NO151691B - TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND CUTTING TOOLS, AND PROCEDURES IN MANUFACTURING THEREOF - Google Patents

TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND CUTTING TOOLS, AND PROCEDURES IN MANUFACTURING THEREOF Download PDF

Info

Publication number
NO151691B
NO151691B NO780546A NO780546A NO151691B NO 151691 B NO151691 B NO 151691B NO 780546 A NO780546 A NO 780546A NO 780546 A NO780546 A NO 780546A NO 151691 B NO151691 B NO 151691B
Authority
NO
Norway
Prior art keywords
particles
tool component
diamond
sintering aid
boron nitride
Prior art date
Application number
NO780546A
Other languages
Norwegian (no)
Other versions
NO151691C (en
NO780546L (en
Inventor
Harold Paul Bovenkerk
Paul Donald Gigl
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of NO780546L publication Critical patent/NO780546L/en
Publication of NO151691B publication Critical patent/NO151691B/en
Publication of NO151691C publication Critical patent/NO151691C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/0685Crystal sintering

Description

Oppfinnelsen angår maskinverktøykomponenter, spesielt The invention relates to machine tool components, in particular

for skjære-, bore- og formningsverktøy, og nærmere bestemt maskinverktøykomponenter som omfatter kompakterte gjenstander av slipende partikler av diamant eller kubisk bornitrid. for cutting, drilling and forming tools, and more specifically machine tool components comprising compacted articles of abrasive particles of diamond or cubic boron nitride.

Det har vist seg at en kompaktert diamantgjenstand fremstilt It has been shown that a compacted diamond object produced

som beskrevet i US patentskrift nr. 3745623 og i US patent- as described in US patent document no. 3745623 and in US patent

skrift nr. 3609818, har begrenset anvendelse på grunn av at den nedbrytes termisk ved en temperatur over ca. 700°C. Det har likeledes vist seg at en kompaktert gjenstand av kubisk bornitrid (KBN) fremstilt som beskrevet i US patentskrift nr. 3767371 og i US patentskrift nr. 3743489, har begrenset anvendelse. Den nedbrytes også termisk ved en temperatur over ca. 700°C. Dette hindrer bruk av slike kompakterte gjenstander for anvendelser hvor det kreves at (1) den kompakterte gjenstand skal bindes til et underlag ved hjelp av et slag-loddingsmateriale med et smeltepunkt nær eller over den kom- document no. 3609818, has limited application due to the fact that it breaks down thermally at a temperature above approx. 700°C. It has also been shown that a compacted object of cubic boron nitride (KBN) produced as described in US patent document no. 3767371 and in US patent document no. 3743489 has limited application. It also breaks down thermally at a temperature above approx. 700°C. This precludes the use of such compacted objects for applications where it is required that (1) the compacted object be bonded to a substrate by means of a brazing material with a melting point close to or above the com-

pakterte gjenstands termiske nedbrytningspunkt eller (2) at den kompakterte gjenstand skal støpes inn i en slitasjefast grunnmasse med høyt smeltepunkt, som vanlig anvendt i en over-flateherdet borekrone for fjell. compacted object's thermal decomposition point or (2) that the compacted object is to be cast into a wear-resistant base material with a high melting point, as commonly used in a surface-hardened drill bit for rock.

Oppfinnelsen angår således en verktøykomponent, spesielt The invention thus relates to a tool component, in particular

for skjære-, bore- og formningsverktøy, med slipende par- for cutting, drilling and shaping tools, with abrasive par-

tikler av diamant eller kubisk bornitrid, et metallisk sintringshjelpemiddel og tomme porer, og verktøykomponenten er sær- ticles of diamond or cubic boron nitride, a metallic sintering aid and empty pores, and the tool component is special-

preget ved at de slipende partikler er selvbundne og utgjør 70-95 volum% av verktøykomponenten, at 0,05-3 volum% av verktøykomponenten består av det metalliske sintringshjelpe- characterized by the fact that the abrasive particles are self-bound and make up 70-95% by volume of the tool component, that 0.05-3% by volume of the tool component consists of the metallic sintering aid

middel som tjener til å binde de selvbundne partikler sammen, agent that serves to bind the self-bound particles together,

og at de tomme porer som er avgrenset av de selvbundne partikler, er fordelt i verktøykomponenten med en innbyrdes forbundet struktur, idet porene utgjør 5-30 volum% av verktøy-komponenten . and that the empty pores delimited by the self-bound particles are distributed in the tool component with an interconnected structure, the pores making up 5-30% by volume of the tool component.

Oppfinnelsen angår også en fremgangsmåte ved fremstilling The invention also relates to a method of manufacture

av en verktøykomponent ifølge oppfinnelsen, hvor of a tool component according to the invention, where

a) en masse av diamantpartikler eller av partikler som består av kubisk bornitrid, og dessuten en masse av metallisk a) a mass of diamond particles or of particles consisting of cubic boron nitride, and also a mass of metallic

sintringshjelpemiddel for den angjeldende partikkelmasse innføres i en reaksjonsbeholder, sintering aid for the particle mass in question is introduced into a reaction vessel,

b) reaksjonsbeholderen med dens innhold utsettes samtidig for temperaturertinnen området 1200-2000°C og trykk over 40 b) the reaction vessel with its contents is simultaneously exposed to temperatures in the range of 1200-2000°C and pressure above 40

kilobar, kilobar,

c) varmetilførselen til reaksjonsbeholderen stenges av og trykket reduseres, og d) slipelegemet dannet i fremgangsmåtetrinnene a)til c) og som består av de direkte til hverandre bundne partikler og det c) the heat supply to the reaction vessel is shut off and the pressure is reduced, and d) the grinding body formed in process steps a) to c) and which consists of the particles directly bonded to each other and the

metalliske sintringshjelpemiddel som har siget inn mellom partiklene, fjernes fra reaksjonsbeholderen, og fremgangs-måten er særpreget ved at det metalliske sintringshjelpemiddel som er blitt innført i legemet, fjernes fra dette inntil det i legemet er igjen en andel som utgjør 0,05-3 volum% av legemet. metallic sintering aid that has seeped between the particles is removed from the reaction vessel, and the method is characterized by the fact that the metallic sintering aid that has been introduced into the body is removed from it until a proportion of 0.05-3 volume remains in the body % of the body.

Oppfinnelsen vil bli nærmere beskrevet under henvisning til tegningen som er et mikrofotografi av en del av en slipt overflate av en kompaktert gjenstand av diamant og fremstilt ifølge oppfinnelsen. The invention will be described in more detail with reference to the drawing which is a photomicrograph of part of a ground surface of a compacted object of diamond and produced according to the invention.

Selv om en kompaktert gjenstand av diamant er vist på Fig. 1, er denne like illustrerende for andre utførelsesformer av oppfinnelsen hvor de slipende partikler utgjøres av kubisk bornitrid. Although a compacted object of diamond is shown in Fig. 1, this is equally illustrative of other embodiments of the invention where the abrasive particles are made up of cubic boron nitride.

Den kompakterte gjenstand omfatter diamantpartikler 11 som utgjør 70-95 volum% av den kompakterte gjenstand (partikkel er anvendt heri for å betegne en separat krystallitt eller et fragment av denne). Grenseflater 13 er representative for selvbindingen av eller diamant-diamantbindingen mellom nabopartikler 11. De samme diamantkrystaller 11 som kan ses i den slipte overflate av den på tegningen viste kompakterte gjenstand, er bundet i den tredje dimensjon til nabodiamantkrystallene (ikke synlige). En metallisk fase av sintringshjelpematerialet (ikke vist på tegningen) er i det vesentlige jevnt infiltrert gjennom hele den kompakterte gjenstand og antas å være innkapslet i stengte områder dannet av til-støtende diamantpartikler. Denne fase utgjør 0,05-3 volum% av den kompakterte gjenstand. Et nettverk av innbyrdes forbundne, The compacted object comprises diamond particles 11 which make up 70-95% by volume of the compacted object (particle is used herein to denote a separate crystallite or a fragment thereof). Interfaces 13 are representative of the self-bonding or diamond-diamond bonding between neighboring particles 11. The same diamond crystals 11 that can be seen in the ground surface of the compacted object shown in the drawing are bonded in the third dimension to the neighboring diamond crystals (not visible). A metallic phase of the sintering aid material (not shown in the drawing) is substantially uniformly infiltrated throughout the compacted object and is believed to be encapsulated in closed areas formed by adjacent diamond particles. This phase makes up 0.05-3% by volume of the compacted object. A network of interconnected,

tomme porer 15 er dispergert gjennom hele den kompakterte gjen- empty pores 15 are dispersed throughout the compacted re-

stand og er avgrenset av diamantpartiklene 11 og den metalliske fase (ikke vist). Porene 15 utgjør 5-30 volum% av den kompakterte gj enstand. state and is delimited by the diamond particles 11 and the metallic phase (not shown). The pores 15 make up 5-30% by volume of the compacted object.

Ifølge en utførelsesform består den kompakterte gjenstand utelukkende av de selvbundne partikler. Ifølge en annen utførelses-form er den kompakterte gjenstand bundet til et substrat (ikke vist), fortrinnsvis av koboltsement-wolframcarbid. According to one embodiment, the compacted object consists exclusively of the self-bound particles. According to another embodiment, the compacted object is bonded to a substrate (not shown), preferably of cobalt cement-tungsten carbide.

Et aksepterbart partikkelstørrelsesområde for diamantpartiklene 11 er 1-1000 pm. For kubisk bornitrid er det aksepterbare størrelses-område 1-300 pm. An acceptable particle size range for the diamond particles 11 is 1-1000 pm. For cubic boron nitride, the acceptable size range is 1-300 pm.

"Samtidig" som anvendt i den foreliggende fremgangsmåtes trinn (b), er ment å betegne at høytrykks/høytemperatur (HP/HT)-betingelsene foreligger eller forekommer til samme tid, men innebærer ikke at det er nødvendig at tidene for begynnelsen eller avslutningen av HP- og HT-betingelsene må være sammenfallende (selv om de av og til kan være det). "Simultaneous" as used in step (b) of the present method is intended to mean that the high pressure/high temperature (HP/HT) conditions exist or occur at the same time, but does not imply that it is necessary that the times for the beginning or the end of The HP and HT conditions must coincide (although occasionally they can).

"Sintringshjelpemiddel" eller "-materiale" som anvendt heri "Sintering aid" or "material" as used herein

er ment å betegne materialer som er en katalysator for diamant som herefter nærmere forklart, og/eller som befordrer sintringen av kubisk bornitrid som herefter nærmere forklart. Den mekanisme (katalytisk eller på annen måte) som ligger til grunn for sintrings-hjelpematerialenes befordring av selvbindingen av kubisk bornitrid, er ikke kjent. is intended to denote materials which are a catalyst for diamond as further explained below, and/or which promote the sintering of cubic boron nitride as further explained below. The mechanism (catalytic or otherwise) underlying the sintering aid materials' promotion of the self-bonding of cubic boron nitride is not known.

Foretrukne utførelsesformer av trinnene (a) - (d) av den ovenstående fremgangsmåte ved fremstilling av en verktøykomponent av diamantpartikler er mer fullstendig beskrevet i US patentskrifter nr. 3745623 og i US patentskrift nr. 3609818. Preferred embodiments of steps (a) - (d) of the above method in the manufacture of a tool component of diamond particles are more fully described in US Patent Documents No. 3745623 and in US Patent Document No. 3609818.

Kort oppsummert fremstilles, som beskrevet i disse patentskrifter, kompakterte gjenstander av diamant ved behandling under høyt trykk og høy temperatur, hvor varme, sammenpressede diamantpartikler infiltreres med et katalytisk materiale ved aksial eller radial gjennomstrømning av materialet gjennom diamantpartiklene. Under gjennomstrømningen forekommer katalysert sintring av diamantpartiklene, og dette fører til en sterk diamant-diamantbinding. Briefly summarized, as described in these patents, compacted objects of diamond are produced by processing under high pressure and high temperature, where hot, compressed diamond particles are infiltrated with a catalytic material by axial or radial flow of the material through the diamond particles. During the flow, catalyzed sintering of the diamond particles occurs, and this leads to a strong diamond-diamond bond.

Som beskrevet i US patentskrifter nr. 2947609 og nr. 2947610 er As described in US patent documents no. 2947609 and no. 2947610 is

det katalytiske materiale valgt fra gruppen (1) et katalytisk metall i elementær tilstand fra gruppen bestående av metallene Cr, Mn og Tå fra gruppe VIII i det periodiske system, (2) en blanding av legerbare metaller av det eller de katalytiske metaller og det eller de ikke-katalytiske metaller, (3) en legering av minst to av disse katalytiske metaller, og (4) en legering av det katalytiske metall eller katalytiske metaller og det ikke-katalytiske metall eller de ikke-katalytiske metaller. Kobolt i elementær form eller som legering er foretrukket. Dette materiale danner en metallisk fase i den slipende gjenstand som er blitt fremstilt ved høyt trykk og høy temperatur, som angitt i det ovenstående trinn (d). the catalytic material selected from the group (1) a catalytic metal in an elemental state from the group consisting of the metals Cr, Mn and To from group VIII of the periodic table, (2) a mixture of alloyable metals of the catalytic metal or metals and the or the non-catalytic metals, (3) an alloy of at least two of these catalytic metals, and (4) an alloy of the catalytic metal or metals and the non-catalytic metal or metals. Cobalt in elemental form or as an alloy is preferred. This material forms a metallic phase in the abrasive article which has been produced at high pressure and high temperature, as indicated in the above step (d).

Foretrukne utførelsesformer av trinnene (a) - (d) ved den ovenfor beskrevne fremgangsmåte ved fremstilling av en verktøy-komponent av kubiske bornitridpartikler er mer fullstendig beskrevet i US patentskrift nr. 3767371. Som beskrevet i og i for-bindelse med eksempel 1 i dette patentskrift fremstilles kompakterte gjenstander av kubisk bornitrid ved en HP/HT-prosess, hvor partikler av kubisk bornitrid infiltreres med et smeltet sintringshjelpe-materiale (metallisk kobolt) ved aksial gjennomstrømning av materialet gjennom de kubiske bornitridpartikler. Under gjennom-strømningen forekommer sintring av de kubiske bornitridpartikler, og dette fører til en utstrakt binding av kubiske bornitridpartikler til hverandre. Andre materialer som kan anvendes som sintrings-hjelpemidler for kubisk bornitrid, er beskrevet i US patentskrift nr. 3743489, spalte 3, linje 6 - linje 20, og er legeringer av aluminium og et legerende metall fra gruppen nikkel, kobolt, mangan, jern, vanadium og krom. Kobolt og koboltlegeringer er foretrukne. Sintringshjelpematerialet danner den metalliske fase beskrevet i trinn (d) angitt ovenfor. Preferred embodiments of steps (a) - (d) of the above-described method of manufacturing a tool component of cubic boron nitride particles are more fully described in US Patent No. 3767371. As described in and in connection with Example 1 herein patent, compacted objects of cubic boron nitride are produced by an HP/HT process, where particles of cubic boron nitride are infiltrated with a molten sintering aid material (metallic cobalt) by axial flow of the material through the cubic boron nitride particles. During the flow through, sintering of the cubic boron nitride particles occurs, and this leads to an extensive binding of cubic boron nitride particles to each other. Other materials that can be used as sintering aids for cubic boron nitride are described in US patent document no. 3743489, column 3, line 6 - line 20, and are alloys of aluminum and an alloying metal from the group of nickel, cobalt, manganese, iron, vanadium and chromium. Cobalt and cobalt alloys are preferred. The sintering aid material forms the metallic phase described in step (d) above.

Ved utførelsen av en utførelsesform av trinnene (a) - (d) ifølge US patentskrifter nr. 3745623 ,. nr. 3767371 og nr. 3743489 fremstilles en sammensatt kompaktert gjenstand ved in situ-binding av et lag av slipende partikler (diamant eller kubisk bornitrid) In the execution of an embodiment of steps (a) - (d) according to US patent documents no. 3745623,. no. 3767371 and no. 3743489, a composite compacted object is produced by in situ bonding of a layer of abrasive particles (diamond or cubic boron nitride)

til et sementert carbidsubstrat. Materialet for fremstilling av carbidsubstratet (enten fra et carbidstøpepulver eller fra en preformet gjenstand) er den foretrukne kilde for sintringshjelpematerialet. Det kan her vises til US patentskrift nr. 3745623, spalte 5, linje 58 -spalte 6, linje 8, og til spalte 8, linje 57 to a cemented carbide substrate. The material for making the carbide substrate (either from a carbide casting powder or from a preformed article) is the preferred source of the sintering aid material. Reference can be made here to US patent no. 3745623, column 5, line 58 - column 6, line 8, and to column 8, line 57

-spalte 9, linje 9, for eksempeldetaljer angående substratet. -column 9, line 9, for example details regarding the substrate.

En annen utførelsesform av oppfinnelsen angår dannelse av Another embodiment of the invention concerns the formation of

en kompaktert gjenstand bestående i det vesentlige av selvbundne slipende partikler. Ved denne utførelsesform utføres trinnene (a) - (d) på samme måte som beskrevet ovenfor, men med den forskjell at materialet for dannelse av carbidunderlaget for laget av slipende partikler, enten som et carbidstøpepulver eller i preformet tilstand, fortrinnsvis sløyfes. Når dette gjøres, blir sintringshjelpematerialet separat tilsatt, f.eks. som beskrevet i US patentskrift nr. 3609818. Et underlag av sementert carbid eller annet materiale kan selvfølgelig slagloddes til den kompakterte gjenstand efter at den metalliske fase er blitt fjernet, a compacted object consisting essentially of self-bonded abrasive particles. In this embodiment, steps (a) - (d) are carried out in the same way as described above, but with the difference that the material for forming the carbide substrate for the layer of abrasive particles, either as a carbide casting powder or in a preformed state, is preferably looped. When this is done, the sintering aid material is separately added, e.g. as described in US patent no. 3609818. A substrate of cemented carbide or other material can of course be brazed to the compacted object after the metallic phase has been removed,

for erholdelse av et verktøyemne eller -innsatsstykke. for obtaining a tool blank or insert.

Det har ifølge oppfinnelsen vist seg at den metalliske fase kan fjernes fra den kompakterte gjenstand ved behandling med en syre, ved ekstraksjon med flytende sink, ved elektrolytisk ut-armning eller ved lignende prosesser, slik at det fås en kompaktert gjenstand av i det vesentlige 100% slipende partikler i selv-bundet tilstand. Den kompakterte gjenstand inneholder således i det vesentlige ingen restmetallfase som vil kunne katalysere en tilbakeomvandling av bindingene mellom de slipende partikler og/ eller en ekspansjon og derved bryte bindingene mellom partiklene, idet disse er de to mekanismer som ifølge teorien har ført til at de kjente kompakterte gjenstander er blitt termisk nedbrutt ved høy temperatur. Det har vist seg at den kompakterte gjenstand fremstilt ifølge oppfinnelsen kan motstå temperaturer av opp til 1200-1300°C uten noen vesentlig termisk nedbrytning. According to the invention, it has been shown that the metallic phase can be removed from the compacted object by treatment with an acid, by extraction with liquid zinc, by electrolytic depletion or by similar processes, so that a compacted object of essentially 100 % abrasive particles in self-bonded state. The compacted object thus essentially contains no residual metal phase which would be able to catalyze a reverse conversion of the bonds between the abrasive particles and/or an expansion and thereby break the bonds between the particles, these being the two mechanisms which, according to the theory, have led to the known compacted objects have been thermally degraded at high temperature. It has been shown that the compacted object produced according to the invention can withstand temperatures of up to 1200-1300°C without any significant thermal degradation.

Eksempel 1 Example 1

En rekke skiveformede kompakterte diamantgjenstander ble fremstilt ved at 1) et 1,4 mm lag av findelte diamantpartikler med en nominell størrelse av under 8 pm og 3,2 mm tykt x 8,8 mm diameter sementert wolframcarbid (13 vekt% Co, 87 vekt% WC) ble anbragt i en 0,05 mm beholdermontasje av zirkonium, 2) en rekke av disse montasjer ble stablet i et høytrykk- høy-temperatur-apparat ifølge Fig. 1 for beholderen i US patentskrift nr.3745623, 3) trykket ble øket til ca. 65 kilobar og ved en temperatur av ca. 1400°C i 15 minutter, 4) temperaturen ble først langsomt senket og deretter trykket, og 5) prøvene ble fjernet fra høy-trykk-høytemperaturapparatet og slipt for erholdelse av kompakterte gjenstander med 0,5 mm tykk diamant bundet til det koboltsementerte wolframcarbidlag med en tykkelse av 2,7 mm. Carbidlaget for hver kompaktert gjenstand ble fjernet ved overflatesliping. A series of disk-shaped compacted diamond objects were prepared by 1) a 1.4 mm layer of finely divided diamond particles with a nominal size of less than 8 pm and 3.2 mm thick x 8.8 mm diameter cemented tungsten carbide (13 wt% Co, 87 wt % WC) was placed in a 0.05 mm container assembly of zirconium, 2) a number of these assemblies were stacked in a high-pressure, high-temperature apparatus according to Fig. 1 for the container in US patent document no. 3745623, 3) the pressure was increased to approx. 65 kilobars and at a temperature of approx. 1400°C for 15 minutes, 4) the temperature was first slowly lowered and then pressed, and 5) the samples were removed from the high-pressure-high-temperature apparatus and ground to obtain compacted objects with 0.5 mm thick diamond bonded to the cobalt-cemented tungsten carbide layer with a thickness of 2.7 mm. The carbide layer for each compacted object was removed by surface grinding.

Som angitt i tabell I ble halvparten av prøvene utlutet med varme,konsentrerte syreoppløsninger for å fjerne metallfasen og eventuelt andre oppløselige materialer som ikke besto av diamant. To forskjelliqe metoder ble anvendt for å fjerne det infiltrerende materiale. For en første gruppe, betegnet som prøver A-I og A-4, ble bare varm(konsentrert salpetersyre-flussyre i forhold av 1:1 anvendt for å behandle prøvene A-3 og A-4. På en annen gruppe, betegnet som prøver B-l—B-4, ble avvekslende salpetersyre-fluss-syreblandingen og en varm blanding av konsentrert saltsyre-salpetersyre (kongevann) i forholdet 3:1 anvendt for å behandle prøvene B-3 og B-4. Det viste seg at fjernelseshastigheten økte sterkt ved å anvende den sistnevnte syreoppløsning. Prøvene A-3 og A-4 ble behandlet med syre i en tid mellom 8 og 12 dager. Prøvene B-3 og B-4 ble behandlet i mellom 3 og 6 dager. For As indicated in Table I, half of the samples were leached with hot, concentrated acid solutions to remove the metal phase and any other soluble materials that did not consist of diamond. Two different methods were used to remove the infiltrating material. For a first group, designated as samples A-I and A-4, only hot (concentrated nitric acid-fluoric acid in a ratio of 1:1) was used to treat samples A-3 and A-4. On another group, designated as samples B-l —B-4, the alternating nitric acid-flux-acid mixture and a hot mixture of concentrated hydrochloric acid-nitric acid (aqua regia) in the ratio 3:1 were used to treat samples B-3 and B-4. It was found that the rate of removal increased greatly by to use the latter acid solution. Samples A-3 and A-4 were treated with acid for a time between 8 and 12 days. Samples B-3 and B-4 were treated for between 3 and 6 days. For

begge metoder forandret prøvenes dimensjon seg ikke under be-handlingen, og ingen avflaking av diamanten kunne iakttas. Et with both methods, the dimensions of the samples did not change during treatment, and no flaking of the diamond could be observed. One

eventuelt vekttap kan derfor tilskrives fjernelsen av den infiltrerende metallfase fordi diamant ikke oppløses av syrene. any weight loss can therefore be attributed to the removal of the infiltrating metal phase because diamond is not dissolved by the acids.

Mengden av den infiltrerende metallfase i slike kompakterte gjenstander ble beregnet til ca. 80,1 volum%, eller 19,8 vekt%, basert på egenvektsmålinger av den kompakterte gjenstand, før utluting pg a/ diamant- og metallutgangsmaterialene for fremstilling av den kompakterte gjenstand. Efter utluting er ca. 0,5 volum* eller 2 vekt% av det infiltrerende materiale tilbake. Fjernelsen av opp til 90 vekt% (prøve B-4) av det infiltrerende materiale antyder dessuten at lokaliseringen av størsteparten av den metalliske fase er i et kontinuerlig nettverk av porer. En undersøkelse ved h j elp av skanderende elektronmikroskopi (SEM) av en frakturert overflate av en utlutet prøve viser at nettverket av porer løper gjennom hele diamantlaget. Hullene viser seg å være fordelt gjennom hele laget, og de fleste hull har en diameter av under 1 pm. Dette antyder at syren trengte inn i det samlede diamantlag og fjernet den metalliske fase i det vesentlige jevnt i hele dette laget. ;Tverrbruddspenningen (TBS) og Youngs elastisitetsmodul (E) ;ble også målt for diamantlagene, som antydet i tabell I. Spenningsmålingen ble utført ved anvendelse av et belastningsapparat med en bjelke understøttet i tre punkter. Apparatet omfatter to stål-valser som er anordnet på en støtte, og med en tredje stålvalse sentrert over og med sin akse parallell med aksen for de to andre valser. Prøvene ble sentrert over de nedre valser og belastet inntil brudd. Tøyningen av prøvene ble målt parallelt med strekk-spenningen ved anvendelse av motstandsstrekklapper som var festet til en motstands-indikator. Prøvene A-I til A-4 ble tilberedt for spenningsmålingen og overflatebehandlet med en diamantskive (diamantpartikler med en størrelse av 177-250 pm). Prøvene B-l ;til B-4 ble tilberedt for spenningsmåling ved at de ble overflatebehandlet med en leppingmaskin under anvendelse av et 15 jum diamantslipemiddel for erholdelse av en mer sprekkfri overflate enn den overflate som ved sliping ble erholdt for prøvene A-I til A-4. Det antas at de bedre polerte overflater for prøvene som ;ble overflatebehandlet med findelt diamant,"gir høyere spennings-verdier på grunn av de oppnådde mer perfekte overflatetilstander, dvs. færre spenningskonsentrerende defekter. Dette antas å for-klare de lavere TBS som ble målt for de utlutede prøver (A-3, ;A-4, B-3 og B-4) . ;I motsetning til TBS-forsøksresultatene påvirkes E-målingene (tabell I) ikke av porøsiteten fordi E er et mål for et materiales innvendige fasthet og stivhet og ikke for mikro-sprekkdannelse. Den gjennomsnittlige forandring i E var bare ca. 12% lavere da den infiltrerende metallfase ble fjernet fra prøvene. Denne forskjell bør korrigeres for porøsiteten i de utlutede prøver fordi ;E = Youngs modul ;M = moment ;C = avstand til den ytre fiber ;I = arealets treghetsmoment, ;og M-C forandres ikke, men I er blitt redusert på grunn av at det effektive areale er blitt redusert proporsjonalt med porøsiteten. Hvis derfor kuleformige hulrom og en vilkårlig fordeling antas, vil E <=><Y>~~fl-x)' X = PorØsitetsfra^sjon, °9;verdien for E ville være større enn den målte. Den gjennomsnittlige verdi av 79 x lo 3 kg/mm 2for E for prøvene B-3 og B-4 (utlutet) er korrigert til 85 x IO<3> kg/mm<2> eller ca. 5% lavere enn gjennomsnittsverdien av 90 x 10 3 kg/mm 2 for E for prøvene B-l og B-2. ;Fjernelsen av den infiltrerende metallfase har derfor ;bare en meget liten virkning på E og viser at diamantlagets styrke nesten fullstendig skyldes diamant-diamantbindingen. ;E-verdien av 90 x 10 3 kg/mm 2er ca. 10% lavere enn gjennomsnittsverdien av 100 x 10 3 kg/mm 2 som kan beregnes ut fra elastisitetskonstanter for enkeltkrystaller av diamant. ;Eksempel 2 ;En kompaktert gjenstand ble fremstilt på samme måte som beskrevet i eksempel 1 for prøvene A-I til A-4, men med den unntagelse at en 1:1 blanding av 149-177 pm og 105-125 pm diamantpartikler ble anvendt istedenfor partiklene på 8 pm. ;Før utlutingen ble det beregnet at den kompakterte gjenstand inneholdt 89,1 vekt% diamant (96,5 volum%) og 11,9 vekt% metallfase (4,5 volum%). Efter utluting var det en reduksjon på 11,5% av den samlede vekt for den kompakterte gjenstand eller ca. 0,15 vekt% av den metalliske fase (0,06 volum%) var tilbake i den kompakterte gjenstand. ;Eksempel 3 ;Fire kompakterte diamantgjenstander ble fremstilt som beskrevet i eksempel 1. Carbidet ble slipt bort fra hver kompaktert gjenstand. For to av disse ble den infiltrerende metall-•fase fjernet ved utluting med varme syrer bestående av ;1HF:1HN03 og 3HC1:1HNC>3. Alle kompakterte gjenstander ble derefter ved hjelp av epoxyharpiks montert på et 0,89 cm rundt wolframcarbidsubstrat. Denne sammensatte gjenstand ble montert i en verktøyholder i en dreiebenk, og undersøkelser for å fastslå slitasjefastheten ved dreiing ble deretter utført. Arbeidsstykket var en gummikubbe fylt med kvartssand og som selges under varemerket "Ebonite Black Diamond". Forsøksbetingelsene var som følger: overflatehastighet' 107-168 overflatemeter/min (for en varmebehandlingsgruppe var maksimumshastigheten 24 over-flatemeter/min), skjæredybde 0,76 mm, tverrmating 0,13 mm/om-dreining og forsøkstid 60 minutter. Efter forsøket ble prøvene varmebehandlet i en rørovn i en strømmende, tørr argonatmosfære. Behandlingstemperaturene var 700-1300°C ved eksponering med mellomrom på 100°C. Eksponeringstiden var 10 minutter ved hver temperatur. Efter hver behandling ble prøvene undersøkt for å fastslå ;nedbrytning under et skanderende elektronmikroskop (SEM) og deretter montert for abrasjonsundersøkelse, med unntagelse av efter behandlingene ved 1000°C, 1100°C og 1300°C. Både topp- ;og bunnegger ble anvendt som skjæreegger før de ble slipt på ny. ;Abrasjonsforsøksresultatene er angitt i tabell II. ;Prøvene holdt seg i det vesentlige like under undersøkelsen. ;Det forekom en tilbøyelighet til nedsatt abrasjonsmotstand fra ;de ubehandlede prøver og til den første varmebehandling ved 7 00°C. De ikke utlutede prøver, prøvene 3 og 4, forandret seg ;ikke inntil en katastrofal termisk svikt fant sted mellom 800 ;og 900°C. Varmebehandlingen viste seg å være uavhengig av abrasjonsmotstanden inntil diamantfasen ikke lenger kunne inneholde den innesluttede metallfase og sprekkdannelse forekom. Denne opp-førsel antyder også at to adskilte faser er tilstede, dvs. den bundne diamantfase som under prøven utfører skjæringen, og metallfasen som er en etterlevning fra sintringsprosessen. De utlutede prøver, dvs. prøvene 1 og 2, motsto varmebehandlingen meget godt, selv opp til 1200°C. Tilbøyeligheten ved 1200°C synes å være en svak nedbrytning av prøven, og dette kan antyde igangsettelsen av en termisk tilbakeomvandling på overflaten. ;;Resultatene i tabell II representerer tiden pr. slitasje-enhet for den kompakterte gjenstand i 2,54 cm x 100. Verktøy-slitasjen ble fastslått ved å måle bredden av "flaten" på den kompakterte gjenstand forårsaket ved kontakt med arbeidsstykket. Resultatene er av betydning bare for å sammenligne den relative ;oppførsel av de utlutede og ikke utlutede prøver. ;De utlutede prøver har gjennomsnittlig et høyere prøve-resultat enn de ikke utlutede prøver. Dette kan skyldes termisk nedbrytning av den ikke-utlutede kompakterte gjenstand under skjære-forsøkene utført med prøvene. Den samme nedbrytningsmekanisme kan således virke under abrasjonsforsøkene som under varmebehand-lingene. Dersom dette er tilfellet, vil når verktøyspisseh opp-varmes til en høy temperatur når den befinner seg i kontakt med arbeidsstykket, koboltfasen ekspandere sterkere enn diamantfasen og sprekke spisseggen i de første få partikkellag. Den beskadige spiss blir derved svekket og gir et dårligere resultat. De utlutede prøver er imidlertid termisk stabile overfor en høyere arbeidstemperatur og beskadiges ikke termisk når de befinner seg ;.i kontakt med arbeidsstykket. ;SEM-analyse viste at de ikke utlutede prøver hadde en rekke forskjellige egenskaper sammenlignet med de utlutede prøver. Den metalliske fase begynte å ekstruderes fra overflaten ved en temperatur mellom 700 og 800°C, som iakttatt under en forstørrelse av 2000X. Etterhvert som temperaturen ble øket til 900°C, sprakk prøvene radialt fra den avrundede skjæreegg henimot midten av prøven. De utlutede prøver viste ikke denne oppførsel, men for-ble forholdsvis uforandrede inntil en temperatur av 1300°C. Diamantlagene er rene ved 1200°C, men ved 1300°C så prøvene på fotografier tatt med en forstørrelse av 20x avrundede og dunete ut, og fotografier tatt med en forstørrelse av 1000 X viste en etset overflate . med en rekke eksponerte krystaller. Dette er antagelig en termisk nedbrytning av overflaten, men kan også være resultatet av mindre oxygenforurensninger i rørovnens argonatmosfære. ;Eksempel 4 ;To kompakterte diam^ntgjenstander (prøvene IV-1 og IV-2) ;ble fremstilt som beskrevet i eksempel 1, men med den forandring at carbidsubstratene ikke ble avslipt. En epoxyplast ("Epon 826"-harpiks med nodisk methylanhydrid og benzyldimethylaminherdemiddel) ble støpt rundt prøven IV-1 og herdet. Diamantlagets overflate ble eksponert ved at all plast på overflaten av laget ble fjernet med sand. Prøven IV-1 ble derefter anbragt i kokende 3 HC1:1 HNO^ ;i 37,15 timer. Efter av syren var blitt fjernet, ble platen fjernet fra carbidlaget og undersøkt visuelt. Tegn på en svak reaksjon mellom syren og de ikke-eksponerte overflater ble iakttatt. Carbid- ;lagets overflate syntes imidlertid ikke å være vesentlig beskadiget av syren. Diamantlagets* overflate ble deretter undersøkt under et SEM (med en forstørrelse opp til 2 00 0X). Diamantlagets overflate hadde et lignende utseende som utseendet av diamantlaget for de utlutede prøver ifølge eksempel 1. Prøven IV-1 ble derefter undersøkt ved energidispergert røntgenanalyse for å sammenligne intensitetene for bestanddelene i den metalliske fase med bestanddelene for en kompaktert gjenstand av den samme type, men som ikke var blitt utlutet. Resultatene av SEM-analysen og røntgenanalysen antydet at syren trengte inn i diamantlaget og virket slik at den fjernet en vesentlig del av den metalliske fase. The amount of the infiltrating metal phase in such compacted objects was calculated to be approx. 80.1% by volume, or 19.8% by weight, based on specific gravity measurements of the compacted object, before leaching due to the diamond and metal starting materials for the production of the compacted object. After leaching, approx. 0.5 volume* or 2% by weight of the infiltrating material back. The removal of up to 90% by weight (sample B-4) of the infiltrating material further suggests that the localization of the majority of the metallic phase is in a continuous network of pores. An examination using scanning electron microscopy (SEM) of a fractured surface of a leached sample shows that the network of pores runs through the entire diamond layer. The holes are found to be distributed throughout the layer, and most holes have a diameter of less than 1 pm. This suggests that the acid penetrated the overall diamond layer and removed the metallic phase essentially uniformly throughout this layer. The transverse breaking stress (TBS) and Young's modulus of elasticity (E) were also measured for the diamond layers, as indicated in Table I. The stress measurement was carried out using a load apparatus with a beam supported at three points. The apparatus comprises two steel rollers which are arranged on a support, and with a third steel roller centered above and with its axis parallel to the axis of the other two rollers. The samples were centered over the lower rollers and loaded until failure. The strain of the samples was measured in parallel with the tensile stress using resistance strain gauges attached to a resistance indicator. The samples A-I to A-4 were prepared for the stress measurement and surface treated with a diamond disc (diamond particles with a size of 177-250 pm). Samples B-1 to B-4 were prepared for stress measurement by being surface treated with a lapping machine using a 15 µm diamond abrasive to obtain a more crack-free surface than the surface obtained by grinding for samples A-I to A-4. It is assumed that the better polished surfaces for the samples that were "surface treated with finely divided diamond" give higher stress values due to the achieved more perfect surface conditions, i.e. fewer stress concentrating defects. This is believed to explain the lower TBS that was measured for the leached samples (A-3, ;A-4, B-3 and B-4). ;Unlike the TBS test results, the E measurements (Table I) are not affected by the porosity because E is a measure of a material's internal strength and stiffness and not for micro-cracking. The average change in E was only about 12% lower when the infiltrating metal phase was removed from the samples. This difference should be corrected for the porosity of the leached samples because ;E = Young's modulus ;M = moment ;C = distance to the outer fiber ;I = moment of inertia of the area, ;and M-C does not change, but I has been reduced due to the fact that the effective area has been reduced in proportion to the porosity. If therefore spherical voids and an arbitrary distribution assumed, E <=><Y>~~fl-x)' X = Porosity fraction, °9; the value for E would be greater than the measured one. The average value of 79 x lo 3 kg/mm 2 for E for samples B-3 and B-4 (leached) is corrected to 85 x IO<3> kg/mm<2> or approx. 5% lower than the average value of 90 x 10 3 kg/mm 2 for E for samples B-1 and B-2. The removal of the infiltrating metal phase therefore has only a very small effect on E and shows that the strength of the diamond layer is almost entirely due to the diamond-diamond bond. The E-value of 90 x 10 3 kg/mm 2 is approx. 10% lower than the average value of 100 x 10 3 kg/mm 2 which can be calculated from elasticity constants for single crystals of diamond. ;Example 2 ;A compacted article was prepared in the same manner as described in Example 1 for samples A-I to A-4, but with the exception that a 1:1 mixture of 149-177 pm and 105-125 pm diamond particles was used instead of the particles at 8 p.m. Before the leaching, it was calculated that the compacted object contained 89.1% by weight diamond (96.5% by volume) and 11.9% by weight metal phase (4.5% by volume). After leaching, there was a reduction of 11.5% of the total weight of the compacted object or approx. 0.15% by weight of the metallic phase (0.06% by volume) was back in the compacted article. Example 3 Four compacted diamond objects were prepared as described in Example 1. The carbide was ground away from each compacted object. For two of these, the infiltrating metal phase was removed by leaching with hot acids consisting of ;1HF:1HN03 and 3HC1:1HNC>3. All compacted objects were then epoxy mounted onto a 0.89 cm round tungsten carbide substrate. This composite object was mounted in a tool holder in a lathe, and investigations to determine the resistance to wear during turning were then carried out. The workpiece was a rubber block filled with quartz sand and sold under the trademark "Ebonite Black Diamond". The test conditions were as follows: surface speed' 107-168 surface meters/min (for a heat treatment group the maximum speed was 24 surface meters/min), depth of cut 0.76 mm, cross feed 0.13 mm/rev and test time 60 minutes. After the experiment, the samples were heat-treated in a tube furnace in a flowing, dry argon atmosphere. The treatment temperatures were 700-1300°C with exposure at intervals of 100°C. The exposure time was 10 minutes at each temperature. After each treatment, the samples were examined to determine degradation under a scanning electron microscope (SEM) and then mounted for abrasion examination, with the exception of after the treatments at 1000°C, 1100°C and 1300°C. Both top and bottom edges were used as cutting edges before they were ground again. The abrasion test results are given in Table II. ;The samples remained essentially the same during the examination. There was a tendency for reduced abrasion resistance from the untreated samples and for the first heat treatment at 700°C. The non-leached samples, samples 3 and 4, did not change until a catastrophic thermal failure occurred between 800 and 900°C. The heat treatment proved to be independent of the abrasion resistance until the diamond phase could no longer contain the enclosed metal phase and cracking occurred. This behavior also suggests that two separate phases are present, i.e. the bonded diamond phase which performs the cutting during the test, and the metal phase which is a remnant from the sintering process. The leached samples, i.e. samples 1 and 2, resisted the heat treatment very well, even up to 1200°C. The tendency at 1200°C appears to be a slight degradation of the sample, and this may suggest the initiation of a thermal back-conversion at the surface. ;;The results in table II represent the time per wear unit for the compacted object in 2.54 cm x 100. Tool wear was determined by measuring the width of the "face" on the compacted object caused by contact with the workpiece. The results are of significance only for comparing the relative behavior of the leached and non-leached samples. The leached samples have on average a higher test result than the non-leached samples. This may be due to thermal degradation of the non-leached compacted object during the cutting tests carried out with the samples. The same degradation mechanism can thus work during the abrasion tests as during the heat treatments. If this is the case, when the tool tip is heated to a high temperature when in contact with the workpiece, the cobalt phase will expand more strongly than the diamond phase and crack the tip edge in the first few particle layers. The damaged tip is thereby weakened and gives a worse result. However, the leached samples are thermally stable against a higher working temperature and are not thermally damaged when they are in contact with the workpiece. SEM analysis showed that the non-leached samples had a number of different properties compared to the leached samples. The metallic phase began to extrude from the surface at a temperature between 700 and 800°C, as observed under a magnification of 2000X. As the temperature was increased to 900°C, the samples cracked radially from the rounded cutting edge towards the center of the sample. The leached samples did not show this behaviour, but remained relatively unchanged up to a temperature of 1300°C. The diamond layers are clean at 1200°C, but at 1300°C the samples in photographs taken at 20x magnification looked rounded and fluffy, and photographs taken at 1000X magnification showed an etched surface. with a number of exposed crystals. This is presumably a thermal degradation of the surface, but may also be the result of minor oxygen contamination in the tube furnace's argon atmosphere. Example 4 Two compacted diameter objects (samples IV-1 and IV-2) were produced as described in example 1, but with the change that the carbide substrates were not ground off. An epoxy resin ("Epon 826" resin with nodic methyl anhydride and benzyldimethylamine curing agent) was cast around sample IV-1 and cured. The surface of the diamond layer was exposed by removing all plastic on the surface of the layer with sand. Sample IV-1 was then placed in boiling 3 HC1:1 HNO2 ; for 37.15 hours. After the acid had been removed, the plate was removed from the carbide layer and visually inspected. Signs of a weak reaction between the acid and the unexposed surfaces were observed. However, the surface of the carbide layer did not appear to be significantly damaged by the acid. The diamond layer* surface was then examined under a SEM (with a magnification of up to 2000X). The surface of the diamond layer had a similar appearance to the appearance of the diamond layer of the leached samples of Example 1. Sample IV-1 was then examined by energy dispersive X-ray analysis to compare the intensities of the constituents of the metallic phase with those of a compacted object of the same type, but which had not been leached. The results of the SEM analysis and X-ray analysis suggested that the acid penetrated the diamond layer and acted to remove a significant part of the metallic phase.

Prøvene IV-1 og IV-2 ble deretter utsatt for en abrasjons-dreieprøve som ble utført på den samme måte som beskrevet i eksempel 3. Abrasjonsprøveresultatene (beregnet som i eksempel 3) var 120-150 for prøven IV-1 (utlutet) og 100-120 for prøven IV-2 (ikke utlutet). Disse prøveresultater som viser den utlutede kompakterte gjenstands overlegenhet, overensstemmer med de resul-tater som ble erholdt ifølge eksempel 3, og de underbygger således at når den metalliske fase fjernes i området for skjære-eggen, forbedres resultatene erholdt med den kompakterte diamantgjenstand. Samples IV-1 and IV-2 were then subjected to an abrasion-rotation test which was performed in the same manner as described in Example 3. The abrasion test results (calculated as in Example 3) were 120-150 for sample IV-1 (leached) and 100-120 for sample IV-2 (not leached). These test results showing the superiority of the leached compacted article agree with the results obtained according to Example 3, and they thus substantiate that when the metallic phase is removed in the area of the cutting edge, the results obtained with the compacted diamond article are improved.

Claims (10)

1. Verktøykomponent, spesielt for skjære-, bore- og formnings-verktøy, med slipende partikler av diamant eller kubisk bornitrid, et metallisk sintringshjelpemiddel og tomme porer, karakterisert ved at de slipende partikler er selvbundne og utgjør 70-95 volum% av verktøykomponenten, at 0,05-3 volum% av verktøykomponenten består av det metalliske sintringshjelpemiddel som tjener til å binde de selvbundne partikler sammen, og at de tomme porer som er avgrenset av de selvbundne partikler, er fordelt i verktøykomponenten med en innbyrdes forbundet struktur, idet porene utgjør 5-30 volum% av verktøy-komponenten.1. Tool component, especially for cutting, drilling and shaping tools, with abrasive particles of diamond or cubic boron nitride, a metallic sintering aid and empty pores, characterized in that the abrasive particles are self-bonded and make up 70-95% by volume of the tool component, that 0.05-3% by volume of the tool component consists of the metallic sintering aid which serves to bind the self-bonded particles together, and that the empty pores delimited by the self-bonded particles are distributed in the tool component with an interconnected structure, the pores makes up 5-30% by volume of the tool component. 2. Verktøykomponent ifølge krav 1, karakterisert ved at de slipende partikler ut-gjøres av diamantpartikler og at det metalliske sintringshjelpemiddel består av (1) et katalysatormetall fra gruppe VIII i det periodiske system, krom, mangan og tantal eller en blanding av disse eller av (2) en legering av minst to av de nevnte katalysator-metaller.2. Tool component according to claim 1, characterized in that the abrasive particles consist of diamond particles and that the metallic sintering aid consists of (1) a catalyst metal from group VIII in the periodic table, chromium, manganese and tantalum or a mixture of these or of (2) an alloy of at least two of the aforementioned catalyst metals. 3. Verktøykomponent ifølge krav 1 eller 2, karakterisert ved at diamantpartiklene har en partikkelstørrelse innen området l-1000^um.3. Tool component according to claim 1 or 2, characterized in that the diamond particles have a particle size within the range 1-1000 µm. 4. Verktøykomponent ifølge krav 1, karakterisert ved at partiklene består av kubisk bornitrid og at den metalliske fase som er i det vesentlige jevnt fordelt i verktøykomponenten, består av kobolt, en koboltlegering eller en legering av aluminium med nikkel, mangan, jern, vanadium eller krom som legeringsmetall.4. Tool component according to claim 1, characterized in that the particles consist of cubic boron nitride and that the metallic phase, which is essentially uniformly distributed in the tool component, consists of cobalt, a cobalt alloy or an alloy of aluminum with nickel, manganese, iron, vanadium or chromium as the alloying metal. 5. Verktøykomponent ifølge kravl og 4, karakterisert ved at partiklene består av kubisk bornitrid med en partikkelstørrelse av l-300^um.5. Tool component according to claims 4 and 4, characterized in that the particles consist of cubic boron nitride with a particle size of 1-300 µm. 6. Verktøykomponent ifølge.krav 1-5, karakterisert ved at de selvbundne partikler er bundet til et underlag av sinterhårdmetall.6. Tool component according to claims 1-5, characterized in that the self-bonded particles are bonded to a substrate of cemented carbide. 7. Fremgangsmåte ved fremstilling av en verktøykomponent ifølge krav 1-6, hvor 1 a) en masse av diamantpartikler eller av partikler som består av kubisk bornitrid, og dessuten en masse av metallisk sintringshjelpemiddel for den angjeldende partikkelmasse innføres i en reaksjonsbeholder, b) reaksjonsbeholderen med dens innhold utsettes samtidig for temperaturer innen området 1200-2000°C og trykk over 40 kilobar, c) varmetilførselen til reaksjonsbeholderen stenges av og trykket reduseres, og d) slipelegemet dannet i fremgangsmåtetrinnene a) til c) og som består av de direkte til hverandre bundne partikler og det metalliskesintringshjelpemiddel som har siget inn mellom partiklene, fjernes fra reaksjonsbeholderen, karakterisert ved at det metalliske sintringshjelpemiddel som er blitt innført i legemet, fjernes fra dette inntil det i legemet er igjen en andel som utgjør 0,05-3 volum% av legemet.7. Method for the production of a tool component according to claims 1-6, where 1 a) a mass of diamond particles or of particles consisting of cubic boron nitride, and also a mass of metallic sintering aid for the relevant particle mass is introduced into a reaction vessel, b) the reaction vessel with its contents is simultaneously exposed to temperatures within the range of 1200-2000°C and pressure above 40 kilobars, c) the heat supply to the reaction vessel is shut off and the pressure is reduced, and d) the grinding body formed in process steps a) to c) and which consists of the directly to particles bound to each other and the metallic sintering aid that has seeped between the particles are removed from the reaction vessel, characterized in that the metallic sintering aid which has been introduced into the body is removed from it until there remains in the body a proportion which constitutes 0.05-3% by volume of the body. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at metallet fjernes fra legemet ved at legemet neddykkes i en syre, fortrinnsvis kongevann, salpetersyre, saltsyre eller flussyre.8. Method according to claim 7, characterized in that the metal is removed from the body by immersing the body in an acid, preferably aqua regia, nitric acid, hydrochloric acid or hydrofluoric acid. 9. Fremgangsmåte ifølge krav 7, karakterisert ved at metallet fjernes fra legemet ved ekstraksjon med flytende sink.9. Method according to claim 7, characterized by the metal being removed from the body by extraction with liquid zinc. 10. Fremgangsmåte ifølge krav 7, karakterisert ved at metallet utløses fra legemet ved hjelp av elektrolyse.10. Method according to claim 7, characterized by the metal being released from the body by means of electrolysis.
NO780546A 1977-02-18 1978-02-17 TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND CUTTING TOOLS, AND PROCEDURES IN MANUFACTURING THEREOF NO151691C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77015177A 1977-02-18 1977-02-18

Publications (3)

Publication Number Publication Date
NO780546L NO780546L (en) 1978-08-21
NO151691B true NO151691B (en) 1985-02-11
NO151691C NO151691C (en) 1985-05-22

Family

ID=25087642

Family Applications (1)

Application Number Title Priority Date Filing Date
NO780546A NO151691C (en) 1977-02-18 1978-02-17 TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND CUTTING TOOLS, AND PROCEDURES IN MANUFACTURING THEREOF

Country Status (22)

Country Link
JP (1) JPS53114589A (en)
AT (1) AT370021B (en)
AU (1) AU518668B2 (en)
BE (1) BE863934A (en)
BR (1) BR7800988A (en)
CH (1) CH637611A5 (en)
DE (1) DE2805460A1 (en)
DK (1) DK152098C (en)
ES (1) ES467085A1 (en)
FI (1) FI65935C (en)
FR (1) FR2380845A1 (en)
GB (1) GB1598837A (en)
GR (1) GR64066B (en)
IE (1) IE46644B1 (en)
IL (1) IL53846A (en)
IN (1) IN148419B (en)
IT (1) IT1095412B (en)
LU (1) LU79081A1 (en)
NL (1) NL7801822A (en)
NO (1) NO151691C (en)
SE (1) SE444674B (en)
ZA (1) ZA78416B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380846A1 (en) * 1978-02-16 1978-09-15 Gen Electric Porous cutting tools - made by bonding diamond or cubic boron nitride with metal which is then removed by etching to form the pores
US4374651A (en) * 1981-09-28 1983-02-22 General Electric Company Composite of metal-bonded cubic boron nitride and a substrate and process of preparation
ZA831881B (en) * 1982-04-02 1984-06-27 Gen Electric Sweep through process for making polycrystalline compacts
EP0114497B1 (en) * 1982-12-21 1988-05-11 De Beers Industrial Diamond Division (Proprietary) Limited Abrasive compacts and method of making them
CA1253349A (en) * 1983-08-29 1989-05-02 Robert H. Frushour Polycrystalline abrasive grit
JPS6076964A (en) * 1983-08-29 1985-05-01 ジ−テイ−イ−・ベイルロン・コ−ポレ−シヨン Polycrystal grinding grid
FR2568810B1 (en) * 1984-08-13 1986-11-14 Combustible Nucleaire DIAMOND CUTTING ELEMENT AND METHOD FOR MANUFACTURING SUCH AN ELEMENT
FR2568933B1 (en) * 1984-08-13 1986-09-19 Combustible Nucleaire DIAMOND ROTARY DRILLING TOOL AND METHOD FOR MANUFACTURING SUCH A TOOL
AT383758B (en) * 1985-12-23 1987-08-25 Plansee Metallwerk METHOD FOR PRODUCING A SPUTTER TARGET
DE3706340A1 (en) * 1987-02-27 1988-09-08 Winter & Sohn Ernst METHOD FOR APPLYING A WEAR PROTECTIVE LAYER AND PRODUCT PRODUCED THEREOF
CA1318553C (en) * 1988-03-10 1993-06-01 Johan Vanderstraeten Sound and/or vibration proof coating, product provided with such a coating and method of application
FR2647153B1 (en) * 1989-05-17 1995-12-01 Combustible Nucleaire COMPOSITE TOOL COMPRISING A POLYCRYSTALLINE DIAMOND ACTIVE PART AND METHOD FOR MANUFACTURING THE SAME
DE4027580A1 (en) * 1990-08-31 1992-03-05 Lux Benno COMPOSITE BODY, METHOD FOR THE PRODUCTION AND USE THEREOF
EP0487292B1 (en) * 1990-11-22 1996-02-14 Sumitomo Electric Industries, Limited Polycrystalline diamond tool and method for producing same
US5366522A (en) * 1991-11-07 1994-11-22 Sumitomo Electric Industries, Ltd. Polycrystalline diamond cutting tool and method of manufacturing the same
US5172778A (en) * 1991-11-14 1992-12-22 Baker-Hughes, Inc. Drill bit cutter and method for reducing pressure loading of cutters
CA2321638A1 (en) 1998-03-02 1999-09-10 Tetsuo Nakai Diamond sintered body tool and manufacturing method thereof
JP4045014B2 (en) 1998-04-28 2008-02-13 住友電工ハードメタル株式会社 Polycrystalline diamond tools
US6344149B1 (en) * 1998-11-10 2002-02-05 Kennametal Pc Inc. Polycrystalline diamond member and method of making the same
US6691596B1 (en) 2000-02-29 2004-02-17 Irwin Industrial Tool Company Circular saw blade for cutting fiber cement materials
RU2418673C2 (en) * 2005-10-14 2011-05-20 Элемент Сикс (Продакшн) (Пти) Лтд Method of preparing modified abrasive compact
US20100112332A1 (en) 2007-02-02 2010-05-06 Yoshihiro Kuroda Diamond sintered body and method for producing same
JP5125646B2 (en) 2008-03-19 2013-01-23 株式会社タンガロイ Cubic boron nitride sintered tool
GB0901096D0 (en) 2009-01-23 2009-03-11 Element Six Ltd Method of treating a diamond containing body
US9067305B2 (en) 2010-05-18 2015-06-30 Element Six Abrasives S.A. Polycrystalline diamond
GB201008239D0 (en) 2010-05-18 2010-06-30 Element Six Production Pty Ltd Polycrystalline diamond
TWI613285B (en) 2010-09-03 2018-02-01 聖高拜磨料有限公司 Bonded abrasive article and method of forming
US9266219B2 (en) 2012-12-31 2016-02-23 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
JP2016501735A (en) 2012-12-31 2016-01-21 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
WO2014106159A1 (en) 2012-12-31 2014-07-03 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
DE112014001102T5 (en) 2013-03-31 2015-11-19 Saint-Gobain Abrasifs Bound abrasive article and grinding process
KR101894164B1 (en) 2013-09-29 2018-08-31 애플 인크. Connectible component identification
US10718166B2 (en) 2014-06-20 2020-07-21 Halliburton Energy Services, Inc. Laser-leached polycrystalline diamond and laser-leaching methods and devices
JP5969106B1 (en) * 2015-12-28 2016-08-10 日進工具株式会社 End mill and manufacturing method thereof
TW202016012A (en) * 2018-09-17 2020-05-01 美商戴蒙創新公司 Cubic boron nitride particle population with highly-etched particle surface and high toughness index

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141746A (en) * 1960-10-03 1964-07-21 Gen Electric Diamond compact abrasive
GB1010506A (en) * 1960-11-30 1965-11-17 Carborundum Co Improvements in abrasive products
US3609818A (en) * 1970-01-02 1971-10-05 Gen Electric Reaction vessel for high pressure apparatus
NL7104326A (en) * 1970-04-08 1971-10-12 Gen Electric
US3743489A (en) * 1971-07-01 1973-07-03 Gen Electric Abrasive bodies of finely-divided cubic boron nitride crystals
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
IE42084B1 (en) * 1974-09-18 1980-06-04 De Beers Ind Diamond Abrasive bodies

Also Published As

Publication number Publication date
BE863934A (en) 1978-05-29
SE7801872L (en) 1978-08-18
GR64066B (en) 1980-01-21
DE2805460A1 (en) 1978-08-24
FI780451A (en) 1978-08-19
JPS6333985B2 (en) 1988-07-07
FI65935C (en) 1984-08-10
IN148419B (en) 1981-02-21
NO151691C (en) 1985-05-22
DE2805460C2 (en) 1993-08-05
GB1598837A (en) 1981-09-23
IL53846A (en) 1981-10-30
ATA104878A (en) 1982-07-15
DK152098C (en) 1988-06-27
DK152098B (en) 1988-02-01
AU3334278A (en) 1979-08-23
IT7820283A0 (en) 1978-02-16
ZA78416B (en) 1979-01-31
IE780089L (en) 1978-08-18
NL7801822A (en) 1978-08-22
IL53846A0 (en) 1978-04-30
FR2380845A1 (en) 1978-09-15
BR7800988A (en) 1978-09-19
JPS53114589A (en) 1978-10-06
DK72878A (en) 1978-08-19
AU518668B2 (en) 1981-10-15
AT370021B (en) 1983-02-25
IE46644B1 (en) 1983-08-10
CH637611A5 (en) 1983-08-15
NO780546L (en) 1978-08-21
FI65935B (en) 1984-04-30
IT1095412B (en) 1985-08-10
LU79081A1 (en) 1978-06-27
SE444674B (en) 1986-04-28
ES467085A1 (en) 1978-11-01

Similar Documents

Publication Publication Date Title
NO151691B (en) TOOL COMPONENTS, SPECIFICALLY FOR CUTTING, DRILLING AND CUTTING TOOLS, AND PROCEDURES IN MANUFACTURING THEREOF
US4224380A (en) Temperature resistant abrasive compact and method for making same
US4288248A (en) Temperature resistant abrasive compact and method for making same
EP0116403B1 (en) Abrasive product
US3929432A (en) Diamond particle having a composite coating of titanium and a metal layer
EP2432963B1 (en) Cutting elements, methods for manufacturing such cutting elements, and tools incorporating such cutting elements
Ding et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents
US5127923A (en) Composite abrasive compact having high thermal stability
EP0403614B1 (en) Multiple metal coated superabrasive grit and methods for their manufacture
US5009673A (en) Method for making polycrystalline sandwich compacts
US7553344B2 (en) Shaped thermally stable polycrystalline material and associated methods of manufacture
JP2014521848A (en) PCD material with high diamond frame strength
EP0354043A2 (en) Thermally stable diamond abrasive compact body
CA2765710A1 (en) Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements
EP3341341B1 (en) A method of producing a component of a composite of diamond and a binder
Konstanty Powder metallurgy diamond tools–a review of manufacturing routes
US20140165475A1 (en) Method to improve efficiency of pcd leaching
CA1119821A (en) Temperature resistant abrasive compact and method for making same
CN109071362B (en) Polycrystalline diamond compact with interstitial diamond grains and method of making same
JPS59161268A (en) Abrasive body and manufacture thereof
Kourtoukova et al. Design and tailoring of Ni–Sn–W composites for bonded abrasive applications
CN117921231A (en) Transparent diamond drill tooth, preparation method and application thereof
GB2573405A (en) Method of processing polycrystalline super hard material
BR102016019214A2 (en) TRIPLE LAYER CUTTING COMPOSITE FORMED BY A HARD METAL SUBSTRATE AND SINTERED DIAMOND BODY UNITED THROUGH AN INTERFACE