DK152098B - TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND TAKING TOOLS, AND PROCEDURES FOR MANUFACTURING THEREOF. - Google Patents

TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND TAKING TOOLS, AND PROCEDURES FOR MANUFACTURING THEREOF. Download PDF

Info

Publication number
DK152098B
DK152098B DK072878AA DK72878A DK152098B DK 152098 B DK152098 B DK 152098B DK 072878A A DK072878A A DK 072878AA DK 72878 A DK72878 A DK 72878A DK 152098 B DK152098 B DK 152098B
Authority
DK
Denmark
Prior art keywords
particles
diamond
tool component
sintering aid
bonded
Prior art date
Application number
DK072878AA
Other languages
Danish (da)
Other versions
DK72878A (en
DK152098C (en
Inventor
Harold Paul Bovenkerk
Paul Donald Gigl
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of DK72878A publication Critical patent/DK72878A/en
Publication of DK152098B publication Critical patent/DK152098B/en
Application granted granted Critical
Publication of DK152098C publication Critical patent/DK152098C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/0685Crystal sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Lubricants (AREA)
  • Drilling Tools (AREA)
  • Powder Metallurgy (AREA)

Description

DK 152098 BDK 152098 B

Opfindelsen angår en værktøj s komponent, specielt til skære-, bore- og spåntagningsværktøj, med slibende partikler af diamant eller kubisk bornitrid, et metallisk sintringshjælpemiddel og tomme porer.The invention relates to a tool's component, especially for cutting, drilling and cutting tools, with abrasive particles of diamond or cubic boron nitride, a metallic sintering aid and empty pores.

5 I beskrivelsen til US patent nr. 3.745.623 beskrives et dia- mantkompositmateriale, der omfatter en masse af poiykrystallinsk diamant, i hvilken i alt væsentligt alle diamantpartikler er bundet til hinanden, og som integralt er bundet til en sintret carbidmasse. Bindingen af diamanterne til hinanden og bindingen af diamantmassen 10 til carbidunderlaget frembringes under højtemperatur/højtryksforhold (HT/HP-teknologi) i det stabile diamantområde, hvorved bindemetallet i det sintrede carbid gøres tilgængelig for begge masser til fremkaldelse af den nævnte binding af diamantpartiklerne og de to masser. Bindings/katalysator-metallet bliver tilbage i begge masser i 15 den således dannede integrate kompositenhed.In the disclosure of U.S. Patent No. 3,745,623, a diamond composite material is disclosed which comprises a mass of polycrystalline diamond in which substantially all diamond particles are bonded to each other and integrally bonded to a sintered carbide mass. The bonding of the diamonds to each other and the bonding of the diamond mass 10 to the carbide substrate are produced under high temperature / high pressure conditions (HT / HP technology) in the stable diamond region, thereby making the bond metal of the sintered carbide available to both masses to produce said bonding of the diamond particles and the two lots. The bonding / catalyst metal remains in both masses in the integrate composite unit thus formed.

I beskrivelsen til US patent nr. 3.609.818 beskrives der apparatur (reaktionsbeholdere) af en type, som er anvendelig til udøvelse af de HT/HP-forhold, som anvendes ifølge ovennævnte US patentskrift nr. 3.745.623.In the specification of U.S. Patent No. 3,609,818, apparatus (reaction vessels) of a type useful for practicing the HT / HP ratios used according to the aforementioned U.S. Patent No. 3,745,623 is disclosed.

20 Det ifølge ovennævnte patentskrifter fremstillede diamantkom- positmateriale har imidlertid begrænset anvendelighed som følge af, at det nedbrydes termisk ved temperaturer over ca. 700°C.However, the diamond composite material made according to the aforementioned patents has limited utility as it is degraded thermally at temperatures above ca. 700 ° C.

I beskrivelsen til US patent nr. 3.767.371, der angår en parallel opfindelse til den i beskrivelsen til US patent nr. 3.745.623 25 beskrevne, beskrives der en anvendelse af kubisk bornitrid (CBN) som slibende partikler i stedet for diamant. I beskrivelsen til US patent nr. 3.743.489, der er en parallel til US patent nr. 3.767.371, beskrives der en anvendelse af aluminiumlegeringer til forbedring af bindingsmekanismen i CBN-kompositmaterialet.US Patent No. 3,767,371, which relates to a parallel invention to that described in U.S. Patent No. 3,745,623, discloses the use of cubic boron nitride (CBN) as abrasive particles instead of diamond. In the specification of U.S. Patent No. 3,743,489, which is a parallel to U.S. Patent No. 3,767,371, an use of aluminum alloys is described to improve the bonding mechanism of the CBN composite.

30 Også de ifølge sidstnævnte to US patentskrifter fremstillede kompositmaterialer har imidlertid begrænset anvendelighed som følge af, at de nedbrydes termisk ved temperaturer over ca. 700°C.30 However, also the composite materials made according to the latter two US patents have limited utility as they are thermally decomposed at temperatures above ca. 700 ° C.

Ovennævnte kendte kompositmaterialer er derfor uegnet til fremstilling af værktøjskomponenter, som kræver binding af kom-35 positmateriale til en bærer ved hjælp af et loddemateriale med et smeltepunkt nær ved eller over kompositmaterialets varmenedbryd-ningspunkt, eller som kræver faststøbning af kompositmaterialet i en slidbestandig matrix med højt smeltepunkt, således som det er almindeligt anvendt i forbindelse med overfladehærdnede klippebore- 2The above known composite materials are therefore unsuitable for manufacturing tool components which require bonding of composite material to a support by means of a solder having a melting point near or above the heat decomposition point of the composite material or requiring molding of the composite material with a wear resistant matrix. high melting point, as is commonly used in connection with surface hardened rock drills 2

DK 152098 BDK 152098 B

kroner.crowns.

Disse mangler ved kompositmaterialerne Ifølge den kendte teknik afhjælpes imidlertid med den foreliggende opfindelse, ifølge hvilken der er tilvejebragt værktøjskomponenter, specielt til skære-, bore-5 og spåntag n in g svær ktøj, som tåler udsættelse for langt højere temperaturer pi helt op til 1200-1300°C uden termisk nedbrydning af betydning, jvf. nærmere herom side 5, linie 7-19 i nærværende beskrivelse.These deficiencies of the composite materials of the prior art, however, are remedied by the present invention, according to which tool components are provided, especially for cutting, drilling and cutting tools, which withstand exposure to much higher temperatures of up to 1200 -1300 ° C without significant thermal decomposition, cf. page 5, lines 7-19 of this specification.

Dette opnås med værktøjskomponenten af den indledningsvis 10 angivne art, nir den ifølge opfindelsen er ejendommelig ved, at de slibende partikler er selvbundne og udgør 70-95 volumenprocent af værktøjskomponenten, at det metalliske sintringshjælpemiddel, som tjener til at sammenbinde de selvbundne partikler, udgør 0,05-3 volumenprocent af værktøjskomponenten, og at de tomme porer, der 15 afgrænses af de selvbundne partikler, er fordelt i værktøjskom ponenten med en indbyrdes forbundet struktur, hvilke porer udgør 5-30 volumenprocent af værktøjskomponenten.This is achieved with the tool component of the type 10 initially mentioned, as it is characterized by the abrasive particles being self-bonded and constituting 70-95% by volume of the tool component that the metallic sintering aid which serves to bond the self-bonded particles is 0 , 05-3% by volume of the tool component, and that the empty pores defined by the self-bonded particles are distributed in the tool component with an interconnected structure, which pores constitute 5-30% by volume of the tool component.

I en udførelsesform er et lag af selvbundne slibende partikler bundet til et underlag af sintret hårdmetal.In one embodiment, a layer of self-bonded abrasive particles is bonded to a base of sintered cemented carbide.

20 Opfindelsen angår også en fremgangsmåde til fremstilling af en værktøjskomponent ifølge opfindelsen, ved hvilken fremgangsmåde a) . en, masse af diamantpartikler eller partikler, der består af kubisk bornitrid, og en masse af metallisk sintringshjælpemiddel for den pågældende partikelmasse indføres i en 25 reaktionsbeholder, b) reaktionsbeholderen med indhold samtidig udsættes for temperaturer i området 1200-2000°C og tryk på over 40 kilobar, c) varmetilførslen til reaktionsbeholderen bringes ti! ophør, 30 og trykket reduceres, og d) det under fremgangsmådetrinnene a) til c) dannede slibe legeme, som består af de direkte til hinanden bundne partikler og det metalliske sintringshjælpemiddel, der er trængt ind mellem partiklerne, fjernes fra reaktionsbe- 35 holderen, hvilken fremgangsmåde er ejendommelig ved, at det metalliske sintringshjælpemiddel, som er blevet indført i legemet, fjernes fra dette, indtil der tilbage i legemet er en andel på 0,05-3 volumenprocent af legemet.The invention also relates to a method for producing a tool component according to the invention, wherein method a). a mass of diamond particles or particles consisting of cubic boron nitride and a mass of metallic sintering aid for said particle mass is introduced into a reaction vessel; b) the reaction vessel containing contents is simultaneously subjected to temperatures in the range of 1200-2000 ° C and pressures above C) the heat supply to the reaction vessel is brought to ten! and d) the abrasive body formed during process steps a) to c) consisting of the directly bonded particles and the metallic sintering aid penetrated between the particles is removed from the reaction vessel; which method is characterized in that the metallic sintering aid which has been introduced into the body is removed from it until there is a 0.05-3% by volume of the body back in the body.

33

DK 152098 BDK 152098 B

I trin b) skal udtrykket "samtidig" angive, at højtryks/høj-temperaturforholdene findes eller optræder samtidig, men udtrykket indebærer ikke, at tidspunkterne for initiering eller afslutning af højtryks- og højtemperaturbetingelserne er sammenfaldende (hvilket 5 dog kan være tilfældet).In step b), the term "simultaneous" must indicate that the high-pressure / high-temperature conditions exist or occur simultaneously, but the term does not imply that the times for initiating or terminating the high-pressure and high-temperature conditions coincide (which may however be the case).

“Sintringshjælpemiddel" benyttes i den foreliggende sammenhæng til at betegne materialer, som er katalysatorer for diamant som nærmere angivet i det følgende/ og/elJer som fremmer sintringen af CBN, som nærmere angivet i det følgende. Den mekanisme (katalyse 10 eller andet), hvorved sintringshjælpemidlerne fremmer selvbindingen af CBN, kendes ikke."Sintering aid" is used in the present context to designate materials which are catalysts for diamond as set forth below and / or which promote the sintering of CBN as set forth below. The mechanism (catalysis 10 or other), whereby the sintering aids promote the self-binding of CBN is unknown.

Med den foreliggende opfindelse tilvejebringes således en værktøjs komponent omfattende en kompakt masse, som i alt væsentligt består af selvbundne slibepartikler med et netværk af indbyrdes 15 forbundne porer fordelt i massen. Kompaktmaterialet frembringes ved at sammenbinde en masse af slibepartikler til et selvbundet legeme ved anvendelse af et sintringshjælpemiddel ved højt tryk og høj temperatur. Det ved højt tryk og høj temperatur dannede legeme indeholder de selvbundne partikler og sintringshjælpemidlet (f.eks.Thus, with the present invention there is provided a tool component comprising a compact mass consisting essentially of self-bonded abrasive particles having a network of interconnected pores distributed within the mass. The compact is produced by bonding a mass of abrasive particles to a self-bonded body using a high pressure, high temperature sintering aid. The body formed at high pressure and high temperature contains the self-bound particles and the sintering aid (e.g.

20 kobolt eller koboltlegeringer), som gennemtrænger legemet. Det gennemtrængende materiale fjernes derefter f.eks. ved neddykning af legemet i et bad af kongevand. Det har vist sig, at fjernelse af stort set alt det gennemtrængende materiale giver et kompaktmateriale af slibepartikler med betydelig forbedret modstandsdyg-25 tighed over for termisk nedbrydning ved høje temperaturer.20 cobalt or cobalt alloys) which permeate the body. The permeable material is then removed e.g. by immersing the body in a bath of royal water. It has been found that removal of virtually all of the permeable material provides a compact material of abrasive particles with significantly improved resistance to thermal degradation at high temperatures.

Foretrukne udførelsesformer for trin a)-d) i ovennævnte fremgangsmåde til fremstilling af en værktøjskomponent af diamantpartikler, er beskrevet nærmere i beskrivelsen til US patent nr. 3.745.623 og nr. 3.609.818.Preferred embodiments of steps a) -d) of the above process for producing a diamond tool tool component are described in greater detail in the specification of U.S. Patent Nos. 3,745,623 and 3,609,818.

30 I korthed omhandler disse patentskrifter fremstilling af diamant- kompaktmaterialer ved højtryks/højtemperatur-behandling, hvorved varme, sammentrykkede diamantpartikler gennemtrænges af et katalytisk materiale ved aksial eller radial gennemledning af materialet mellem diamantpartiklerne. Ved gennemledningen opnås 35 katalyseret sintring af diamantpartiklerne, hvilket fører til en vidtgående diamant/diamant-binding. Ifølge beskrivelsen til US patent nr. 2.947.609 og nr. 2.947.610 vælges det katalytiske materiale blandt (1) et katalytisk metal på usammensat form valgt blandt gruppe VIII-metaller, Cr, Mn, Ta, (2) en blanding af legerbare metaller 4Briefly, these patents disclose the production of diamond compact materials by high pressure / high temperature treatment whereby hot, compressed diamond particles are permeated by a catalytic material by axial or radial passage of the material between the diamond particles. Through the passage, 35 catalyzed sintering of the diamond particles is achieved, leading to a far-reaching diamond / diamond bond. According to U.S. Patent Nos. 2,947,609 and 2,947,610, the catalytic material is selected from (1) a catalytic metal of unsubstituted form selected from Group VIII metals, Cr, Mn, Ta, (2) a mixture of alloys. metals 4

DK 152098 BDK 152098 B

af det eller de katalytiske metaller og et eller flere ikke-katalytiske metaller, (3) en legering af mindst 2 af de katalytiske metaller og (4) en legering af det eller de katalytiske metaller og et eller flere ikke-katalytiske metaller. Kobolt på usammensat form eller legerings-5 form foretrækkes. Dette materiale danner en metalfase i det slebne legeme, som er dannet ved de højtryk/højtemperaturbetingelser, der er angivet ovenfor under trin b).of the catalytic metal (s) and one or more non-catalytic metals, (3) an alloy of at least 2 of the catalytic metal and (4) an alloy of the catalytic metal (s) and one or more non-catalytic metals. Cobalt in uncompensated or alloy form is preferred. This material forms a metal phase in the abrasive body formed by the high pressure / high temperature conditions given above in step b).

Foretrukne udførelsesformer for trinnene a)-d) i ovenstående fremgangsmåde til fremstilling af en værktøjskomponent af partikler 10 af kubisk bornitrid er beskrevet nærmere i beskrivelsen til USPreferred embodiments of steps a) -d) of the above process for producing a tool component of cubic boron nitride particles 10 are described in greater detail in the description to U.S. Pat.

patent nr 3.767.371. Som angivet i og i forbindelse med eksempel I i dette patentskrift fremstilles CBN-kompaktmaterialer (CBN = kubisk bornitrid) ved en højtryk/højtemperaturproces, hvori CBN-partikler gennemtrænges af et smeltet sintringshjælpemiddel (koboltmetal) ved 15 aksial gennemledning af materialet mellem CBN-partiklerne. Under gennemledningen opnås sintring af CNB-partiklerne, hvilket fører til vidtgående CBN/CBN-binding. Andre materialer som er anvendelige som sintringshjælpemidler for kubisk bornitrid kendes fra beskrivelsen til US patent nr. 3.743.489, spalte 3, linie 6-20, og er 20 legeringer af aluminium og et legeringsmetal valgt blandt nikkel, kobolt, mangan, jern, vanadin og chrom. Kobolt og koboltlegeringer foretrækkes. Sintringshjælpemidlet danner den, i ovenstående trin d), angivne metalfase.Patent No. 3,767,371. As disclosed in and in connection with Example I of this patent, CBN compact materials (CBN = cubic boron nitride) are produced by a high pressure / high temperature process in which CBN particles are permeated by a molten sintering aid (cobalt metal) by axially passing the material between the CBN particles. . During the passage, sintering of the CNB particles is achieved, leading to extensive CBN / CBN bonding. Other materials useful as cubic boron nitride sintering aids are known from the specification of U.S. Patent No. 3,743,489, column 3, lines 6-20, and are 20 alloys of aluminum and an alloy metal selected from nickel, cobalt, manganese, iron, vanadium. and chromium. Cobalt and cobalt alloys are preferred. The sintering aid forms the metal phase indicated in step d) above.

Ved udøvelse af en udførelsesform for trin a)-d) ifølge 25 beskrivelsen til US patent nr. 3.745.623, nr. 3.767.371 og nr. 3.743.489 fremstilles et sammensat kompaktmateriale ved en in situ binding af et slibepartikellag (af diamant eller CBN) til en sintret carbidbærer. Materialet til dannelse af carbidbæreren (enten et carbidformningspulver eller et forformet legeme) er den foretrukne 30 kilde for sintringshjælpemidlet. Til belysning af de nærmere enkeltheder ved bæreren henvises til beskrivelsen til US patent nr. 3.745.623, spalte 5, linie 58 til spalte 6, linie 8 og spalte 8, linie 57 til spalte 9, linie 9.In carrying out an embodiment of steps a) -d) according to the disclosure of US Patent Nos. 3,745,623, Nos. 3,767,371 and 3,743,489, a composite compact material is prepared by an in situ bonding of an abrasive particle layer (of diamond or CBN) to a sintered carbide carrier. The material for forming the carbide support (either a carbide forming powder or a preformed body) is the preferred source of the sintering aid. For clarification of the details of the carrier, reference is made to U.S. Patent No. 3,745,623, column 5, line 58 to column 6, line 8 and column 8, line 57 to column 9, line 9.

En anden udførelsesform for opfindelsen angår dannelsen af et 35 kompaktmateriale, som i alt væsentligt består af selvbundne slibende partikler. I denne udførelsesform udøves trin a)~d) på den ovenfor beskrevne måde med undtagelse af, at tilvejebringelse af materiale til dannelse af carbidunderlaget for slibepartikellaget, enten i form af et carbidstøbepulver eller i forformet tilstand, fortrinsvis udelades.Another embodiment of the invention relates to the formation of a compact material consisting essentially of self-bonded abrasive particles. In this embodiment, steps a) - d) are practiced in the manner described above, except that provision of material for forming the carbide substrate for the abrasive particle layer, either in the form of a carbide casting powder or in the preformed state, is preferably omitted.

DK 152098 BDK 152098 B

55

Herunder tilsættes sintringshjælpemidlet særskilt, f.eks. som vist og beskrevet i beskrivelsen til US patent nr. 3.609.818. Et underlag af sintret carbid eller andet materiale kan naturligvis loddes (eng.: brazed) til kontaktmaterialet efter fjernelse af den metalliske fase til 5 dannelse af et værktøjsemne eller -indlæg.Including the sintering aid separately, e.g. as shown and disclosed in the specification of U.S. Patent No. 3,609,818. Of course, a support of sintered carbide or other material may be brazed to the contact material after removal of the metallic phase to form a tool blank or insert.

Ifølge den foreliggende opfindelse har det vist sig, at metalfasen kan fjernes fra kompaktmaterialet ved syrebehandling, ekstraktion med væskeformig zink, elektrolytisk fjernelse eller lignende processer, hvilket efterlader et kompaktmateriale, som indeholder 10 stort set 100% slibende partikler på selvbundet form. Dermed har kompositmaterialet i det væsentlige ingen restmetalfase til katalyse af tilbageomdannelse af bindingerne mellem de slibende partikler og/eller ekspansion og dermed brydning af partikelbindingerne, idet disse er de to mekanismer, som man teoretisk har ment, kunne føre til den 15 termiske nedbrydning af de kendte kompositmaterialer ved høj temperatur. Det har vist sig, at det ifølge opfindelsen frembragte kompositmateriale, kan tåle udsættelse for temperaturer på op til 1200-1300°C uden termisk nedbrydning af betydning.According to the present invention, it has been found that the metal phase can be removed from the compact by acid treatment, liquid zinc extraction, electrolytic removal or similar processes, leaving a compact containing 10 substantially 100% abrasive particles in self-bonded form. Thus, the composite material has essentially no residual metal phase for catalysis of back-conversion of the bonds between the abrasive particles and / or expansion and thus breaking of the particle bonds, since these are the two mechanisms which were theoretically supposed to lead to the thermal decomposition of the known high temperature composite materials. It has been found that the composite material produced according to the invention can withstand exposure to temperatures up to 1200-1300 ° C without significant thermal decomposition.

Opfindelsen vil nu blive nærmere beskrevet i forbindelse med 20 tegningen, som viser et mikrofotograf} af en del af en slebet overflade af et diamantkompaktmateriale fremstillet ifølge den foreliggende opfindelse.The invention will now be described in more detail with reference to the drawing, which shows a photomicrograph of a portion of a ground surface of a diamond compact material made in accordance with the present invention.

Omend mi krofotografiet på tegningen rent faktisk viser et diamantkompositmateriale, kunne det lige så godt illustrere alter-25 native udførelsesformer for opfindelsen, hvor de slebne partikler er af kubisk bornitrid.Although the croft photograph in the drawing actually shows a diamond composite material, it might as well illustrate alternative embodiments of the invention in which the ground particles are of cubic boron nitride.

Kompositmaterialet omfatter diamantpartikler 11, som udgør mellem 70 volumen-% og 95 volumen-% af kompositmaterialet. (I den foreliggende sammenhæng benyttes betegnelsen "partikel" i betyd-30 ningen en enkelt krystallit eller et brudstykke heraf). Skillefladerne 13 repræsenterer selvbindingen eller diamant/diamant-bindingen mellem nabopartikler 11. De diamantkrystaller 11, som ses i den slebne overflade af det på tegningen viste kompositmateriale, er bundet i 3. dimension til nabodiamantkrystaller, som ikke er synlige.The composite material comprises diamond particles 11 which constitute between 70% to 95% by volume of the composite. (In the present context, the term "particle" is used to mean a single crystallite or fragment thereof). The separating surfaces 13 represent the self-bond or diamond / diamond bond between neighboring particles 11. The diamond crystals 11 seen in the abrasive surface of the composite material shown in the drawing are bonded in the third dimension to neighboring diamond crystals which are not visible.

35 En metalfase af sintringshjælpemiddel (ikke synlig på tegningen) gennemtrænger kompositmaterialet på stort set ensartet måde og antages at være indkapslet i de lukkede områder, som dannes af nabodiamantpartikler. Denne fase udgør mellem ca. 0,05 volumen-% og 3 volumen-% af kompositmaterialet. Et netværk af indbyrdes for- 6A metal phase of sintering aid (not visible in the drawing) permeates the composite material in a substantially uniform manner and is believed to be encapsulated in the closed areas formed by neighboring diamond particles. This phase constitutes between approx. 0.05% by volume and 3% by volume of the composite. A network of mutual benefits 6

DK 152098 BDK 152098 B

bundne tomme porer 15 er fordelt over kompositmaterlalet og af-grænses af diamantpartiklerne 11 og den ikke viste metalfase. Porerne 15 udgør mellem ca. 5 volumen-% og 30 volumen-% af komponenten .bonded empty pores 15 are distributed over the composite material and bounded by the diamond particles 11 and the metal phase not shown. The pores 15 constitute between ca. 5% by volume and 30% by volume of the component.

5 I en udførelsesform udgøres kompositmaterialet alene af de selvbundne partikler. I en anden udførelsesform er kompositmaterialet bundet til en bærer (ikke vist), fortrinsvis af koboltsintret wolframcarbid.In one embodiment, the composite is constituted by the self-bound particles alone. In another embodiment, the composite is bonded to a support (not shown), preferably of cobalt sintered tungsten carbide.

Et acceptabelt partikelstørrelsesområde for diamantpartiklerne 11 10 er mellem 1 og 1000 pm. For kubisk bornitrid ligger det acceptable størrelsesområde mellem 1 og 300 pm.An acceptable particle size range for the diamond particles 1110 is between 1 and 1000 µm. For cubic boron nitride, the acceptable size range is between 1 and 300 µm.

Opfindelsen vil i det følgende blive yderligere illustreret i form af nogle udførelseseksempler.The invention will be further illustrated below in the form of some embodiments.

15 Eksempel IExample I

Et antal skiveformede diamantkompaktemner fremstilledes ved 1) anbringelse af et 1,4 mm lag af fine diamantpartikler med en nomineret størrelse på under 8 pm og cementeret wolframcarbid med tykkelsen 3,2 mm og diameteren 8,8 mm (13 vægtprocent Co, 87 20 vægtprocent WC) i et 0,05 mm zirconiumbeholderelement, 2) stabling af et antal af disse elementer i et højtryks/højtemperaturapparat som det i figur 1 i US patentskrift nr. 3.745.623 , 3) forøgelse af trykket til ca. 65 kb og temperaturen til ca. 1400°C i 15 minutter, 4) langsom reduktion af først temperaturen og derefter trykket, 5) 25 fjernelse af prøverne fra højtryks/højtemperaturapparatet og sønderdeling af prøverne til tilvejebringelse af et 0,5 mm tykt diamantlag bundet til et koboltcementeret wolframcarbidlag med en tykkelse på 2,7 mm. Carbidlaget i hvert kompaktemne fjernedes ved overfladeslibning.A number of disc-shaped diamond compact blanks were prepared by 1) applying a 1.4 mm layer of fine diamond particles having a nominal size of less than 8 microns and cemented tungsten carbide of 3.2 mm in diameter and 8.8 mm in diameter (13 wt% Co, 87 20 wt% WC) in a 0.05 mm zirconium container element; 2) stacking a number of these elements in a high pressure / high temperature apparatus such as that of Figure 1 of U.S. Patent No. 3,745,623; 65 kb and the temperature to approx. 1400 ° C for 15 minutes, 4) slowly reducing the temperature and then the pressure, 5) removing the samples from the high pressure / high temperature apparatus and disintegrating the samples to provide a 0.5 mm thick diamond layer bonded to a cobalt cemented tungsten carbide layer with a thickness of 2.7 mm. The carbide layer in each compact was removed by surface grinding.

30 Som angivet i tabel I udludedes halvdelen af prøverne i varme, koncentrerede syreopløsninger for at fjerne metalfasen og evt. andet opløseligt ikke-diamantmateriale. Der anvendtes to forskellige metoder til at fjerne det gennemtrængende materiale. For en første gruppe, som betegnes prøverne A-1 til A-4, benyttedes kun varm 1:1 35 blanding af koncentreret salpetersyre og flussyre til behandling af prøverne A-3 og A-4. For en anden gruppe, som betegnes prøverne B-1 til B-4, udskiftedes salpetersyre/flussyrebiandingen med en varm blanding af koncentreret saltsyre og salpetersyre i forholdet 3:1 (kongevand) til behandling af prøverne B-3 og B-4. Det viste 7As indicated in Table I, half of the samples were excluded in hot, concentrated acid solutions to remove the metal phase and possibly other soluble non-diamond material. Two different methods were used to remove the permeable material. For a first group, designated samples A-1 to A-4, only hot 1: 1 mixture of concentrated nitric acid and hydrofluoric acid was used to treat samples A-3 and A-4. For another group, designated samples B-1 to B-4, the nitric acid / hydrofluoric acid mixture was replaced with a hot mixture of concentrated hydrochloric acid and 3: 1 (hydrochloric acid) hydrochloric acid to treat samples B-3 and B-4. It showed 7

DK 152098 BDK 152098 B

sig, at fjernelseshastigheden øgedes væsentligt ved anvendelse af sidstnævnte syreopløsning. Prøverne A-3 og A-4 syrebehandledes over tidsrum på mellem 8 og 12 dage. Prøverne B-3 og B-4 behandledes mellem 3 og 6 dage. For begge metoder gjaldt det, at 5 prøvernes dimensioner ikke ændredes under syrebehandlingen, og at der ikke påvistes nogen afskalning af diamantmaterialet. Ethvert vægttab kan derfor tilskrives fjernelsen af den gennemtrængende metalfase, eftersom diamant ikke opløses af syrerne.say that the rate of removal was significantly increased by using the latter acid solution. Samples A-3 and A-4 were acid treated over a period of 8 to 12 days. Samples B-3 and B-4 were treated between 3 and 6 days. For both methods, the dimensions of the 5 samples did not change during the acid treatment and that no peeling of the diamond material was detected. Therefore, any weight loss can be attributed to the removal of the permeable metal phase since diamond is not dissolved by the acids.

Den mængde metalfase, som gennemtrænger disse kompaktemner, 10 beregnedes til at være ca. 8,1 volumen-% eller 19,8 vægt-% på basis af vægtfyldemålinger af kompaktemnet inden udludning og af diamant- og metaludgangsmaterialerne til fremstilling af kompaktemnet. Efter udludning bliver ca. 0,5 volumen-% eller 0,2 vægt-% af det gennemtrængende materiale tilbage. Fjernelsen af op til 90 15 vægt-% (prøve B-4) af det gennemtrængende materiale indicerer også, at det meste af metalfasen er lokaliseret i et kontinuert netværk af porer. Scanningelektronmikroskopisk (SEM) undersøgelse af en brudflade af en udludet prøve viser, at et netværk af porer løber gennem diamantlaget. Hullerne ses at være fordelt over laget, 20 og de fleste har en diameter mindre end 1 pm. Dette indicerer, at syren har gennemtrængt hele diamantiaget og fjernet metalfasen på stort set ensartet måde over hele laget.The amount of metal phase permeating these compact blanks was calculated to be approx. 8.1% by volume, or 19.8% by weight, based on density measurements of the compact prior to leaching, and of the diamond and metal starting materials for making the compact. After leaching, approx. 0.5% by volume or 0.2% by weight of the permeable material remaining. The removal of up to 90% by weight (Sample B-4) of the permeable material also indicates that most of the metal phase is located in a continuous network of pores. Scanning electron microscopic (SEM) examination of a fracture surface of a leached sample shows that a network of pores runs through the diamond layer. The holes are seen to be distributed over the layer, 20 and most have a diameter less than 1 µm. This indicates that the acid has permeated the entire diamond layer and removed the metal phase in a substantially uniform manner throughout the layer.

Forskydningsbrudstyrken (TRS = transverse rupture strenght) og Youngs elasticitetsmodul (E) miltes også for diamantlagene, som 25 angivet i tabel I. Styrkeprøven gennemførtes på et tre-punkts belastningsudstyr. Dette udstyr omfatter to stålvalser anbragt på en bærer med en tredje stålvalse centreret herover med dens akse parallelt med de to andre valser. Prøverne centreredes over de nedre valser og belastedes indtil brud. Belastningen af prøverne 30 måltes parallelt med spændkraftbelastningen ved anvendelse af modstandsbindingsmåleapparater forbundet med en modstandsspændingsindikator. Prøverne A-1 til A-4 forberedtes til styrkeprøven ved overfladeefterbehandling med et diamanthjul (diamantpartikler på 177-250 pm). Prøverne B-1 til B-4 forberedtes til styrkeprøven ved 35 overfladeefterbehandling med en slibemaskine, hvor et diamantslibemiddel på 15 pm anvendtes til frembringelse af en mere fejlfri overflade end den, som opnåedes på prøverne A-1 til A-4 ved polering. Det antages, at de bedre polerede overflader, på de prøver som er efterbehandlet med fint diamantmateriale, giver højere styrke- 8The shear fracture strength (TRS = transverse rupture strenght) and Young's modulus of elasticity (E) were also spliced for the diamond layers, as indicated in Table I. The strength test was performed on a three-point loading equipment. This equipment comprises two steel rollers arranged on a carrier with a third steel roll centered above it with its axis parallel to the other two rollers. The samples were centered over the lower rollers and loaded until fracture. The load of the samples 30 was measured in parallel with the tensile load using resistance bonding devices connected to a resistance voltage indicator. Samples A-1 to A-4 were prepared for the strength test by surface finishing with a diamond wheel (diamond particles of 177-250 µm). Samples B-1 to B-4 were prepared for the strength test by 35 surface finishing with a grinding machine, where a 15 µm diamond abrasive was used to produce a more flawless surface than that obtained on samples A-1 to A-4 by polishing. It is believed that the better polished surfaces, on the specimens that are finished with fine diamond material, provide higher strength.

DK 152098 BDK 152098 B

værdier som følge af den mere perfekte overfladetilstand, som opnås, det vil sige færre spændingskoncentrerende defekter. Dette antages at forklare de lavere TRS-værdier, som miltes for de udluded prøver (A-3, A-4, B-3, B-4).values resulting from the more perfect surface condition obtained, i.e., less stress concentrating defects. This is thought to explain the lower TRS values spleen for the excluded samples (A-3, A-4, B-3, B-4).

55

TABEL ITABLE I

Fjernelse af gennem- Forskydningsbrud Elasticitetsmodul trængende stof styrke (TRS) (E) 2 3 2 10 Prøve % vægtfylde _kg/mm_ χ10 kg/mm A-1 0 111 A-2 0 101 A-3 16,1 73 A-4 16,2 87 15 B-1 0 129 89 B-2 0 143 92 B-3 17,0 88 78 B-4 17,9 81 80 20 I modsætning til TRS-prøveresultaterne påvirkes E-målingerne (Tabel !) ikke af porøsiteten, eftersom E er en måling af et materiales indre styrke og stivhed, og ikke af mikrorevnedannelse. I gennemsnit var E-værdien kun ca. 12% lavere, når den gennem-25 trængende metalfase var fjernet fra prøverne. Denne forskel bør korrigeres for porøsiteten i de udludede prøver, eftersom f = Mi£ t i 30 E = Youngs modul M = Moment C = Afstand til ydre fiber I = Inertimoment for areal 35 og M*C er uforandret, mendens I er blevet reduceret som følge af, at det effektive areal er blevet reduceret i forhold til porøsiteten.Removing through- Shear fracture Elastic modulus penetrating fabric strength (TRS) (E) 2 3 2 10 Sample% density _kg / mm_ χ10 kg / mm A-1 0 111 A-2 0 101 A-3 16.1 73 A-4 16 , 2 87 15 B-1 0 129 89 B-2 0 143 92 B-3 17.0 88 78 B-4 17.9 81 80 20 Unlike the TRS test results, the E measurements (Table!) Are not affected by the porosity , since E is a measure of the intrinsic strength and stiffness of a material, and not of microtore formation. On average, the E-value was only approx. 12% lower when the penetrating metal phase was removed from the samples. This difference should be corrected for the porosity of the leached samples, since f = Mi £ ti E = Young's modulus M = Torque C = Distance to outer fiber I = Inertia moment of area 35 and M * C is unchanged, the trend I has been reduced as as a result of the effective area being reduced in relation to porosity.

Hvis sfæriske hulrum og tilfældig fordeling antages at foreligge, er F - *t£' i E ’ I (1-x) i 9If spherical cavities and random distribution are assumed to exist, then F - * t £ 'in E' I (1-x) in 9

DK 152098 BDK 152098 B

hvor x = porøsitetsbrøk, og værdien af E ville derfor være større 3 2 end miit. Middelværdien 79 x 10 kg/mm for E for prøverne B-3 og 3 2 B-4 (udludede prøver) er korrigeret til 85 x 10 kg/mm eller ca. 5% 3 2 lavere end middelværdien 90 x 10 kg/mm af E for prøverne B-1 og 5 B-2.where x = porosity fraction and the value of E would therefore be greater 3 2 than miit. The mean value of 79 x 10 kg / mm for E for samples B-3 and 3 2 B-4 (excluded samples) is corrected to 85 x 10 kg / mm or approx. 5% 3 2 lower than the mean 90 x 10 kg / mm of E for samples B-1 and 5 B-2.

Som følge heraf har fjernelsen af den gennemtrængende metalfase kun meget ringe effekt på E og viser, at styrken af diamantlaget næsten udelukkende skyldes diamant-diamantbinding.As a result, the removal of the penetrating metal phase has only very little effect on E and shows that the strength of the diamond layer is almost entirely due to diamond-diamond bonding.

E-værdien på 90 x 10 kg/mm er ca, 10% lavere end middel-o 3 2 10 værdien på 100 x 10 kg/mm , som kan beregnes ud fra elastiske konstanter for diamant i form af enkeltkrystaller.The E-value of 90 x 10 kg / mm is about 10% lower than the mean o 3 2 10 value of 100 x 10 kg / mm, which can be calculated from elastic constants for diamond in the form of single crystals.

EKSEMPEL IIEXAMPLE II

Et kompakt emne fremstilledes ved en fremgangsmåde, som 15 svarede til den i eksempel I angivne for prøverne A-1 til A-4 med undtagelse af, at en 1:1 blanding af 149-177 pm og 105-125 pm diamantpartikler anvendtes i stedet for partikler på 8 pm.A compact blank was prepared by a procedure similar to that of Example I for samples A-1 through A-4 except that a 1: 1 mixture of 149-177 µm and 105-125 µm diamond particles was used instead. for particles at 8 p.m.

Inden udludning beregnedes kompaktemnet at have 99,1% diamant (96,5 volumen-%) og 11,9 vægt-% metalfase (4,5 volumen-%).Prior to leaching, the compact was calculated to have 99.1% diamond (96.5% by volume) and 11.9% by weight metal phase (4.5% by volume).

20 Efter udludning er der en 11,5% reduktion af den totale vægt af kompaktemnet eller med andre ord, forbliver ca. 0,15 vægt-% af metalfasen (0,06 volumen-%) i kompaktemnet.After leaching there is an 11.5% reduction in the total weight of the compact or, in other words, remains approx. 0.15% by weight of the metal phase (0.06% by volume) in the compact.

EKSEMPEL IIIEXAMPLE III

25 Fire diamantkompaktemner fremstilledes som angivet i eksempel I. Carbidet blev afslebet fra hvert kompaktemne. I to af kompaktemnerne fjernedes den gennemtrængende metalfase ved syreudludning i varm 1HF:1HNOs og 3HCI:1HNC>3. De monteredes alle med epoxy på en 0,89 cm rund wolframcarbidbærer. Denne sammensætning mon-30 teredes i en værktøjsbeholder i en drejebænk, og drejeprøver vedrørende afslidningsmodstandsdygtigheden gennemførtes derefter. Arbejdsemnet var en kiselsandfyldt gummistav, som forhandles under varemærket "Ebonite Black Diamond". Prøvebetingelserne var: overfladehastighed: 107-168 overflade m/min. (i den ene varmebehand-35 lingsgruppe var maksimalområdet 24 overflade m/min.), skæredybde: 0,76 mm, tværfremføring: 0,13 mm/omdrejning og prøvetid: 60 minutter. Efter prøven varmebehandledes prøverne i en rørovn i en atmosfære af strømmende tørt argon. Behandlingstemperaturerne var 700-1300°C, og der var 100°C intervaller mellem behandlingstempera- 10Four diamond compact blanks were prepared as indicated in Example I. The carbide was ground from each compact blend. In two of the compact blanks, the penetrating metal phase was removed by acid leaching in hot 1HF: 1HNOs and 3HCI: 1HNC> 3. They were all mounted with epoxy on a 0.89 cm round tungsten carbide support. This composition was mounted in a tool container in a lathe, and swivels for abrasion resistance were then conducted. The work item was a silica sand-filled rubber rod, which is sold under the trademark "Ebonite Black Diamond". The test conditions were: surface velocity: 107-168 surface m / min. (in one heat treatment group, the maximum range was 24 surface m / min), cutting depth: 0.76 mm, cross feed: 0.13 mm / revolution and trial time: 60 minutes. After the sample, the samples were heat treated in a tube furnace in an atmosphere of flowing dry argon. The treatment temperatures were 700-1300 ° C and there were 100 ° C intervals between treatment temperatures

DK 152098 BDK 152098 B

turerne. Behandlingstiden var 10 minutter ved hver temperatur.Trips. The treatment time was 10 minutes at each temperature.

Efter hver behandling undersøgtes prøverne for tegn på nedbrydning under et scanningelektronmikroskop (SEM) og monteredes derefter for at afprøves med hensyn til afslidning undtagen for be-5 handlingerne ved 1000°C, 1100°C og 1300°C. Såvel top- som bundkanterne benyttedes som skærekanter inden de genpoleredes.After each treatment, the samples for degradation were examined under a scanning electron microscope (SEM) and then mounted to test for wear except for the treatments at 1000 ° C, 1100 ° C and 1300 ° C. Both the top and bottom edges were used as cutting edges before repolishing.

Resultaterne af afslidningsprøven er anført i tabel II. Prøverne var stort set konsistente under prøven. Der var en tendens til reduktion af afslidningsmodstandsdygtigheden, når man gik fra den 10 ubehandlede prøve til en prøve, som var underkastet den første varmebehandling ved 700°C. De ikke-udludede prøver, prøverne 3 og 4, forandredes ikke, før de svigtede fuldstændigt mellem 800°C og 900°C. Varmebehandlingen viste sig at være uafhængig af afslid-ningsmodstandsdygtigheden, indtil diamantfasen ikke længere kunne 15 indeholde den indesluttede metalfase, og der indtraf revnedannelse.The results of the wear test are listed in Table II. The samples were largely consistent throughout the sample. There was a tendency to reduce abrasion resistance when moving from the 10 untreated sample to a sample subjected to the first heat treatment at 700 ° C. The non-leached samples, samples 3 and 4, did not change until they completely failed between 800 ° C and 900 ° C. The heat treatment was found to be independent of the abrasion resistance until the diamond phase could no longer contain the enclosed metal phase and cracking occurred.

Denne adfærd indicerer også tilstedeværelse af to adskilte faser: den bundne diamantfase, som udfører fræsningen i prøven, og metal-fasen, som er en rest fra sintringsprocessen. De udludede prøver, prøverne 1 og 2, tålte varmbehandlingen særdeles godt, endog ved 20 1200°C. Ved 1200°C synes der at være en tendens til en svag nedbrydning af prøven, hvilket kan indicere, at termisk tilbageomdannelse initieres pi overfladen.This behavior also indicates the presence of two distinct phases: the bonded diamond phase which performs the milling in the sample, and the metal phase, which is a residue from the sintering process. The leached samples, samples 1 and 2, withstand the heat treatment extremely well, even at 20 1200 ° C. At 1200 ° C, there appears to be a tendency for slight degradation of the sample, which may indicate that thermal back-conversion is initiated at the surface.

25 TABEL IITABLE II

Varmebehandling Udludede prøver Ikke-udludede prøver °C_ Prøve 1 Prøve 2 Prøve 3 Prøve 4 30 Ubehandlet 150-200 120-150 150 100-120 700 150 120 120 100 800 “ 120 100 120 100 900 120 100 Radiale revner 1000 - 35 1100 - 1200 86-100 100-120 1300 - 11Heat treatment Leaked samples Non-leached samples ° C Sample 1 Sample 2 Sample 3 Sample 4 30 Untreated 150-200 120-150 150 100-120 700 150 120 120 100 800 “120 100 120 100 900 120 100 Radial cracks 1000 - 35 1100 - 1200 86-100 100-120 1300 - 11

DK 152098 BDK 152098 B

Prøveresultaterne i tabel II angiver tid pr. enhed kompaktemne-afslidning i tommer X 100. Værktøjsnedslidningen bestemtes ved at måle bredden af den "flade del" på kompaktemnet, som skyldtes kontakt med arbejdsstykket. Forsøgsresultaterne er kun meningsfulde 5 ved sammenligning af den relative formåen af de udludede og de ikke-udludede prøver.The test results in Table II indicate time per day. unit compacting wear in inches X 100. Tool wear was determined by measuring the width of the "flat part" of the compacting material caused by contact with the workpiece. The test results are only meaningful 5 when comparing the relative performance of the leached and the non-leached samples.

De udludede prøver giver gennemsnitlig en højere prøveværdi end de ikke-udludede prøver. Dette kan skyldes den termiske nedbrydning af det ikke-udludede kompaktemne under fræseprøve-10 bearbejdningen med prøveemnerne. Den samme nedbrydningsmekanisme kan således forekomme såvel under afslidningsprøverne som ved varmebehandlingerne. Hvis dette er tilfældet, ekspanderer koboltfasen, når værktøjsspidsen opvarmes til høj temperatur, når den er i berøring med arbejdsemnet, mere end diamantfasen og 15 revner i spidskanten i de første få partikellag. Den beskadigede spids svækkes derved, og bearbejdningsevnen forringes. De udludede prøveemner er imidlertid termisk stabile indtil en højere arbejdstemperatur og beskadiges ikke termisk, når de er i berøring med arbejdsemnet.The excluded samples yield on average a higher sample value than the non-excluded samples. This may be due to the thermal degradation of the non-lubricated compact during machining with the specimens. Thus, the same degradation mechanism can occur both during the wear tests and during the heat treatments. If this is the case, when the tool tip is heated to high temperature when in contact with the workpiece, the cobalt phase expands more than the diamond phase and 15 cracks at the tip edge of the first few layers of particles. The damaged tip is thereby weakened and the machining ability is impaired. However, the leached specimens are thermally stable up to a higher working temperature and are not thermally damaged when in contact with the workpiece.

20 SEM-analyse afslørede, at ikke-udludede prøveemner havde mange forskellige egenskaber sammenlignet med de udludede prøveemner. Metalfasen begyndte at trænge ud fra overfladen mellem 700°C og 800°C ved betragtning under en forstørring under 2000 X.20 SEM analysis revealed that non-lubricated specimens had many different properties compared to the lubricated specimens. The metal phase began to penetrate from the surface between 700 ° C and 800 ° C when viewed under a magnification below 2000 X.

Da temperaturen var øget til 900°C krakkede prøvestykkerne radialt 25 fra den afrundede skærekant til prøvens midte. De udludede prøver udviste ikke en sådan optræden, men var forholdsvis uforandrede indtil 1300°C. Diamantlagene er rene ved 1200°C, men ved 1300°C ser fotografier forstørret 20 X uklare ud, og fotografier forstørret 1000 X viser en ætset overflade med mange blotlagte krystaller.As the temperature was raised to 900 ° C, the specimens cracked radially 25 from the rounded cutting edge to the center of the specimen. The leached samples did not show such occurrence, but remained relatively unchanged until 1300 ° C. The diamond layers are clean at 1200 ° C, but at 1300 ° C, photographs magnified 20 X are blurred, and photographs magnified 1000 X show an etched surface with many exposed crystals.

30 Dette skyldes formodentlig termisk nedbrydning af overfladen, men kan også være resultatet af mindre oxygenurenheder i argonatatmos-færen i rørovnen.This is presumably due to thermal degradation of the surface, but may also be the result of minor oxygen impurities in the argon atmosphere in the furnace.

EKSEMPEL IVEXAMPLE IV

35 To diamantkompaktemner (prøverstykkerne IV-1 og IV-2) fremstilledes som angivet i eksempel I med undtagelse af, at car-bidbærerne ikke blev afslebet. En epoxyplast ("Epon 826" harpiks med nodisk methylanhydrid og benzyldimethylamin hærdemiddel) støbtes omkring prøve IV-1 og hærdnedes. Overfladen af diamant- 12Two diamond compact blanks (specimens IV-1 and IV-2) were prepared as set forth in Example I, except that the carbide carriers were not ground. An epoxy resin ("Epon 826" resin with nodic methyl anhydride and benzyldimethylamine curing agent) was cast around Sample IV-1 and cured. The surface of the diamond 12

DK 152098 BDK 152098 B

laget blev frilagt ved at fjerne alt plast på lagets overflade ved sandbehandling. Prøve IV-1 anbragtes derefter i kogende SHCIrlHNO^ i 37,15 timer. Efter fjernelse fra syren fjernedes plasten fra carbid-laget og iagttoges visuelt. Der sås tegn på en svag reaktion mellem 5 syren og de ikke-frilagte overflader. Imidlertid viste overfladen af carbidlaget sig ikke at være beskadiget af syren i væsentlig grad. Overfladen af diamantlaget undersøgtes derefter under et scanning -elektronmikroskop (op til en forstørring på 2000 X). Overfladen af diamantlaget havde et udseende svarende til overfladerne af dia-10 mantlaget på de udludede prøveemner i eksempel I. Prøve IV-1 undersøgtes derefter ved energispredende røntgenstråleanalyse til sammenligning af intensiteterne af bestanddelene i metalfasen med dem for et kompaktemne af samme type, som ikke var blevet udludet. Resultaterne af SEM-analysen og røntgenstråleanalysen indicerede, at 15 syren trængte ind i diamantlaget og fjernede en betydelig del af metalfasen.the layer was exposed by removing all plastic on the surface of the layer by sand treatment. Sample IV-1 was then placed in boiling SHCIrlHNO 3 for 37.15 hours. After removal from the acid, the plastic was removed from the carbide layer and visually observed. There was evidence of a weak reaction between the 5 acid and the non-exposed surfaces. However, the surface of the carbide layer did not appear to be significantly damaged by the acid. The surface of the diamond layer was then examined under a scanning electron microscope (up to a magnification of 2000 X). The surface of the diamond layer had an appearance similar to the surfaces of the diamond layer on the leached specimens of Example I. Sample IV-1 was then examined by energy scattering X-ray analysis to compare the intensities of the constituents of the metal phase with those of a compact type of the same type. had been ruled out. The results of the SEM analysis and X-ray analysis indicated that the 15 acid penetrated the diamond layer and removed a significant portion of the metal phase.

Prøverne IV-1 og IV-2 underkastedes derefter en drejeprøve til bestemmelse af afslidningsmodstandsdygtigheden, som beskrevet ovenfor i eksempel III. Resultaterne af afslidningsprøven (beregnet , 20 som i eksempel III) var 120-150 for prøve IV-1 (udludet) og 100-120 for prøve IV-2 (ikke-udludet). Disse prøveresultater, som viser overlegenheden af det udludede kompaktemne, stemmer overens med de i eksempel III opnåede resultater og underbygger således, at fjernelsen af metalfasen i skærekantområdet forbedrer diamantkom-25 paktmaterialets bearbejdningsevne.Samples IV-1 and IV-2 were then subjected to a swab test to determine the abrasion resistance, as described above in Example III. The results of the wear test (calculated, 20 as in Example III) were 120-150 for Sample IV-1 (the leached) and 100-120 for Sample IV-2 (the leached). These test results, which show the superiority of the lubricated compact, are consistent with the results obtained in Example III and support such that the removal of the metal phase in the cutting edge region improves the machining ability of the diamond compact.

30 3530 35

Claims (10)

1. Værktøjskomponent, specielt til skære-, bore- og spåntag-ningsværktøj, med slibende partikler (11) af diamant eller kubisk 5 bornitrid, et metallisk sintringshjælpemiddel og tomme porer (15), kendetegnet ved, at de slibende partikler (11) er selv-bundne og udgør 70-95 volumenprocent af værktøjskomponenten, at det metalliske sintringshjælpemiddel, som tjener til at sammenbinde de selvbundne partikler (11), udgør 0,05-3 volumenprocent af værktøjs- 10 komponenten, og at de tomme porer (15), der afgrænses af de selvbundne partikler (11), er fordelt i værktøjskomponenten med en indbyrdes forbundet struktur, hvilke porer udgør 5-30 volumenprocent af værktøjskomponenten.A tool component, especially for cutting, drilling and cutting tools, with abrasive particles (11) of diamond or cubic boron nitride, a metallic sintering aid and empty pores (15), characterized in that the abrasive particles (11) are self-bonded and constitutes 70-95% by volume of the tool component, the metallic sintering aid which serves to bond the self-bonded particles (11) constitutes 0.05-3% by volume of the tool component and the empty pores (15) defined by the self-bound particles (11) are distributed in the tool component with an interconnected structure, which pores constitute 5-30% by volume of the tool component. 2. Værktøjs komponent ifølge krav 1, kendetegnet 15 ved, at de slibende partikler (11) udgøres af diamantpartikler, og at det metalliske sintringshjælpemiddel består af (1) et katalysatormetal fra gruppe VIII i det periodiske system, chrom, mangan eller tantal eller en blanding heraf eller af (2) en legering af mindst to af ovennævnte katalysatormetaller. 20Tool component according to claim 1, characterized in that the abrasive particles (11) are diamond particles and that the metallic sintering aid consists of (1) a Group VIII catalyst metal in the periodic system, chromium, manganese or tantalum or a mixture thereof or of (2) an alloy of at least two of the above catalyst metals. 20 3. Værktøjskomponent ifølge krav 1 eller 2, kendeteg net ved, at diamantpartiklerne (11) har en partikelstørrelse, som ligger i området fra 1 til 1000 pm.Tool component according to claim 1 or 2, characterized in that the diamond particles (11) have a particle size ranging from 1 to 1000 µm. 4. Værktøjskomponent ifølge krav 1, kendetegnet ved, at partiklerne (11) består af kubisk bornitrid, og at den 25 metalliske fase, som i alt væsentligt er jævnt fordelt i værktøjskomponenten, består af kobolt, en koboltlegering eller en legering af aluminium med nikkel, mangan, jern, vanadium eller chrom som legeringsmetal.Tool component according to claim 1, characterized in that the particles (11) consist of cubic boron nitride and that the metallic phase, which is substantially evenly distributed in the tool component, consists of cobalt, a cobalt alloy or an alloy of aluminum with nickel. , manganese, iron, vanadium or chromium as alloy metal. 5. Værkstøjs komponent ifølge krav 1 eller 4, kende- 30 tegnet ved, at partiklerne (11) består af kubisk bornitrid med en partikelstørrelse på 1-300 pm.The tooling component according to claim 1 or 4, characterized in that the particles (11) consist of cubic boron nitride having a particle size of 1-300 µm. 6. Værktøjskomponent ifølge krav 1-5, kendetegnet ved, at de selvbundne partikler er bundet til et underlag af sintret hårdmetal.Tool component according to claims 1-5, characterized in that the self-bonded particles are bonded to a base of sintered cemented carbide. 7. Fremgangsmåde til fremstilling af en værktøjskomponent ifølge et af kravene 1-6, ved hvilken fremgangsmåde a) en masse af diamantpartikler eller partikler, der består af kubisk bornitrid, og en masse af metallisk sintringshjælpemiddel for den pågældende partikelmasse indføres i en DK 152098 B reaktionsbeholder, b) reaktionsbeholderen med indhold samtidig udsættes for temperaturer i området 1200-2000°C og tryk pi over 40 kilobar, 5 c) varmetilførslen til reaktionsbeholderen bringes til ophør, og trykket reduceres, og d) det under fremgangsmidetrinnene a) til c) dannede slibe-legeme, som består af de direkte til hinanden bundne partikler og det metalliske sintringshjælpemiddel, der er 10 trængt ind mellem partiklerne, fjernes fra reaktionsbe holderen, kendetegnet ved, at det metalliske sintringshjælpemiddel, som er blevet indført i legemet, fjernes fra dette, indtil der tilbage i legemet er en andel på 0,05-3 volumenprocent af legemet.A method of producing a tool component according to any one of claims 1-6, wherein process a) introduces a mass of diamond particles or particles consisting of cubic boron nitride and a mass of metallic sintering aid for said particle mass into a DK 152098 B (b) the reaction vessel containing at the same time is subjected to temperatures in the range of 1200-2000 ° C and pressure of over 40 kilobars; (c) the heat supply to the reaction vessel is stopped and the pressure is reduced; formed abrasive body consisting of the directly bonded particles and the metallic sintering aid penetrated between the particles is removed from the reaction vessel, characterized in that the metallic sintering aid introduced into the body is removed from this until a residue of 0.05-3% by volume of the body remains in the body. 8. Fremgangsmåde ifølge krav 7, kendetegnet ved, at metallet fjernes fra legemet, ved at legemet neddykkes i en syre, fortrinsvis kongevand, salpetersyre, saltsyre eller flussyre.Process according to claim 7, characterized in that the metal is removed from the body by immersing the body in an acid, preferably royal water, nitric acid, hydrochloric acid or hydrofluoric acid. 9. Fremgangsmåde ifølge krav 7, kendetegnet ved, at metallet fjernes fra legemet ved ekstraktion med flydende zink.Process according to claim 7, characterized in that the metal is removed from the body by liquid zinc extraction. 10. Fremgangsmåde ifølge krav 7, kendetegnet ved, at metallet frigøres fra legemet ved elektrolyse. 25 30 35Process according to claim 7, characterized in that the metal is released from the body by electrolysis. 25 30 35
DK072878A 1977-02-18 1978-02-17 TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND TAKING TOOLS, AND PROCEDURES FOR MANUFACTURING THEREOF. DK152098C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77015177A 1977-02-18 1977-02-18
US77015177 1977-02-18

Publications (3)

Publication Number Publication Date
DK72878A DK72878A (en) 1978-08-19
DK152098B true DK152098B (en) 1988-02-01
DK152098C DK152098C (en) 1988-06-27

Family

ID=25087642

Family Applications (1)

Application Number Title Priority Date Filing Date
DK072878A DK152098C (en) 1977-02-18 1978-02-17 TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND TAKING TOOLS, AND PROCEDURES FOR MANUFACTURING THEREOF.

Country Status (22)

Country Link
JP (1) JPS53114589A (en)
AT (1) AT370021B (en)
AU (1) AU518668B2 (en)
BE (1) BE863934A (en)
BR (1) BR7800988A (en)
CH (1) CH637611A5 (en)
DE (1) DE2805460A1 (en)
DK (1) DK152098C (en)
ES (1) ES467085A1 (en)
FI (1) FI65935C (en)
FR (1) FR2380845A1 (en)
GB (1) GB1598837A (en)
GR (1) GR64066B (en)
IE (1) IE46644B1 (en)
IL (1) IL53846A (en)
IN (1) IN148419B (en)
IT (1) IT1095412B (en)
LU (1) LU79081A1 (en)
NL (1) NL7801822A (en)
NO (1) NO151691C (en)
SE (1) SE444674B (en)
ZA (1) ZA78416B (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380846A1 (en) * 1978-02-16 1978-09-15 Gen Electric Porous cutting tools - made by bonding diamond or cubic boron nitride with metal which is then removed by etching to form the pores
US4374651A (en) * 1981-09-28 1983-02-22 General Electric Company Composite of metal-bonded cubic boron nitride and a substrate and process of preparation
ZA831881B (en) * 1982-04-02 1984-06-27 Gen Electric Sweep through process for making polycrystalline compacts
ATE34108T1 (en) * 1982-12-21 1988-05-15 De Beers Ind Diamond ABRASIVE PRESSES AND PROCESS FOR THEIR MANUFACTURE.
JPS6076964A (en) * 1983-08-29 1985-05-01 ジ−テイ−イ−・ベイルロン・コ−ポレ−シヨン Polycrystal grinding grid
CA1253349A (en) * 1983-08-29 1989-05-02 Robert H. Frushour Polycrystalline abrasive grit
FR2568933B1 (en) * 1984-08-13 1986-09-19 Combustible Nucleaire DIAMOND ROTARY DRILLING TOOL AND METHOD FOR MANUFACTURING SUCH A TOOL
FR2568810B1 (en) * 1984-08-13 1986-11-14 Combustible Nucleaire DIAMOND CUTTING ELEMENT AND METHOD FOR MANUFACTURING SUCH AN ELEMENT
AT383758B (en) * 1985-12-23 1987-08-25 Plansee Metallwerk METHOD FOR PRODUCING A SPUTTER TARGET
DE3706340A1 (en) * 1987-02-27 1988-09-08 Winter & Sohn Ernst METHOD FOR APPLYING A WEAR PROTECTIVE LAYER AND PRODUCT PRODUCED THEREOF
EP0333244B1 (en) * 1988-03-10 1992-07-15 "EMIEL VANDERSTRAETEN" Société de personnes à responsabilité limitée Sound insulating and/or vibration-damping cover, element incorporating such a cover, and method of applying the latter
FR2647153B1 (en) * 1989-05-17 1995-12-01 Combustible Nucleaire COMPOSITE TOOL COMPRISING A POLYCRYSTALLINE DIAMOND ACTIVE PART AND METHOD FOR MANUFACTURING THE SAME
DE4027580A1 (en) * 1990-08-31 1992-03-05 Lux Benno COMPOSITE BODY, METHOD FOR THE PRODUCTION AND USE THEREOF
EP0487292B1 (en) * 1990-11-22 1996-02-14 Sumitomo Electric Industries, Limited Polycrystalline diamond tool and method for producing same
US5366522A (en) * 1991-11-07 1994-11-22 Sumitomo Electric Industries, Ltd. Polycrystalline diamond cutting tool and method of manufacturing the same
US5172778A (en) * 1991-11-14 1992-12-22 Baker-Hughes, Inc. Drill bit cutter and method for reducing pressure loading of cutters
WO1999044776A1 (en) 1998-03-02 1999-09-10 Sumitomo Electric Industries, Ltd. Sintered diamond tool and method for manufacturing the same
JP4045014B2 (en) 1998-04-28 2008-02-13 住友電工ハードメタル株式会社 Polycrystalline diamond tools
US6344149B1 (en) * 1998-11-10 2002-02-05 Kennametal Pc Inc. Polycrystalline diamond member and method of making the same
US6691596B1 (en) 2000-02-29 2004-02-17 Irwin Industrial Tool Company Circular saw blade for cutting fiber cement materials
CA2624490A1 (en) 2005-10-14 2007-04-19 Element Six (Production) (Pty) Ltd Method of making a modified abrasive compact
EP2107045B1 (en) 2007-02-02 2017-03-22 Sumitomo Electric Hardmetal Corp. Diamond sinter and process for producing the same
JP5125646B2 (en) 2008-03-19 2013-01-23 株式会社タンガロイ Cubic boron nitride sintered tool
GB0901096D0 (en) 2009-01-23 2009-03-11 Element Six Ltd Method of treating a diamond containing body
US9067305B2 (en) 2010-05-18 2015-06-30 Element Six Abrasives S.A. Polycrystalline diamond
GB201008239D0 (en) 2010-05-18 2010-06-30 Element Six Production Pty Ltd Polycrystalline diamond
TWI613285B (en) 2010-09-03 2018-02-01 聖高拜磨料有限公司 Bonded abrasive article and method of forming
JP6064058B2 (en) 2012-12-31 2017-01-18 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
JP2016501735A (en) 2012-12-31 2016-01-21 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
WO2014106159A1 (en) 2012-12-31 2014-07-03 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
WO2014165447A1 (en) 2013-03-31 2014-10-09 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
KR101975733B1 (en) 2013-09-29 2019-05-07 애플 인크. Connectible component identification
WO2015195754A1 (en) 2014-06-20 2015-12-23 Halliburton Energy Services, Inc. Laser-leached polycrystalline diamond and laser-leaching methods and devices
JP5969106B1 (en) * 2015-12-28 2016-08-10 日進工具株式会社 End mill and manufacturing method thereof
TW202016012A (en) * 2018-09-17 2020-05-01 美商戴蒙創新公司 Cubic boron nitride particle population with highly-etched particle surface and high toughness index
JP7470291B2 (en) * 2020-11-27 2024-04-18 トーメイダイヤ株式会社 Carbide-bonded polycrystalline diamond electrode material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141746A (en) * 1960-10-03 1964-07-21 Gen Electric Diamond compact abrasive
GB1010506A (en) * 1960-11-30 1965-11-17 Carborundum Co Improvements in abrasive products
US3609818A (en) * 1970-01-02 1971-10-05 Gen Electric Reaction vessel for high pressure apparatus
NL7104326A (en) * 1970-04-08 1971-10-12 Gen Electric
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US3743489A (en) * 1971-07-01 1973-07-03 Gen Electric Abrasive bodies of finely-divided cubic boron nitride crystals
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US4063909A (en) * 1974-09-18 1977-12-20 Robert Dennis Mitchell Abrasive compact brazed to a backing

Also Published As

Publication number Publication date
DK72878A (en) 1978-08-19
ZA78416B (en) 1979-01-31
IT1095412B (en) 1985-08-10
IE46644B1 (en) 1983-08-10
ATA104878A (en) 1982-07-15
FI65935B (en) 1984-04-30
FR2380845A1 (en) 1978-09-15
FI780451A (en) 1978-08-19
JPS6333985B2 (en) 1988-07-07
IE780089L (en) 1978-08-18
NO780546L (en) 1978-08-21
BR7800988A (en) 1978-09-19
CH637611A5 (en) 1983-08-15
AU3334278A (en) 1979-08-23
IL53846A (en) 1981-10-30
DK152098C (en) 1988-06-27
AU518668B2 (en) 1981-10-15
LU79081A1 (en) 1978-06-27
ES467085A1 (en) 1978-11-01
DE2805460C2 (en) 1993-08-05
GR64066B (en) 1980-01-21
SE7801872L (en) 1978-08-19
NO151691C (en) 1985-05-22
DE2805460A1 (en) 1978-08-24
IT7820283A0 (en) 1978-02-16
FI65935C (en) 1984-08-10
GB1598837A (en) 1981-09-23
IL53846A0 (en) 1978-04-30
NO151691B (en) 1985-02-11
JPS53114589A (en) 1978-10-06
IN148419B (en) 1981-02-21
BE863934A (en) 1978-05-29
AT370021B (en) 1983-02-25
NL7801822A (en) 1978-08-22
SE444674B (en) 1986-04-28

Similar Documents

Publication Publication Date Title
DK152098B (en) TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND TAKING TOOLS, AND PROCEDURES FOR MANUFACTURING THEREOF.
US4224380A (en) Temperature resistant abrasive compact and method for making same
US4288248A (en) Temperature resistant abrasive compact and method for making same
US4534773A (en) Abrasive product and method for manufacturing
CA1136429A (en) Abrasive compacts
US3929432A (en) Diamond particle having a composite coating of titanium and a metal layer
US5127923A (en) Composite abrasive compact having high thermal stability
US5009673A (en) Method for making polycrystalline sandwich compacts
JP2607469B2 (en) Diamond compact and manufacturing method thereof
Ding et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents
CN1032509A (en) Low pressure bonding diamond polycrystal and manufacture method thereof
JP2014521848A (en) PCD material with high diamond frame strength
CN105063455B (en) It is a kind of to contain cubic boron nitride, ceramics, the cutter material of metal and preparation method thereof
DK155659B (en) COMPOSITION BODIES FOR GRINDING OR FOR CUTTING TOOLS AND PROCEDURES FOR MANUFACTURING THE SAME
EP3341341B1 (en) A method of producing a component of a composite of diamond and a binder
US20120291361A1 (en) High abrasion low stress pdc
Konstanty Powder metallurgy diamond tools–a review of manufacturing routes
CA1119821A (en) Temperature resistant abrasive compact and method for making same
WO2012158322A2 (en) High abrasion low stress diamond cutting element
US9598907B2 (en) Modification of diamond feeds for improving polycrystalline diamond cutter
EP2714620B1 (en) Super-hard structure
CN109071362B (en) Polycrystalline diamond compact with interstitial diamond grains and method of making same
JPS5879808A (en) Improvement of sintered diamond
JP7425872B2 (en) Polycrystalline diamond with iron-containing binder
CN112658261B (en) Polycrystalline cubic boron nitride cutter and preparation method thereof