 mm. Der DK 153536Β Ί 36 anvendtes desuden et kopformet zirconiumorgan med en zirconium-foring.In addition, 250 mg of diamond powder was used in which 60% by weight was of sizes from 53 to 62 µm, 30% by weight was between 8 and 22 µm and 10% by weight was between 1 and approx. 5 pm. The diamond powder was packed to an approximate thickness of about 1.397 mm. In addition, a cup-shaped zirconium member with a zirconium liner was used.
Maksimalvarmpresningstrykket var omkring 0,9 kilobar overtryk og varmpresningstemperaturen lå på fra omkring 1.250°C, hvor ind-5 sivningen begyndte, til en maksimalvarmpresningstemperatur på om kring 1.500°C. Kompositmateriaiet blev blotlagt på samme måde som i eksempel 2 og havde form af en praktisk taget Jævn skive med en tykkelse pi ca. 1,52 mm.The maximum hot pressing pressure was about 0.9 kilobar overpressure and the hot pressing temperature ranged from about 1,250 ° C at the onset of the pouring to a maximum hot pressing temperature of about 1,500 ° C. The composite material was exposed in the same manner as in Example 2 and took the form of a practically smooth slab having a thickness of approx. 1.52 mm.
Siliciumcarbidsubstratet blev slebet af kompositmateriaiet, og det 10 resulterende poiykrystaliinske diamantlegeme udsattes for en varmestabilitetsundersøgelse. Nærmere beskrevet opvarmedes det i luft til temperaturen 900°C, der var ovnens grænsetemperatur. Efterhånden som det opvarmedes, bestemtes dets termiske længdeudvidelseskoefficient ved temperaturer fra 100°C til 900°C. Ved 900°C blev energi-15 tilførslen afbrudt.The silicon carbide substrate was sanded by the composite material and the resulting polycrystalline diamond body was subjected to a heat stability study. More specifically, it was heated in air to a temperature of 900 ° C, which was the limit temperature of the oven. As it heated, its thermal length expansion coefficient was determined at temperatures from 100 ° C to 900 ° C. At 900 ° C the energy supply was interrupted.
Undersøgelsesresultaterne og den synsmæssige undersøgelse af prøven, dvs. det poiykrystaliinske diamantlegeme efter undersøgelsen viste, at der ikke var nogen pludselig længdeændring for prøven under hele opvarmningsforløbet, og der var ingen tegn på permanent 20 beskadigelse af prøven forårsaget af opvarmningscyklusen.The examination results and the visual examination of the sample, ie. the post crystalline diamond body after examination showed that there was no sudden length change for the sample throughout the heating cycle and there was no evidence of permanent damage to the sample caused by the heating cycle.
EKSEMPEL 13EXAMPLE 13
Den i dette eksempel anvendte fremgangsmåde var i det væsentlige magen til den, der er beskrevet i eksempel 2, bortset fra, at 25 siliciumskiven anvendtes i et kopformet zirconiumorgan med en zirco-niumforing til dannelse af en siliciumrig zirconiumlegering in situ.The method used in this example was substantially similar to that described in Example 2 except that the silicon wafer was used in a cup-shaped zirconium member with a zirconium liner to form a silicon-rich zirconium alloy in situ.
Der fremstilledes seks kompositmaterialer. Ved fremstillingen af tre af kompositmaterialerne anvendtes et diamantpulver, hvori 60 vægtprocent var af størrelser fra 53 til 62 pm, 30 vægtprocent var 30 p| fra 8 til 22 pm og 10 vægtprocent var på fra 1 til omkring 5 pm.Six composite materials were prepared. In the preparation of three of the composite materials, a diamond powder was used, in which 60% by weight was of sizes from 53 to 62 µm, 30% by weight was 30 p | from 8 to 22 pm and 10% by weight was from 1 to about 5 pm.
De tre øvrige kompositmaterialer fremstilledes ved anvendelse af et diamantpulver, der var på fra 1 ti! 60 pm med hensyn til størrelse, hvoraf mindst 40 vægtprocent var mindre en 10 pm af størrelse.The other three composite materials were prepared using a diamond powder of from 1 to 10 times. 60 µm in size, of which at least 40% by weight was less than 10 µm in size.
Maksimalvarmpresningstrykket var omkring 0,9 kilobar overtryk 35 (13,000 psi), og varmpresningstemperaturen varierede fra ca. 1.340°C, hvilket er den temperatur, ved hvilken infiltreringen skrider frem, hvilket viser, at den siliciumrige zirconiumlegering var blevet dannet in situ og var blevet flydende, til en maksimalvarmpresningstempera-tur pi omkring 1.500°C.The maximum hot pressing pressure was about 0.9 kilobar overpressure 35 (13,000 psi), and the hot pressing temperature ranged from approx. 1,340 ° C, which is the temperature at which the infiltration progresses, showing that the silicon-rich zirconium alloy had been formed in situ and had become liquid, to a maximum hot-pressing temperature of about 1,500 ° C.
37 ru/ ή ί--7 Γ~ ~737 ru / ή ί - 7 Γ ~ ~ 7
Ui\ 1 D O 5όUi \ 1 D O 5ό
Hvert kompositmaterialeemne blev blotlagt pi i alt væsentligt samme mide som i eksempel 2, og hvert emne havde form af en skive.Each composite material blank was exposed to essentially the same mite as in Example 2, and each blank was in the form of a slab.
Top- og cylinderfladerne af det adhærerede polykrystallinske 5 diamantlegeme i alle seks kompositmaterialer blev overfladeslebet. Vanskeligheden ved at slibe disse kompositmaterialer med et diamant-siibehjul viste, at slidbestandigheden af disse adhærerede diamantlegemer kunne sammenlignes med kommercielt tilgængelige polykrystai-linske diamantprodukters.The top and cylinder faces of the adhered polycrystalline diamond body in all six composite materials were surface grinded. The difficulty of grinding these composite materials with a diamond sieve wheel showed that the abrasion resistance of these adhered diamond bodies could be compared to commercially available polycrystalline diamond products.
10 De tre kompositmaterialer, der var fremstillet med det diamant pulver, der var på fra 1 til 60 pm, hvad angår størrelse, havde utilstrækkeligt blandede aggregater af diamantpulver på under 2 pm størrelse, og en undersøgelse af det adhærerede polykrystallinske legemes slebne kanter viste ufuldstændig indtrængning af legeringen i disse 15 aggregater, men resten af det slebne diamantområde var velsammenbundet.The three composite materials made with the diamond powder, ranging from 1 to 60 microns in size, had insufficiently mixed aggregates of diamond powder less than 2 microns in size, and an examination of the abrasive edges of the polycrystalline body showed incomplete penetration of the alloy into these 15 aggregates, but the rest of the cut diamond area was well connected.
Optisk undersøgelse af kompsitmaterialet viste ingen detekter-bare defekter eller noget skelneligt forskelligt mellemlag mellem siii-ciumcarbidsubstratet og diamantlaget. Fire af kompositmaterialerne 20 blev brækket, for at den indre struktur kunne iagttages. Optisk undersøgelse af brudfladerne viste intet synligt mellemlag eller synlige defekter ved grænsefladen mellem siliciumcarbidsubstratet og det adhærerede polykrystallinske diamantlag.Optical examination of the composite material revealed no detectable defects or any discernibly different interlayer between the silicon carbide substrate and the diamond layer. Four of the composite materials 20 were broken so that the internal structure could be observed. Optical examination of the fracture surfaces revealed no visible interlayer or visible defects at the interface between the silicon carbide substrate and the adhered polycrystalline diamond layer.
Strukturkontinuiteten ved substrat-diamantlagsgrænsefladen var 25 udmærket og kun kornstørrelsesforskellen mellem diamant og siiicium-carbid muliggjorde erkendelse af grænselinien mellem substrat- og diamantlagene.The structural continuity of the substrate-diamond layer interface was excellent and only the grain size difference between diamond and silicon carbide enabled recognition of the boundary line between the substrate and diamond layers.
To af kompositmaterialerne blev bedømt som skæreværktøj ved afdrejning af en meget slibende, sandfyldt gummistang. Skæreparame-30 trene var: skæredybde 0,762 mm, tilspænding pr. omdrejning 0,13 mm, og skærehastighed 304,8 cm/s. Efter skæring i 16 minutter og 22 sekunder viste begge værktøjsstykker et ca. 0,13 mm stort, ensartet sideslid, hvilket viste, at slidbestandigheden af den skærende kant var udmærket.Two of the composite materials were rated as cutting tools by turning a very abrasive, sand-filled rubber rod. The cutting parameters were: cutting depth 0.762 mm, feed rate per speed 0.13 mm, and cutting speed 304.8 cm / s. After cutting for 16 minutes and 22 seconds, both tool pieces showed an approx. 0.13 mm, uniform side wear, which showed that the abrasion resistance of the cutting edge was excellent.
35 EKSEMPEL 14EXAMPLE 14
Det i eksempel 1 fremstillede kompositmateriale blev fraktureret praktisk taget midt over ved hjælp af en hammer og en kile, og brudfladerne blev undersøgt ved en forstørrelse på ca. 100 X under et mikroskop. Undersøgelse af brudfladerne viste, at det polykrystal- -r?------- 38The composite material of Example 1 was fractured practically in the middle by means of a hammer and a wedge, and the fracture surfaces were examined at a magnification of approx. 100 X under a microscope. Examination of the fracture surfaces showed that the polycrystal - -r? ------- 38
DK 153536 BDK 153536 B
iinske legeme samt kompositmaterialets grænseflade var porefri, at bindemediet var fordelt ensartet igennem hele diamantlegemet og at bruddet var transgranulært snarere end intergranulært, dvs., at bruddet skete gennem diamantkornene snarere end langs korngræn-5 serne. Dette viser, at bindemediet var stærkt vedhængende og var lige si stærkt som selve diamantkornene eller krystallerne. Heller ikke kunne der detekteres noget synligt mellemlag eller synlige defekter i grænsefladen mellem siliciumcarbidsubstratet og det adhære-rede poly krystal linske diamantlag. Kompositmaterialets brudflade syn-10 tes at have en kontinuert struktur, og kun forskellen i kornstørrelse mellem diamanten og det stærkt adhærerede substrat muliggjorde erkendelse af grænselinien mellem substratet og det adhærerede poly-krystallinske diamantlegeme.both the body and the composite material interface were pore-free, that the binder was distributed uniformly throughout the diamond body and that the fracture was transgranular rather than intergranular, i.e., the fracture occurred through the diamond grains rather than along the grain boundaries. This shows that the binder was strongly adherent and was as strong as the diamond grains or crystals themselves. Also, no visible interlayer or visible defects could be detected in the interface between the silicon carbide substrate and the adhered poly crystal lined diamond layer. The fracture surface of the composite material appeared to have a continuous structure, and only the difference in grain size between the diamond and the strongly adhered substrate allowed recognition of the boundary line between the substrate and the adhered polycrystalline diamond body.
Brudfladen vinkelret på kompositmaterialet poleredes på et støbe-15 jernsdiamantpoleringsapparat. Optisk undersøgelse af den polerede tværsnitsfiade, der er vist i figur 7, viste ingen hulrækker dannet ved udtrækning af diamantfragmenter, hvilket viser den stærke binding deri. Det poly krystallinske diamantlegeme er vist i den øvre del og substratet i den nedre del af figur 7, og grænsefladen derimellem 20 kan skeines ved forskellen i krystalstruktur mellem diamantlegemet og substratet. Diamantkrystal lernes tæthed var omkring 71 volumenprocent af det polykrystailinske legeme i figur 7.The fracture surface perpendicular to the composite was polished on a cast iron diamond polishing apparatus. Optical examination of the polished cross-sectional façade shown in Figure 7 did not show any holes formed by extraction of diamond fragments, showing the strong bond therein. The poly crystalline diamond body is shown in the upper part and substrate in the lower part of Figure 7, and the interface therebetween 20 can be skewed by the difference in crystal structure between the diamond body and the substrate. The density of the diamond crystals was about 71% by volume of the polycrystalline body in Figure 7.
SILICIUMNITRIDSUBSTRATsilicon nitride substrate
25 Hexagonalt bornitridpulver af fin parti kel størrelse, det vil sige størrelser på fra ca. 2 pm til ca. 20 pm, blev anvendt som tryktransmitterende pulvermedium.25 Hexagonal boron nitride powder of fine particle size, that is, sizes of approx. 2 pm to approx. 20 µm, was used as pressure transmitting powder medium.
Det polykrystailinske siliciumnitridsubstrat forelå i form af en skive, der i eksemplerne 16 og 17 havde en tykkelse på ca. 3,18 mm 30 og i eksempel 19 og 20 en tykkelse på ca. 2,54 mm. Substratet var et kommercielt tilgængeligt, varmpresset materiale med en tæthed over 99%, dvs. at det næsten var 100% tæt, og omfattede, angivet som vægtprocent af det varmpressede siliciumnitridlegeme, ½ % NlgO, ca. \ % Fe, ca. 1/200 % metalliske urenheder som f.eks. Ca, Al og 35 Cr, 2 % frit Si og 1 % SiC, medens den resterende del var silicium-nitrid.The polycrystalline silicon nitride substrate was in the form of a disc which in Examples 16 and 17 had a thickness of approx. 3.18 mm 30 and in Examples 19 and 20 a thickness of approx. 2.54 mm. The substrate was a commercially available hot-pressed material with a density above 99%, ie. that it was almost 100% dense, and comprised as a percentage by weight of the hot pressed silicon nitride body, ½% NlgO, ca. \% Fe, ca. 1/200% metallic impurities such as Ca, Al and 35 Cr, 2% free Si and 1% SiC while the remainder was silicon nitride.
Det anvendte udstyr var i det væsentlige magen til det, der er vist i figur 4 og 5.The equipment used was essentially similar to that shown in Figures 4 and 5.
DK 153536 BDK 153536 B
3939
Koldpresning af chargen udførtes ved stuetemperatur som vist I figur 4 ved indtil ca. 5,5 kilobar overtryk, og i den resulterende pressede samling af elementer udgjorde diamantkrystaltætheden over 75 volumenprocent af den komprimerede diamantmasse.Cold pressing of the batch was carried out at room temperature as shown in Figure 4 at up to approx. 5.5 kilobar overpressure, and in the resulting pressed assembly of elements, the diamond crystal density accounted for over 75% by volume of the compacted diamond mass.
5 Mængden af indtrængende legering var tilstrækkelig til fuld stændig at gennemtrænge den komprimerede diamantmasse og opnå kontakt med kontaktfladen af substratet samt fylde porerne i grænsefladen.The amount of penetrating alloy was sufficient to fully permeate the compacted diamond mass and make contact with the contact surface of the substrate as well as fill the pores in the interface.
Den indtrængende legering var en eutektikumholdig, silicium-10 holdig legering.The penetrating alloy was a eutectic-containing, silicon-containing alloy.
Den tæthed, der heri angives for det polykrystallinske silicium-nitridiegeme, der anvendtes som substrat, er den relative tæthed beregnet på grundlag af den teoretiske tæthed for siliciumnitrid, der er 3,18 g/cm^.The density indicated herein for the polycrystalline silicon nitride body used as a substrate is the relative density calculated on the basis of the theoretical density of silicon nitride which is 3.18 g / cm 2.
15 Frakturering af et kompositmateriale eller et poiykrystallinsk diamantlegeme udførtes med en hammer og kile.Fracturing of a composite material or polycrystalline diamond body was performed with a hammer and wedge.
Optisk undersøgelse udførtes ved omkring 100X forstørrelse under et mikroskop.Optical examination was performed at about 100X magnification under a microscope.
Polering udførtes på et støbejernsdimantpoleringsapparat.Polishing was done on a cast iron diamond polisher.
2S) Hvor en bestemt diamanttæthed er angivet som volumenprocent af det polykrystallinske diamantlegeme, blev denne bestemt ved stan-dardpunkttælleteknikken ved anvendelse af et mi krofotografi af en poieret flade forstørret 690 gange, og det overfladeareal, der undersøgtes, var tilstrækkeligt stort til at repræsentere hele legemets mik-rostruktur.2S) Where a particular diamond density is given as the volume percentage of the polycrystalline diamond body, this was determined by the standard point counting technique using a micrograph of a powdered surface enlarged 690 times and the surface area examined was sufficiently large to represent the entire the microstructure of the body.
Hvor diamanttætheden er angivet som et interval på fra over 70 voiumenprocent men under 90 volumenprocent af det polykrystallinske diamantlegeme, er dette interval baseret på erfaring, resultater fra tilsvarende forsøg, specielt forsøg, hvor det polykrystallinske dia-3Φ mantiegeme fremstilledes alene, samt det adhærerede polykrystallinske diamantlegemes udseende taget som et hele, og desuden på rumfanget af den afdækkede, rensede, polykrystallinske diamantiegemedel af kompositmaterialet sammenholdt med udgangsdiamantpuiverefs rumgang på den forudsætning, at mindre end 5 volumenprocent af diamantpul-3i6 veret var omdannet til en fase af frit ikke-diamantcarbon.Where the diamond density is indicated as an interval greater than 70% by volume but less than 90% by volume of the polycrystalline diamond body, this range is based on experience, results from similar experiments, especially experiments where the polycrystalline dia-3Φ mantie body was produced alone, and the adherent polycrystalline the appearance of the diamond body as a whole, and in addition to the volume of the uncovered, purified, polycrystalline diamond composition of the composite material compared to the volume of the starting diamond powder reef, provided that less than 5% by volume of the diamond powder was converted to a phase of free non-diamond.
i eksemplerne 15 og 16 var den indtrængende siliciumrige legering en legering af silicium og zirconium dannet in situ.in Examples 15 and 16, the penetrating silicon-rich alloy was an in situ silicon and zirconium alloy.
DK 153536 8 40 EKSEMPEL 15 [ dette eksempel fremstilledes et polykrystallinsk diamantlegeme uden substrat.EXAMPLE 15 [This example prepared a polycrystalline diamond body without substrate.
En støbt siliciumskive vejende 330 mg blev anbragt i en zirco-5 niumbøsning i et kopformet molybdænorgan.A 330 mg cast silicon wafer was placed in a zirconium sleeve in a cup-shaped molybdenum member.
Omkring 500 mg fint diamantpulver med partikelstørreiser fra 1 μηη til omkring 60 pm og med mindst 40 vægtprocent af diamantpulveret mindre end 10 pm blev pakket oven pi siliciumskiven. Et kopformet molybdænorgan med lidt større diameter end det oprindeligt anvendte 10 kopformede organ, dvs. det kopformede organ, der indeholder silicium og diamanter, anbragtes over åbningen i det oprindelige kopformede organ som et låg.About 500 mg of fine diamond powder with particle sizes ranging from 1 μηη to about 60 µm and with at least 40% by weight of the diamond powder less than 10 µm was packed on top of the silicon wafer. A cup-shaped molybdenum member having a slightly larger diameter than the originally used cup-shaped member, ie. the cup-shaped member containing silicon and diamonds is placed over the opening in the original cup-shaped member as a lid.
Den resulterende beholder blev derpå pakket i hexagonalt bor-nitridpulver, som vist i figur 4, og hele chargen blev presset ved 15 stuetemperatur, dvs. koldpresset, i en stilmatrice ved indtil ca.The resulting container was then packed in hexagonal boron nitride powder, as shown in Figure 4, and the entire batch was pressed at room temperature, ie. cold-pressed, in a style die at approx.
5,5 kilobar overtryk, således at beholderen og dens indhold udsattes for et i alt væsentligt isostatisk tryk, indtil trykket stabiliseredes, og herved tilvejebragtes et dimensionsmæssigt stabiliseret, formet, l alt væsentligt isostatisk system omfattende den pulveromsiuttede be-20 holder. Fra tidligere undersøgelser var det kendt, at diamantkrystal-tætheden i den fremkomne pressede samiing af elementer, dvs. i det fremkomne formede, I alt væsentligt isostatiske system omfattende den pulveromsiuttede beholder, var over 75 volumenprocent af den komprimerede diamantmasse. Den tilstedeværende mængde silicium 25 udgjorde ca. 80 volumenprocent af den komprimerede diamantmasse.5.5 kilobar overpressure, so that the container and its contents are subjected to substantially isostatic pressure until the pressure is stabilized, thereby providing a dimensionally stabilized, shaped, substantially isostatic system comprising the powder-enclosed container. From previous studies, it was known that the diamond crystal density in the resulting pressed jointing of elements, ie. in the resulting shaped, substantially isostatic system comprising the powder-enclosed container, was over 75% by volume of the compacted diamond mass. The amount of silicon present was approx. 80% by volume of the compacted diamond mass.
Den fremkomne pressede samling af elementer 21 omfattende den pulveromsiuttede beholder blev derpå varmpresset, dvs. den blev skubbet ind i en grafitform med samme diameterstørrelse som stilmatricen, som det er vist i figur 5, og stålmatricen blev anbragt i en 30 induktionsvarmeovn. Beholderens indre evakueredes, og en nitrogen-atmosfære blev indledt deri, idet varmeovnen blev evakueret til omkring 1.330 Pa (10 torr), inden den blev fyldt igen med nitrogen. Et tryk pi ca. 345 bar overtryk blev piført den pressede samling af elementer 21 og opretholdt på denne ved hjælp af grafitmatricen, som 35 derpå opvarmedes ved hjælp af induktionsvarmeovnen til en temperatur på 1.500°C i omkring 7 minutter- Efterhånden som samlingen af elementer opvarmedes steg også trykket til omkring 690 bar overtryk på grund af systemets ekspansion. Da temperaturen nåede omkring 1.350°C sank stemplet 23a, og trykket faldt til omkring 345 barThe resulting pressed assembly of elements 21 comprising the powder-enclosed container was then hot pressed, i.e. it was pushed into a graphite mold of the same diameter size as the style matrix as shown in Figure 5, and the steel matrix was placed in an induction heater. The interior of the vessel was evacuated and a nitrogen atmosphere was initiated therein, the evaporator being evacuated to about 1,330 Pa (10 torr) before being refilled with nitrogen. A pressure of approx. 345 bar of overpressure was throttled to the pressed assembly of elements 21 and maintained thereon by the graphite matrix, which was then heated by the induction heater to a temperature of 1,500 ° C for about 7 minutes. As the assembly of elements heated, the pressure also increased to about 690 bar overpressure due to system expansion. When the temperature reached about 1,350 ° C, the plunger 23a sank and the pressure dropped to about 345 bar
DK 153536 BDK 153536 B
41 overtryk, hvilket viste, at den siliciumrige zirconiumiegering var dannet, blevet flydende og var begyndt at trænge ind i den komprimerede diamantmasse. Trykket øgedes til maksimalvarmpresnings-trykket på 690 bar overtryk, og da temperaturen nåede 1.500°C, 5 biev samlingen af elementer holdt ved maksimalvarmpresningstempe-raturen på 1.500°C under et tryk på 690 bar overtryk i 1 minut for at sikre fuldstændig indtrængning af legeringen i de mindre kapillar-hulrum i den komprimerede diamantmasse. Energitilførslen blev derpå afbrudt, men der blev ikke påført yderligere tryk. Dette tilvejebrag-10 te et fast tryk ved høj temperatur, men nedsat tryk ved lav temperatur, og derved tilvejebragtes fyldestgørende geometrisk stabilitet, dvs. at det bevarede dimensionerne af den varmpressede samling af elementer, indtil denne var tilstrækkelig kold til håndtering.41 overpressure, showing that the silicon-rich zirconium alloy had formed, had become liquid, and had begun to penetrate the compressed diamond mass. The pressure was increased to the maximum heat compressive pressure of 690 bar overpressure, and as the temperature reached 1,500 ° C, 5 biev the assembly of elements maintained at the maximum hot compress temperature of 1,500 ° C under a pressure of 690 bar overpressure for 1 minute to ensure complete penetration of the alloy in the smaller capillary cavities of the compressed diamond mass. The energy supply was then interrupted, but no further pressure was applied. This provided a fixed pressure at high temperature but reduced pressure at low temperature, thereby providing adequate geometric stability, i.e. that it retained the dimensions of the hot pressed assembly of elements until it was sufficiently cold to handle.
Det resulterende polykrystallinske diamantlegeme blev blotlagt 15 ved at slibe og sandblæse beholdermetailet væk, dvs. det kopformede molybdænorgan og zirconiumbøsningen samt overskud af silicium på legemets yderside og flader.The resulting polycrystalline diamond body was exposed by grinding and sandblasting the container metal away, i.e. the cup-shaped molybdenum member and the zirconium sleeve as well as excess silicon on the outside and surfaces of the body.
Det resulterende polykrystallinske integraldiamantlegme havde skiveform og var ca. 2,921 mm tykt. Det syntes at være velgennem- 2C trængt og -bundet.The resulting polycrystalline integral diamond body had disc shape and was approx. 2,921 mm thick. It seemed to be well-penetrated and bound.
Røntgendiffraktionsanaiyse af den rensede flade, hvorigennem legeringen var trængt, viste, at den indeholdt diamant, siliciumcarbid og frit silicium, og viste, at siliciumcarbidet og det frie silicium forekom i en mængde på mindst 2 volumenprocent af legemet. Røntgendif-25 · fraktionsanaiysen afslørede imidlertid ikke nogen fase af frit ikke-diamantcarbon.X-ray diffraction analysis of the cleaned surface through which the alloy penetrated showed that it contained diamond, silicon carbide and free silicon, and showed that the silicon carbide and free silicon were present in at least 2% by volume of the body. However, the X-ray diffraction analysis did not reveal any phase of free non-diamond carbon.
En undersøgelse af skivens tværsnits-brudflader viste, at frak-turen var transgranuiær snarere end intergranuiær, dvs. at den var fraktureret gennem diamantkornene snarere end langs korngræn-30 serne. Dette viste, at bindemediet var stærkt bindende, og at det var Sige så stærkt som selve diamantkornene eller krystallerne.An examination of the cross-sectional fracture surfaces of the disc revealed that the fracture was transgranuary rather than intergranuary, ie. that it was fractured through the diamond grains rather than along the grain boundaries. This showed that the binder was strongly binding and that it was as strong as the diamond grains or crystals themselves.
Undersøgelse af brudfiaderne viste, at de var porefri, og at bindemediet var ensartet fordelt igennem hele legemet.Examination of the fractures showed that they were pore-free and that the binder was uniformly distributed throughout the body.
Undersøgelse af de polerede tværsnitsflader viste ingen huiræk-35 ker dannet ved udtrækning af diamantfragmenter, hvilket viste den stærke binding deri og dets anvendelighed som slibemiddel.Examination of the polished cross-sectional surfaces showed no sheath rows formed by extraction of diamond fragments, showing the strong bonding therein and its utility as abrasive.
Diamantkrystailernes tæthed udgjorde omkring 81 volumenprocent af det polykrystallinske diamantlegeme.The density of the diamond crystals was about 81% by volume of the polycrystalline diamond body.
4242
DK 153S36BDK 153S36B
Et mikrofotograf! af den polerede overflade forstørret 690 gange viste en hvid fase. Røntgenspektralanalyse af denne fase viste, at den bestod af zirconium og silicium, hvilket viste, at denne fase var zirconiumsilicid.A photographer! of the polished surface enlarged 690 times showed a white phase. X-ray spectral analysis of this phase showed that it consisted of zirconium and silicon, showing that this phase was zirconium silicide.
5 EKSEMPEL 16 ! dette eksempel blev kompositmateriaiet fremstillet under anvendelse af varmpresset polykrystallinsk siliciumnitrid som substrat.EXAMPLE 16! in this example, the composite was prepared using hot pressed polycrystalline silicon nitride as a substrate.
En støbt siliciumskive vejende 142 mg blev anbragt i en zirconi-10 umbøsning i et kcpformet zirconiumorgan. 270 mg Diamantpulver, hvori 85 vægtprocent af diamanten, hvad angår størrelse, var på fra 53 μη til 62 pm, og 15 vægtprocent var omkring 5 pm store, blev pakket oven på siliciumskiven, hvorved der tilvejebragtes en pulvertykkelse på ca. 1,5 mm. I stedet for det metal kappelåg, der anvend-15 tes i eksempel 1, biev der anvendt varmpresset, polykrystallinsk si-liciumnitrid som prop, dvs. som proppen 14 som vist i figur 2.A cast silica wafer weighing 142 mg was placed in a zirconium sleeve in a cap-shaped zirconium member. 270 mg of Diamond Powder, in which 85% by weight of the diamond in size ranged from 53 µη to 62 µm and 15% by weight was about 5 µm in size, was packed on top of the silicon wafer to provide a powder thickness of about 50 µm. 1.5 mm. Instead of the metal cap used in Example 1, hot pressed, polycrystalline silicon nitride was used as a plug, ie. as the plug 14 as shown in Figure 2.
Det fremkomne tilproppede kopformede organ blev derpå pakket i hexagonalt bornitridpuiver, som det er vist i figur 4, og hele chargen blev koldpresset ved stuetemperatur på samme måde, som be-20 skrevet i eksempel 1, idet det tiiproppede kopformede organ og dets indhold udsattes for et i alt væsentligt isostatisk tryk, indtil trykket blev stabiliseret, og derved tilvejebragtes et dimensionsmæssigt stabiliseret, formet, i det væsentlige isostatisk system omfattende det pulveromsluttede, tilproppede, kopformede organ. Fra tidligere for-25 søg var det kendt, at diamantkrystaltætheden i den fremkomne pressede samling af elementer, dvs. i det fremkomne formede, i alt væsentligt isostatiske system bestående af det pulveromsluttede tilproppede, kopformede organ, var på over 75 volumenprocent af den komprimerede diamantmasse. Den fremkomne pressede samling af ele-30 mementer 21 omfattende det pulveromsluttede, tiiproppede, kopformede organ blev derpå varmpresset på samme måde, som beskrevet i eksempel 15 bortset fra de undtagelser, der er angivet i tabel 11.The resulting plugged cup-shaped member was then packed in hexagonal boron nitride powder, as shown in Figure 4, and the entire batch was cold-pressed at room temperature in the same manner as described in Example 1, exposing the tubular cup-shaped member and its contents to a substantially isostatic pressure until the pressure was stabilized, thereby providing a dimensionally stabilized, shaped, substantially isostatic system comprising the powder-enclosed, plugged cup-shaped member. From prior research, it was known that the diamond crystal density in the resulting pressed collection of elements, ie. in the resulting shaped, substantially isostatic system consisting of the powder-enclosed plugged cup-shaped member, was in excess of 75% by volume of the compacted diamond mass. The resulting pressed assembly of elements 21 comprising the powder-enclosed, cup-shaped cup-shaped member was then hot-pressed in the same manner as described in Example 15 except for the exceptions set forth in Table 11.
Det fremkomne kompositmateriale blev blotlagt ved at kappemetal og overskudssilicium på kompositmaterialets ydre overflade og flader 35 blev fjernet ved sandblæsning og slibning.The resulting composite was exposed by sheath metal and excess silicon on the outer surface and surfaces of the composite being removed by sandblasting and grinding.
Eksemplerne 15 og 16 er anført i tabel II. I eksempel 17, 19 og 20 i tabel II blev en støbt legering i form af en skive af den angivne sammensætning og tykkelse og med i det væsentlige samme diameter som det givne foringsrør anbragt i foringsrøret på bunden af detExamples 15 and 16 are listed in Table II. In Examples 17, 19 and 20 of Table II, a cast alloy in the form of a disc of the specified composition and thickness and having substantially the same diameter as the given casing was placed in the casing on the bottom of the casing.
DK 153536 BDK 153536 B
43 givne kopformede organ. Den givne mængde af diamantpulver blev pakket oven på skiven. Endelig blev det givne polykrystaliinske sili-ciumnitridsubstrat anbragt oven på diamantpulveret og dannede en prop i det kopformede organ som vist ved 14 i figur 2. Det frem-5 komne tilproppede kopformede organ blev derpå koldpresset og varm-presset på den måde, der er beskrevet i eksempel 2, bortset fra de undtagelser, der er angivet i tabel II. Det tilvejebragte komposit-materiale blev blotlagt på i det væsentlige samme måde som beskrevet i eksempel 16.43 given cup-shaped organ. The given amount of diamond powder was packed on top of the disc. Finally, the given polycrystalline silicon nitride substrate was placed on top of the diamond powder and formed a plug in the cup-shaped member as shown at 14 in Figure 2. The resulting plugged cup-shaped member was then cold-pressed and hot-pressed in the manner described. in Example 2, except for the exceptions listed in Table II. The composite material obtained was exposed in substantially the same manner as described in Example 16.
10 De resulterende rensede integralkompositmaterialelegemer ifølge eksempel 16, 17, 19 og 20 havde form som i alt væsentligt ensartede skiver, som i eksempel 16 og 17 var ca. 4,7 mm tyk og i eksemplerne 19 og 20 ca. 3,8 mm.The resulting purified integral composite material bodies of Examples 16, 17, 19 and 20 took the form of substantially uniform wafers, which in Examples 16 and 17 were approx. 4.7 mm thick and in Examples 19 and 20 approx. 3.8 mm.
I eksempel 18 blev der fremstillet et polykrystallinsk diamant-15 legeme, men der anvendtes ingen metallisk beholder, intet foringsrør eller substrat, men apparaturet, der anvendtes, var i det væsentlige magen tii det, der er vist i figur 4 og 5. Til gennemførelse af eksempel 18 blev det hexagonale bornitridpulver pakket i matricen I figur 4, og en cylinder, der anvendtes som form, blev presset ind i 20 pulveret. Cylinderen var fremstillet af hårdtmetal og var omkring 8,9 mm i diameter og 6,4 mm i tykkelse. Cylinderens akse flugtede stort set med matricens centerakse.In Example 18, a polycrystalline diamond body was made, but no metallic container, casing or substrate was used, but the apparatus used was substantially similar to that shown in Figures 4 and 5. For implementation of Example 18, the hexagonal boron nitride powder was packed in the matrix of Figure 4 and a cylinder used as a mold was pressed into the powder. The cylinder was made of cemented carbide and was about 8.9 mm in diameter and 6.4 mm in thickness. The axis of the cylinder was largely flush with the center axis of the matrix.
Efter at cylinderen var indført i pulveret blev en yderligere mængde hexagonalt bornitridpulver anbragt i matricen, således at det 25 dækkede cylinderen fuldstændig, og den derved fremkomne pulveromsluttede cylinder blev presset ved stuetemperatur under et tryk på 3,5 kilobar overtryk. Stemplet 23a blev derpå trukket tilbage, og stemplet 23 anvendtes tii at skubbe den tilvejebragte pressede, pulveromsluttede cylinder delvis ud af matricen.After the cylinder was introduced into the powder, an additional amount of hexagonal boron nitride powder was placed in the matrix so that it completely covered the cylinder and the resulting powder-enclosed cylinder was pressed at room temperature under a pressure of 3.5 kilobars overpressure. The plunger 23a was then retracted and the plunger 23 was used to push the provided pressed powder-enclosed cylinder partially out of the die.
30 Den blottede del af det pressede pulver blev fjernet og efterlod derved cylinderen delvis blottet. Cylinderen blev derpå fjernet og efterlod den hulhed, som den havde udpresset deri. I eksempel 18 blev en støbt legeringsskive af given sammensætning og tykkelse med en diameter, som i alt væsentligt var lig hulhedens indre diameter, 35 anbragt i bunden af hulheden. Et lag diamantpulver af given størrelse, mængde og tykkelse blev pakket oven på legeringsskiven.The exposed portion of the pressed powder was removed, leaving the cylinder partially exposed. The cylinder was then removed leaving the cavity which it had extruded therein. In Example 18, a cast alloy disc of given composition and thickness substantially equal to the inner diameter of the cavity was placed at the bottom of the cavity. A layer of diamond powder of given size, quantity and thickness was packed on top of the alloy disc.
En skive af varmpresset, hexagonalt bornitridpulver med omkring samme diameter som hulhedens indre diameter blev anbragt i hulheden oven på diamantpulveret som en prop for at sikre, at overA disc of hot pressed hexagonal boron nitride powder of about the same diameter as the inner diameter of the cavity was placed in the cavity on top of the diamond powder as a plug to ensure that over
DK 153536BDK 153536B
44 fladen af det resulterende polykrystallinske diamantlegeme ville blive plan.The surface of the resulting polycrystalline diamond body would become flat.
Hele massen blev derpå skubbet ind i matricens center ved hjælp af stemplet 23a, som derpå blev trukket tilbage. En yderligere 5 mængde hexagonalt bornitridpulver blev anbragt i matricen til dækning af den varmpressede skive af hexagonalt bornitrid, hvilket medførte at hulheden og indholdet blev omsluttet af hexagonalt bornitrid, som det er vist i figur 4. Den tilvejebragte charge blev derpå presset ved stuetemperatur, dvs. koidpresset, i stlimatricen under 10 et tryk på 5,5 kilobar overtryk, som det er vist i figur 4, idet hulheden og dens indhold udsattes for et i alt væsentligt isostatisk tryk, indtil trykket stabiliseredes, hvorved der tilvejebragtes et dimensionsmæssigt stabiliseret, formet, i det væsentlige isostatisk system omfattende den pulveromsluttede hulhed og indholdet. Fra tidligere 15 undersøgelser var det kendt, at i det tilvejebragte formede, i alt væsentligt isostatiske system omfattende den puiveromsluttede hulhed og indholdet udgjorde diamantkrystaltætheden over 75 volumenprocent af den komprimerede diamantmasse.The entire mass was then pushed into the center of the die by means of the plunger 23a, which was then withdrawn. An additional 5 amount of hexagonal boron nitride powder was placed in the matrix to cover the hot pressed disc of hexagonal boron nitride, causing the cavity and contents to be enclosed by hexagonal boron nitride, as shown in Figure 4. The charge obtained was then pressed at room temperature, i.e. . the coil press, in the die matrix under 10, a pressure of 5.5 kilobar overpressure, as shown in Figure 4, subjecting the cavity and its contents to a substantially isostatic pressure until the pressure stabilized, thereby providing a dimensionally stabilized, shaped, essentially isostatic system comprising the powder-enclosed cavity and contents. From previous 15 studies, it was known that in the provided, substantially isostatic system comprising the powder-enclosed cavity and the content, the diamond crystal density exceeded 75% by volume of the compressed diamond mass.
Den tilvejebragte pressede samling af elementer omfattende den 20 pulveromsluttede hulhed og indholdet, som i alt væsentligt var identisk med 21 bortset fra, at der ikke blev anvendt nogen metaibe-holder, blev derpå varmpresset, nemlig ved at den blev skubbet ind i en grafitform med samme diameterstørrelse som stålmatricen, som vist i figur 5, og anbragt i en induktionsvarmeovn. Hulhedens indre 25 evakueredes, og en nitrogenatmosfære blev indledt deri, idet varmeovnen blev evakueret til ca. 1.330 Pa (10 torr), inden den igen blev fyldt med flydende, tør nitrogen. Et tryk på omkring 345 bar overtryk blev påført den pressede samling af elementer og oprethold på denne ved hjælp af grafitmatricen, som derpå opvarmedes af in-30 duktionsvarmeovnen med en hastighed, som tilvejebragte den givne maksimal varmpresningstemperatur i løbet af ca. 5 til 7 minutter. Efterhånden som samlingen af elementer opvarmedes, steg trykket til det givne maksimalvarmpresningstryk på grund af hele systemets ekspansion.The pressed assembly of elements comprising the 20 powder-encased cavity and contents substantially identical to 21 except that no meta container was used was then hot-pressed, namely by being pushed into a graphite form with the same diameter size as the steel matrix, as shown in Figure 5, and housed in an induction heater. The interior of the cavity was evacuated and a nitrogen atmosphere was initiated therein, evacuating the heater to approx. 1.330 Pa (10 torr) before being filled again with liquid dry nitrogen. A pressure of about 345 bar overpressure was applied to the pressed assembly of elements and maintained thereon by the graphite matrix, which was then heated by the induction heater at a rate which provided the given maximum hot pressing temperature over about 30 minutes. 5 to 7 minutes. As the assembly of elements warmed, the pressure increased to the given maximum heat compressive pressure due to the entire system expansion.
35 Ved den givne temperatur, ved hvilken indtrængningen begyndte eller skred frem, sank stemplet, og trykket faldt til omkring 345 bar overtryk, hvilket viste, at den givne legering var smeltet og blevet flydende og var trængt ind i diamantmassen. Trykket hævedes derpå igen til den givne maksimal varmpresningsværdi, 4535 At the given temperature at which penetration began or progressed, the piston sank and the pressure dropped to about 345 bar overpressure, indicating that the given alloy had melted and become liquid and had penetrated into the diamond mass. The pressure was then raised again to the given maximum hot pressing value, 45
DK 153536 BDK 153536 B
på hvilken det blev holdt ved den givne maksimalvarmpresningstem-peratur i 1 minut tii sikring af fuldstændig indtrængning af legeringen i de mindre kapillarhulrum i den komprimerede diamantmasse. Energitilførslen blev derpå afbrudt, men der blev ikke påført 5 yderligere tryk. Dette tilvejebragte et fast tryk ved høj temperatur, men nedsat tryk ved lavere temperatur, hvorved der tilvejebragtes fyldestgørende geometrisk stabilitet. Det resulterende polykrystal-linske diamantlegeme blev blotlagt ved stuetemperatur. Proppen bandt ikke til diamantlegemet. Efter fjernelse af overfladeskaller bestående 10 af hexagonalt bornitridpulver og overskudslegering ved slibning og sandblæsning havde det tilvejebragte polykrystallinske integraldia-mantiegeme form som en skive med den angivne tykkelse.at which it was kept at the given maximum hot pressing temperature for 1 minute to ensure complete penetration of the alloy into the smaller capillary cavities of the compressed diamond mass. The energy supply was then discontinued, but no further pressure was applied. This provided a fixed pressure at high temperature, but lower pressure at lower temperature, thereby providing adequate geometric stability. The resulting polycrystalline diamond body was exposed at room temperature. The plug did not attach to the diamond body. After removal of surface shells consisting of hexagonal boron nitride powder and excess alloy by grinding and sandblasting, the polycrystalline integral diamond body provided had a slab having the specified thickness.
I tabel II er angivet den varmpresningstemperatur, ved hvilken indtrængningen begynder, den temperatur, ved hvilken legeringen 15 bi iver flydende og fortsætter gennemtrængningen af den komprime rede diamantmasse. Den givne maksimal varmpresningstemperatur og maksimalvarmpresnmgstrykket blev opretholdt samtidigt i 1 minut til sikring af fuldstændig indtrængning i de mindre kapiilarhulrum i den komprimerede diamantkrystalmasse.Table II lists the hot pressing temperature at which the penetration begins, the temperature at which the alloy 15 is flowing and the penetration of the compacted diamond mass continues. The given maximum hot pressing temperature and maximum hot pressing pressure were maintained simultaneously for 1 minute to ensure complete penetration into the smaller capillary cavities of the compressed diamond crystal mass.
20 25 30 3520 25 30 35
„ DK 153536 B"DK 153536 B
4646
Il I I IIl I I I
•Η Ρ d P P• Η Ρ d P P
tl U U I ft o utl U U I ft o u
+» ϋ *H P «8 «Ο P P+ »Ϋ * H P« 8 «Ο P P
O P P X Ρ P PO P P X Ρ P P
S® Ρ Ρ © Μ Ρ PS® Ρ Ρ © Μ Ρ P
S' CO (0 S P (JO (0 o δ «ΗS 'CO (0 S P (JO (0 o δ «Η
4-1 £ P Ρ P d Ρ P£ 4-1 P Ρ P d Ρ P
ft ® © © © Vi © Vft ® © © © Vi © V
O (0 W (0 O to WO (0 W (0 O to W)
P ft ,κ ti ta to ta ^ tn to r8 o <e oc © © 0) 4) c; p p - ¢0 c<5 p 'd P Ό UP P Ό P Ό P ft P V< P ft P ft P 0< H ft P ft ΉP ft, κ ti ta to ta ^ tn to r8 o <e oc © © 0) 4) c; p p - ¢ 0 c <5 p 'd P Ό UP P Ό P Ό P ft P V <P ft P ft P 0 <H ft P ft Ή
ca © o S P EP S rt ♦ E P SUca © o S P EP S rt ♦ E P SU
p « p j g p p up u d u u p p p S P d O O « Ρ *8 Ρ <8 O © <8 Ρ (8 Ρ u ti η S η > d > C > oo > > d > dp «p j g p p up u d u u p p p S P d O O« Ρ * 8 Ρ <8 O © <8 Ρ (8 Ρ u ti η S η> d> C> oo>> d> d
Il II II II IIIl II II II II
OP PP OP o o o oOP PP OP o o o o
S N NN S N SS SSS N NN S N SS SS
p »o ρ*0 P *Ό P T3 Ρ Ό U © © © © 0)0) 1} V © ©p »o ρ * 0 P * Ό P T3 Ρ Ό U © © © © © 0) 0) 1} V © ©
oea is SS EB EBoea is SS EB EB
IOU 0CU 0CU 0C U OOP 00 ppoddoddoddd oddoddIOU 0CU 0CU 0C U OOP 00 ppoddoddoddd oddodd
• flJQPiBPPWPPeoP© 4-i (8 P 4-1 <8 P• flJQPiBPPWPPeoP © 4-i (8 P 4-1 <8 P
PPj^ft OOPftOOPftOOPOO ft 06 P ft 00 PPPj ^ ft OOPftOOPftOOPOO ft 06 P ft 00 P
>OOOPOOPOOPOd β o o n o> OOOPOOPOOPOd β o o n o
W g ,Q fcrf O P &rf O Ρ ϊί O P )-t ΰί O Ή ^ O *PW g, Q fcrf O P & rf O Ρ ϊί O P) -t ΰί O Ή ^ O * P
00 I /> P Jrf g i—I c p p w d P o r- 0) tU Ο I 04 o o\ p > to in vo <n p iH *-4 - - - I 1 g JJ © rH rH 1-1 O ft ^00 I /> P Jrf g i — I c p p w d P o r- 0) tU Ο I 04 o o \ p> to in vo <n p iH * -4 - - - I 1 g JJ © rH rH 1-1 O ft ^
PP
ej _ > 0) o l-ι *o ^ o d 60 M o o o o r- oi & d E o ^ σ\ in cm P g ' in CM Ol 04 04 d s 8 ‘Hl g 00 «3 sej _> 0) o l-ι * o ^ o d 60 M o o o o r- oi & d E o ^ σ \ in cm P g 'in CM Ol 04 04 d s 8' Hl g 00 «3 s
§ d P =L I§ d P = L I
•HP O rH g Q P > 3.• HP O rH g Q P> 3.
M .id OJ - S P Ή P BPS _ * O Ό IL E >M .id OJ - S P Ή P BPS _ * O Ό IL E>
P4 d cg 3. Λ PP4 d cg 3. Λ P
Cd 4-1 P vO O 3* ooCd 4-1 P vO O 3 * oo
PQ <8 S I VO P WPQ <8 S I VO P W
< P S S I M > Η OP3.3.P rH rH S W _ © > <c cn m 3. > o w ,c > in i · * · *-h cn rH tfl W (fl Λ Γ-» O E E 3^ 3** .M -Si M *4 P 00<PSSIM> Η OP3.3.P rH rH SW _ ©> <c cn m 3.> ow, c> in i · * · * -h cn rH tfl W (fl Λ Γ- »OEE 3 ^ 3 ** .M -Si M * 4 P 00
U /-n 3. P 3. Ρ P O O O P OU / -n 3. P 3. Ρ P O O O P O
p E o oo o oo oo ·οΰιΗ- β- α \o « p « « p p p S -η gp E o oo o oo oo · οΰιΗ- β- α \ o «p« «p p p S -η g
pw|>>> > P 3. Epw | >>>> P 3. E
casts e a ε os.casts e a ε os.
3. o d cm in o o o oftpin p -σ © oo p ca ca ca r* o i i oo3. o d cm in o o o oftpin p -σ © oo p ca ca ca r * o i i oo
PP
P o P ta fl p OOP. CM vO vO 04P o P to fl p OOP. CM vO vO 04
P Λ S vO P p vOP Λ S vO P p vO
P .irf E i r- O O r- E >» w - - -» - i OP ΟΡΡΟ od 4P .irf E i r- O O r- E> »w - - -» - i OP ΟΡΡΟ od 4
d •Hd • H
P OP O
o *o Po * o P
fi( 60 M O 04 O O CO Pfi (60 M O 04 O O CO P
odS<o vo p ro cm pjg'—'co t-η cM 04 p podS <o vo p ro cm pjg '-' co t-η cM 04 p p
OISLAND
Ό *H P P ·Η P *rl p OΌ * H P P · Η P * rl p O
d w u CA H W H CAOrf c 3 3 be εε sees N 3« ·Η *f4 o o o o o o o od w u CA H W H CAOrf c 3 3 be εε sees N 3 «· Η * f4 o o o o o o o o o
p PU PU PP PP PP PPp PU PU PP PP PP PP
P S.AP .O P (8(8 (8(8 (8(8 (0<8P S.AP .O P (8) 8 (8) 8 (8 (8 (0 <8)
TJ O «. P ** PTJ O «. P ** P
d p p p PP m tn vo <f vo <r mtn i-η < ca ca cota oop oop oop a\ to jrf m \o o* oo σι o N Ρ p Ρ Ρ P 04d p p p PP m tn vo <f vo <r mtn i-η <ca ca cota open open open a \ to jrf m \ o o * oo σι o N Ρ p Ρ Ρ P 04
Γ\ \ S Si--7 1--? / r-SΓ \ \ S Si - 7 1--? / r-S
47 L/i\ ΙΟΟΟύΟΟ47 L / i \ ΙΟΟΟύΟΟ
•H• H
/-\ W /"N/ - \ W / "N
« cj 4) i *o oc a oo«Cj 4) i * o oc a oo
e QJ 0) «3 0 4i Oe QJ 0) «3 0 4i O
43 CO 00 r-4 0043 CO 00 r-4 00
« >» 4) *W Q <L> U«>» 4) * W Q <L> U
Jl Η H *rt r-4 *tHJl Η H * rt r-4 * tH
Η «β +J +4 W COΒ «β + J + 4 W CO
+j d a qj «p CJ CO Q 03 * Cfi OJ d S d *4 d +4 S a) « gj d q d+ j d a qj «p CJ CO Q 03 * Cfi OJ d S d * 4 d +4 S a)« gj d q d
« 00 ·Η U CO Å C] (I«00 · Η U CO Å C] (I
*h *j ό a a ·η* h * j ό a a · η
*Od +4 I« <0 *4H « CO* Od +4 I «<0 * 4H« CO
·©. «W 41 ej *H to *r4 »H· ©. «W 41 ej * H to * r4» H
AS Λ β w Q i IWQHI IAS Λ β w Q i IWQHI I
03 d Ή03 d Ή
rHrh
r-4 (0 00 4J *rt W H Ofr-4 (0 00 4J * rt W H Of
Sh +4 W rH Ι^'ί O COSh +4 W rH Ι ^ 'ί O CO
udr-ι^Ν cm σ\ cm r-udr-ι ^ Ν cm σ \ cm r-
J4 1) (I g O' m com 04 rHJ4 1) (I g O 'm com 04 rH
>, *J AS g - * * » ·>, * J AS g - * * »·
H iJ ^ W N rH rH rH rH rHH iJ ^ W N rH rH rH rH rH
o a ►>o and ►>
0h O 4J0h O 4J
00 d cj00 d cj
•Η O• Η O
U *9. ** JJ A i) Jj iH 00 Ή 00 00 Sh /-> ODTI« W ii **U * 9. ** JJ A i) Jj iH 00 Ή 00 00 Sh / -> ODTI «W ii **
Ή H U >/-s>A-sd 0CΉ H U> / - s> A-sd 0C
« Μ AS «Η ««Μ AS« Η «
4JC3>OWOWÆ W4JC3> OWOWÆ W
AS Ό lH A >M r .r4 TJAS Ό lH A> M r .r4 TJ
□ ϋΰσ>·υσ>·Ρ(Η d /-X 3 V +4 » AS I Αί V w□ ϋΰσ> · υσ> · Ρ (Η d / -X 3 V + 4 »AS I Αί V w
44 ft 00 <9 ·Η 4> ·Η 4» *iH O44 ft 00 <9 · Η 4> · Η 4 »* iH O
<0 4i q KW-PM-PW 4H<0 4i q KW-PM-PW 4H
a) 4J w cj'—'d'—'d'·—' '—/ •U r-4 U jJ 43 4) u (U4J4JO o mo oo O SO-HVO r\0 r CO CO CO ma) 4J w cj '-' d '-' d '· -' '- / • U r-4 U jJ 43 4) u (U4J4JO o mo oo O SO-HVO r \ 0 r CO CO CO m
*W WCSrHCOlHOOMCOCO (Ο N* W WCSrHCOlHOOMCOCO (Ο N
W ·Η / rHNJf-HCsJrHrH i-HrHW · Η / rHNJf-HCsJrHrH i-HrH
WW
hH · hi ^ w »H 4»hH · hi ^ w »H 4»
PQ 3 +JPQ 3 + J
< *4 rH<* 4 rH
H tO « m a o m oo mo 4) *h o o cm m -Hf CM-d* ftwom m <fm mmH tO «m a o m oo mo 4) * h o o cm m -Hf CM-d * ftwom m <fm mm
B rH rH rH rH rH rHB rH rH rH rH rH rH
<U (0 *4 as 03 00 oo d d<U (0 * 4 if 03 00 oo d d
*r4 *iH* r4 * iH
d d Μ oo o; q k 8j η ο Ο O in CM o ftUCJm o \£>Ht CM <f w O co co cm co cocod d Μ oo o; q k 8j η ο Ο O in CM o ftUCJm o \ £> Ht CM <f w O co co cm cm co coco
Η Ό h' rH pH pH pH rH rHΗ Ό h 'rH pH pH pH rH rH
<0 d l<0 d l
> M AS> M AS
& ^ hJ 4J Ai &0 « ^& ^ hJ 4J Ai & 0 «^
•r4 00 H• r4 00 H
pH fl JJpH fl JJ
4J *rl In <r CO <rco COCO4J * rl In <r CO <rco COCO
fl £ OJ ~ * *· P. pfl £ OJ ~ * * · P. p
43 W > CT\ \D CO 4) \D 'O43 W> CT \ \ D CO 4) \ D 'O
lH 43 O CO σ\ ΙΛ W ON ONlH 43 O CO σ \ ΙΛ W ON ON
4-> Μ so 00 r* co CO 00 * ? (Q *w> >4-> Μ so 00 r * co CO 00 *? (Q * w>>
WW
jfi m vo r»· co σ\ ojfi m vo r »· co σ \ o
Pl3 rH rH rH rH rH CMPl3 rH rH rH rH rH CM
48 n Uf 1 Π 7 r 7 < Q υ>\ f OOOjO d48 n Uf 1 Π 7 r 7 <Q υ> \ f OOOjO d
Eksemplerne 16, 17, 19 og 20 Illustrerer fremstillingen af det foreliggende kompositmateriale. i disse eksempler si hvert komposit-materiale ved optisk undersøgelse ud til at være en kontinuert struktur, men grænselinien mellem diamantlegemet og substratet kunne 5 påvises ved kornstørrelsesforskellen og farveforskellen mellem diamantlegemet og substratet, nemlig ved at siliciumnitridsubstratet var af en mørkere farve end det grå diamantlegeme. Den ydre overflade af hvert adhæreret polykrystallinsk diamantiegeme så ud til at være velgennemtrængt af bindemedium, der så ud til at være jævnt fordelt.Examples 16, 17, 19 and 20 Illustrate the preparation of the present composite material. in these examples, each composite material, by optical examination, appears to be a continuous structure, but the boundary line between the diamond body and the substrate could be detected by the grain size difference and the color difference between the diamond body and the substrate, namely because the silicon nitride substrate was of a darker color than the gray diamond body. . The outer surface of each adhered polycrystalline diamond body appeared to be well penetrated by binder which appeared to be evenly distributed.
10 Diamanterne så ud til at være velbundet til hinanden.10 The diamonds appeared to be well-bonded.
Det adhærerede polykrystaliinske diamantlegeme i kompositmate-rialerne iføige eksemplerne 17 og 18 havde en diamanttæthed på over 70 volumenprocent men under 90 volumenprocent af det polykrystal-linske iegemes rumfang.The adhered polycrystalline diamond body in the composite materials of Examples 17 and 18 had a diamond density greater than 70% by volume but less than 90% by volume of the polycrystalline laminate volume.
15 Diamantfiaden af kompositmateriaiet i eksempel 16 blev poleret og optisk undersøgelse af den polerede flade viste ingen hulrækker dannet ved udtrækning af diamantfragmenter, hvilket viser den stærke binding deri. Diamantkrystaitætheden var på omkring 71 volumenprocent af det adhærerede polykrystaliinske diamantlegeme i eksempel 20 16.The diamond face of the composite material of Example 16 was polished and optical examination of the polished surface showed no rows of holes formed by extraction of diamond fragments, showing the strong bond therein. The diamond crystal density was about 71% by volume of the adhered polycrystalline diamond body of Example 20 16.
I eksempel 18 var det polykrystaliinske diamantiegeme en velgennemtrængt, velbundet, hård skive. Diamantlegemet blev delt praktisk talt midt over. Optisk undersøgelse af tværsnitsbrudfladerne viste, at de var porefri, at bindemediet var jævnt fordelt 25 igennem hele legemet, og at bruddet var transgranulært snarere end intergranulært, dvs. det var brudt gennem diamantkornene snarere end langs korngrænserne. Dette viser, at bindemediet var stærkt vedhængende og var lige så stærkt som selve diamantkornene eller krystallerne.In Example 18, the polycrystalline diamond body was a well-penetrated, well-bonded, hard disk. The diamond body was split practically in the middle above. Optical examination of the cross-sectional fracture surfaces revealed that they were pore-free, that the binder was evenly distributed throughout the body, and that the fracture was transgranular rather than intergranular, ie. it was broken through the diamond grains rather than along the grain boundaries. This shows that the binder was strongly adherent and was as strong as the diamond grains or crystals themselves.
30 En brudflade af skiven i eksempel 18 poleredes og undersøgelse af den polerede flade viste ingen huirækker dannet ved udtrækning af diamantfragmenter, hvilket viser den stærke binding deri. I eksempel 18 udgjorde diamantkrystaitætheden omkring 80 volumenprocent af det polykrystaliinske diamantiegeme.A fracture surface of the disc of Example 18 was polished and examination of the polished surface showed no rows of creases formed by extraction of diamond fragments, showing the strong bond therein. In Example 18, the diamond crystal density was about 80% by volume of the polycrystalline diamond body.
35 EKSEMPEL 21EXAMPLE 21
Det i eksempel 17 fremstillede kompositmateriale blev bedømt som skæreværktøj. Den blottede flade af det polykrystaliinske diamantiegeme i kompositmateriaiet blev slebet med et diamantslibehjulThe composite material of Example 17 was evaluated as a cutting tool. The exposed surface of the polycrystalline diamond body in the composite material was ground with a diamond grinding wheel
DK 153536 BDK 153536 B
49 for at afglatte den og tilvejebringe en skarp skærende kant. Substratet af kompositmaterialet blev derpå fastspændt i en værktøjsholder.49 to smooth it and provide a sharp cutting edge. The substrate of the composite was then clamped in a tool holder.
En del af den skærende kant blev vurderet på en drejebænk, 5 som roterede en Jackfork sandsten, ved en tilspænding på 0,13 mm pr. omdrejning og en skæredybde på 0,51 mm.Part of the cutting edge was assessed on a lathe, 5 which rotated a Jackfork sandstone, at a feed rate of 0.13 mm per second. rotation and a cutting depth of 0.51 mm.
Ved skærehastigheden 47,8 cm/s blev slidhastigheden bestemt til -6 3 0,060 X 10 cm /s. En anden del af den skærende kant vurderedes *6 ved skærehastigheden 132 cm/s og sliddet bestemtes til 0,137 X 10 10 cm /s.At the cutting speed of 47.8 cm / s, the wear rate was determined to be -6 3 0.060 x 10 cm / s. Another portion of the cutting edge was rated * 6 at the cutting speed 132 cm / s and the wear was determined to be 0.137 x 10 10 cm / s.
Kompositmaterialet fjernedes fra værktøjsholderen, og en undersøgelse af grænsefladen mellem diamantlegemet og substratet viste, at den ikke var blevet påvirket af disse spåntagende bearbejdnings-afprøvninger.The composite material was removed from the tool holder, and an examination of the interface between the diamond body and the substrate revealed that it had not been affected by these machining machining tests.
15 EKSEMPEL 22EXAMPLE 22
Den i dette eksempel benyttede fremgangsmåde var magen til den, der er beskrevet i eksempel 21 bortset fra, at der blev anvendt det i eksempel 19 fremstillede kompositmateriale.The method used in this example was similar to that described in Example 21 except that the composite material prepared in Example 19 was used.
20 En del af den skærende kant udviklede ved skærehastigheden 50,8 cm/s i løbet af 2 minutters skæretid meget små siidmærker, hvilket viser dens udmærkede siidbestandighed, men den anvendte Jackfork sandsten havde en dyb indskæring, og da kompositmaterialet var skørt, brækkede et lille stykke af den skærende kant af.20 A portion of the cutting edge developed at 50.8 cm / s at the cutting speed very small seam marks at 2 minutes cutting time, showing its excellent seam resistance, but the Jackfork sandstone used had a deep cut, and when the composite material was brittle, a small break piece of the cutting edge off.
25 Undersøgelse af kompositmaterialet efter skæringen viste, at grænsefladen mellem det polykrystallinske diamantlegeme og silicium-nitridsubstratet ikke blev påvirket af disse ved spåntagende bearbejdningsforsøg.Examination of the composite material after the cut showed that the interface between the polycrystalline diamond body and the silicon nitride substrate was not affected by these in machining experiments.
30 EKSEMPEL 23EXAMPLE 23
Det i eksempel 20 fremstillede kompositmateriale blev brudt praktisk taget midt over, og tværsnitsbrudfladerne undersøgtes optisk. Undersøgelse af brudfladerne viste, at det polykrystallinske diamantlegeme og grænsefladen i kompositmaterialet var porefri, at binde-35 mediet var fordelt ensartet igennem hele legemet, og at bruddet var transgranulært snarere end intergranulært, dvs. at bruddet skete gennem diamantkornene snarere end langs korngrænserne. Dette viser, at bindemediet var stærkt vedhængende og var lige så stærkt som seive diamantkornene eller krystallerne. Desuden kunne der ikke på-The composite material of Example 20 was fractured practically midway and the cross-sectional fracture surfaces were optically examined. Examination of the fracture surfaces showed that the polycrystalline diamond body and the interface of the composite were pore-free, that the bonding medium was uniformly distributed throughout the body, and that the fracture was transgranular rather than intergranular, ie. that the fracture occurred through the diamond grains rather than along the grain boundaries. This shows that the binder was strongly adherent and was as strong as the seive diamond grains or crystals. Furthermore, no
DK 153536 BDK 153536 B
50 vises noget synligt mellemlag eller synlige defekter i grænsefladen mellem siliciumnitridsubstratet og det adhærerede polykrystallinske diamantiag. Kompositmaterialets brudflade si ud til at have en kontinuert struktur. Dog muliggjorde kornstørrelsesforskelle mellem dia-5 manterne og det stærkt adhærerede substrat samt substratets mørkere farve en erkendelse af en grænselinie mellem substratet og det adhærerede polykrystallinske diamantlegeme.50, some visible interlayer or visible defects appear in the interface between the silicon nitride substrate and the adhered polycrystalline diamond layer. The fracture surface of the composite material appears to have a continuous structure. However, grain size differences between the diamonds and the strongly adhered substrate, as well as the darker color of the substrate, enabled recognition of a boundary line between the substrate and the adhered polycrystalline diamond body.
Kompositmaterialets brudtværsnit poleredes. Optisk undersøgelse af den polerede tværsnitsflade, der er vist i figur 7, viste ingen 10 hul rækker dannet ved diamantfragmentudtrækning, hvilke viste den stærke binding deri. Det polykrystallinske diamantlegeme er vist i den øvre del og substratet i den nedre del af figur 7, og grænsefladen derimellem kan skelnes på grund af forskellen med hensyn til krystalstruktur og farve mellem diamantlegemet og substratet. Dia-15 mantkrystaltætheden var på omkring 75 volumenprocent af det polykrystallinske diamantlegeme i figur 7.The fracture cross-section of the composite was polished. Optical examination of the polished cross-sectional surface shown in Figure 7 showed no 10 hollow rows formed by diamond fragment extraction, which showed the strong bond therein. The polycrystalline diamond body is shown in the upper part and the substrate in the lower part of Figure 7, and the interface therebetween can be distinguished due to the difference in crystal structure and color between the diamond body and the substrate. The diamond crystal density was about 75% by volume of the polycrystalline diamond body in Figure 7.
EKSEMPEL 24EXAMPLE 24
De i eksemplerne 16, 17 og 19 fremstillede kompositmaterialer 20 blev delt praktisk taget midt over, og tværsnitsbrudfiaderne blev undersøgt optisk. Undersøgelse af brudfladerne viste, at det poiy-krystaliinske diamantiegeme og grænsefladen i hvert kompositmateriale var porefri, at bindemediet var fordelt jævnt igennem hele diamantlegemet, og at bruddet var transgranulært snarere end intergranulært, 25 dvs., at bruddene fandtes gennem diamantkornene snarere end langs korngrænserne. Dette viser, at bindemediet var stærkt vedhængende og var lige så stærk som selve diamntkornene eller krystallerne. Der kunne desuden ikke påvises noget synligt mellemlag eller synlige defekter i grænsefladen mellem siliciumnitridsubstratet 30 og det adhærerede polykrystallinske diamantlag. Brudfladen i hvert kompositmateriale si ud til at have en kontinuert struktur. Dog muliggjorde diamantkornstørrelsesforskellen mellem diamanterne og det stærkt adhærerede substrat samt substratets mørkere farve en erkendelse af grænselinien mellem substratet og det adhærerede poly-35 krystallinske diamantlegeme.The composite materials 20 produced in Examples 16, 17 and 19 were divided practically in the middle above and the cross-sectional fractures were examined optically. Examination of the fracture surfaces revealed that the poly-crystalline diamond body and interface of each composite were pore-free, that the binder was evenly distributed throughout the diamond body, and that the fracture was transgranular rather than intergranular, i.e., the fractures existed along the diamond rather than through the diamond. . This shows that the binder was strongly adherent and was as strong as the diamond grains or crystals themselves. In addition, no visible interlayer or visible defects could be detected in the interface between the silicon nitride substrate 30 and the adhered polycrystalline diamond layer. The fracture surface of each composite material appears to have a continuous structure. However, the diamond grain size difference between the diamonds and the strongly adhered substrate, as well as the darker color of the substrate, enabled recognition of the boundary line between the substrate and the adhered polycrystalline diamond body.
Brudfladen i kompositmaterialet i eksempel 19 poleredes. Undersøgelse af den polerede tværsnitsflade viste ingen hulrækker dannet ved diamantfragmentudtrækning, hvilket viser den stærke binding deri.The fracture surface of the composite material of Example 19 was polished. Examination of the polished cross-sectional surface showed no hole rows formed by diamond fragment extraction, showing the strong bond therein.
Et mi krofotografi af den polerede flade forstørret 690 X viste et 51A crochet photograph of the polished surface magnified 690 X showed a 51
ηκ i ς7 ς 7/ς Rηκ i ς7 ς 7 / ς R
t—- i ι Ο -3000 SZ5 mellemlag af bindemedium gennem grænsefladen. Skandering af et elektronmikroskopisk billede af den polerede flade forstørret 1000 X viste et mellemlag af bindemedium igennem grænsefladen, som havde en maksimaltykkelse på omkring 3 pm. Røntgenspektraianalyse af 5 bindemediet i mellemlaget og i det polykrystallinske diamantlegeme viste, at begge indeholdt de samme komponenter.t—- in ι Ο -3000 SZ5 intermediate layer of binder through the interface. Scanning an electron microscopic image of the polished surface magnified 1000 X showed an intermediate layer of binder through the interface which had a maximum thickness of about 3 µm. X-ray spectral analysis of the binder in the interlayer and in the polycrystalline diamond body showed that both contained the same components.
10 15 20 25 30 3510 15 20 25 30 35
Claims (14)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84444777A | 1977-10-21 | 1977-10-21 | |
US84444977A | 1977-10-21 | 1977-10-21 | |
US84444977 | 1977-10-21 | ||
US84444777 | 1977-10-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK469278A DK469278A (en) | 1979-04-22 |
DK153536B true DK153536B (en) | 1988-07-25 |
DK153536C DK153536C (en) | 1988-12-19 |
Family
ID=27126501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK469278A DK153536C (en) | 1977-10-21 | 1978-10-20 | COMPOSITION MATERIALS INCLUDING A POLYCRYSTALLIC DIAMOND BODY AND A SILICON CARBID OR SILICON NITRATE SUBSTANCE, AND A PROCEDURE FOR MANUFACTURING THE MATERIAL |
Country Status (15)
Country | Link |
---|---|
JP (1) | JPS5473811A (en) |
AT (1) | AT371400B (en) |
AU (1) | AU525777B2 (en) |
BR (1) | BR7806957A (en) |
CH (1) | CH647487A5 (en) |
DE (1) | DE2845834A1 (en) |
DK (1) | DK153536C (en) |
ES (1) | ES474394A1 (en) |
FR (1) | FR2414033A1 (en) |
GB (1) | GB2006733B (en) |
IE (1) | IE48038B1 (en) |
IL (1) | IL55719A0 (en) |
IT (1) | IT1099392B (en) |
NL (1) | NL186311C (en) |
SE (1) | SE445838B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57501027A (en) * | 1980-07-09 | 1982-06-10 | ||
WO1982000140A1 (en) * | 1980-07-09 | 1982-01-21 | Gen Electric | Silicon carbide composite and process for production |
US4453951A (en) * | 1980-07-09 | 1984-06-12 | General Electric Co. | Process for the production of silicone carbide composite |
JPS6059085B2 (en) * | 1980-12-03 | 1985-12-23 | 住友電気工業株式会社 | coated ceramic tools |
JPS6059086B2 (en) * | 1980-12-12 | 1985-12-23 | 住友電気工業株式会社 | coated ceramic tools |
US4448591A (en) * | 1981-01-21 | 1984-05-15 | General Electric Company | Cutting insert having unique cross section |
US4460382A (en) * | 1981-12-16 | 1984-07-17 | General Electric Company | Brazable layer for indexable cutting insert |
US4544517A (en) * | 1981-12-16 | 1985-10-01 | General Electric Co. | Automatic composite press technique for producing cutting inserts |
US4698070A (en) * | 1981-12-16 | 1987-10-06 | General Electric Company | Cutting insert for interrupted heavy machining |
US4483892A (en) * | 1981-12-16 | 1984-11-20 | General Electric Company | Wear resistant annular insert and process for making same |
US4497639A (en) * | 1981-12-16 | 1985-02-05 | General Electric Company | Silicon carbide cutting insert with pre-pressed core center piece and sintered diamond envelope |
US4465650A (en) * | 1981-12-16 | 1984-08-14 | General Electric Company | Process for preparing nitrided superhard composite materials |
CH666649A5 (en) | 1984-03-30 | 1988-08-15 | De Beers Ind Diamond | GRINDING TOOL. |
FR2568810B1 (en) * | 1984-08-13 | 1986-11-14 | Combustible Nucleaire | DIAMOND CUTTING ELEMENT AND METHOD FOR MANUFACTURING SUCH AN ELEMENT |
FR2568933B1 (en) * | 1984-08-13 | 1986-09-19 | Combustible Nucleaire | DIAMOND ROTARY DRILLING TOOL AND METHOD FOR MANUFACTURING SUCH A TOOL |
JP2607469B2 (en) * | 1984-08-24 | 1997-05-07 | ジ・オ−ストラリアン・ナショナル・ユニバ−シテイ | Diamond compact and manufacturing method thereof |
IE58714B1 (en) * | 1985-06-07 | 1993-11-03 | De Beers Ind Diamond | Thermally stable diamond abrasive compact body |
SE455277B (en) * | 1986-03-21 | 1988-07-04 | Uddeholm Tooling Ab | SET FOR POWDER METAL SURGICAL PREPARING A FORM THROUGH HEAT COMPRESSION OF POWDER IN A CERAMIC FORM BY A PARTICULATED PRESSURE MEDIUM |
FR2598644B1 (en) * | 1986-05-16 | 1989-08-25 | Combustible Nucleaire | THERMOSTABLE DIAMOND ABRASIVE PRODUCT AND PROCESS FOR PRODUCING SUCH A PRODUCT |
AU605994B2 (en) * | 1988-08-31 | 1991-01-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of two-component products |
AU605995B2 (en) * | 1988-08-31 | 1991-01-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of abrasive products |
AU605996B2 (en) * | 1988-08-31 | 1991-01-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of abrasive products |
US7647993B2 (en) * | 2004-05-06 | 2010-01-19 | Smith International, Inc. | Thermally stable diamond bonded materials and compacts |
DE102004056734A1 (en) * | 2004-11-24 | 2006-06-01 | Vatcharachai Buanatra | Diamond molded article, useful as e.g. heat transmission medium, comprises multiplicity of diamond crystallites, whose boundary surfaces are connected with one another under the formation of an integral body structure |
SE532992C2 (en) * | 2007-11-08 | 2010-06-08 | Alfa Laval Corp Ab | Process for making a diamond composite, green body, diamond composite and use of the diamond composite |
US9469918B2 (en) * | 2014-01-24 | 2016-10-18 | Ii-Vi Incorporated | Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon |
CN111004033A (en) * | 2019-11-28 | 2020-04-14 | 江苏禾吉新材料科技有限公司 | Preparation method of polycrystalline diamond cutter for cutting straws |
IT202100006182A1 (en) * | 2021-03-16 | 2022-09-16 | Willem Mirani | PROCEDURE FOR THE PRODUCTION OF AN ABRASIVE TOOL. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4042347A (en) * | 1974-04-15 | 1977-08-16 | Norton Company | Method of making a resin-metal composite grinding wheel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL267401A (en) * | 1960-07-22 | |||
US3913280A (en) * | 1971-01-29 | 1975-10-21 | Megadiamond Corp | Polycrystalline diamond composites |
US3982911A (en) * | 1972-11-01 | 1976-09-28 | General Electric Company | Process for the preparation of a composite cubic boron nitride layer abrasive body |
US3853566A (en) * | 1972-12-21 | 1974-12-10 | Gen Electric | Hot pressed silicon carbide |
US4004934A (en) * | 1973-10-24 | 1977-01-25 | General Electric Company | Sintered dense silicon carbide |
-
1978
- 1978-10-12 IL IL7855719A patent/IL55719A0/en not_active IP Right Cessation
- 1978-10-12 GB GB7840260A patent/GB2006733B/en not_active Expired
- 1978-10-18 AU AU40825/78A patent/AU525777B2/en not_active Expired
- 1978-10-19 IT IT28225/78A patent/IT1099392B/en active
- 1978-10-20 AT AT0754278A patent/AT371400B/en not_active IP Right Cessation
- 1978-10-20 IE IE2085/78A patent/IE48038B1/en not_active IP Right Cessation
- 1978-10-20 DE DE19782845834 patent/DE2845834A1/en active Granted
- 1978-10-20 ES ES474394A patent/ES474394A1/en not_active Expired
- 1978-10-20 DK DK469278A patent/DK153536C/en not_active IP Right Cessation
- 1978-10-20 FR FR7829913A patent/FR2414033A1/en active Granted
- 1978-10-20 JP JP12994078A patent/JPS5473811A/en active Granted
- 1978-10-20 CH CH10900/78A patent/CH647487A5/en not_active IP Right Cessation
- 1978-10-20 NL NLAANVRAGE7810521,A patent/NL186311C/en not_active IP Right Cessation
- 1978-10-20 SE SE7810975A patent/SE445838B/en not_active IP Right Cessation
- 1978-10-20 BR BR7806957A patent/BR7806957A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4042347A (en) * | 1974-04-15 | 1977-08-16 | Norton Company | Method of making a resin-metal composite grinding wheel |
Also Published As
Publication number | Publication date |
---|---|
ES474394A1 (en) | 1979-11-01 |
GB2006733A (en) | 1979-05-10 |
NL186311B (en) | 1990-06-01 |
FR2414033A1 (en) | 1979-08-03 |
DE2845834A1 (en) | 1979-04-26 |
ATA754278A (en) | 1982-11-15 |
JPS5473811A (en) | 1979-06-13 |
IT7828925A0 (en) | 1978-10-19 |
SE445838B (en) | 1986-07-21 |
FR2414033B1 (en) | 1982-10-22 |
DK469278A (en) | 1979-04-22 |
JPS6213307B2 (en) | 1987-03-25 |
IE48038B1 (en) | 1984-09-05 |
DE2845834C2 (en) | 1989-08-31 |
AU4082578A (en) | 1980-04-24 |
NL186311C (en) | 1990-11-01 |
IE782085L (en) | 1979-04-21 |
DK153536C (en) | 1988-12-19 |
IL55719A0 (en) | 1978-12-17 |
NL7810521A (en) | 1979-04-24 |
AU525777B2 (en) | 1982-12-02 |
AT371400B (en) | 1983-06-27 |
GB2006733B (en) | 1982-10-20 |
CH647487A5 (en) | 1985-01-31 |
SE7810975L (en) | 1979-06-14 |
BR7806957A (en) | 1979-05-08 |
IT1099392B (en) | 1985-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK153536B (en) | COMPOSITION MATERIALS INCLUDING A POLYCRYSTALLIC DIAMOND BODY AND A SILICON CARBID OR SILICON NITRATE SUBSTANCE, AND A PROCEDURE FOR MANUFACTURING THE MATERIAL | |
US4241135A (en) | Polycrystalline diamond body/silicon carbide substrate composite | |
US4171339A (en) | Process for preparing a polycrystalline diamond body/silicon carbide substrate composite | |
US4124401A (en) | Polycrystalline diamond body | |
US4168957A (en) | Process for preparing a silicon-bonded polycrystalline diamond body | |
US4110084A (en) | Composite of bonded cubic boron nitride crystals on a silicon carbide substrate | |
JP2607469B2 (en) | Diamond compact and manufacturing method thereof | |
EP0019824B1 (en) | Polycrystalline diamond body and method of making same | |
US4167399A (en) | Process for preparing a polycrystalline diamond body | |
US4173614A (en) | Process for preparing a polycrystalline diamond body/silicon nitride substrate composite | |
KR100260368B1 (en) | Composite material and process for producing the same | |
CN1014306B (en) | Low pressure bonded diamond polycrystals and method of making same | |
CN105734390B (en) | A kind of preparation method for the polycrystalline cubic boron nitride compound material that high-entropy alloy combines | |
US4234661A (en) | Polycrystalline diamond body/silicon nitride substrate composite | |
RU1836307C (en) | Method of manufacturing self-bonded composite material | |
US20180065894A9 (en) | Superhard pcd constructions and methods of making same | |
CA1105948A (en) | Polycrystalline diamond body | |
JPH0348252B2 (en) | ||
GB2148270A (en) | Cermet materials | |
USRE30503E (en) | Composite of bonded cubic boron nitride crystals on a silicon carbide substrate | |
Michalski et al. | Synthesis and characterization of cBN/WCCo composites obtained by the pulse plasma sintering (PPS) method | |
JPS6311414B2 (en) | ||
CA1111664A (en) | Polycrystalline diamond body/silicon carbide or silicon nitride substrate composite | |
JP3834283B2 (en) | Composite material and manufacturing method thereof | |
CA1103940A (en) | Cubic boron nitride abrasive composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |