DK151816B - HYDROGEL WITH APPLICABILITY AS MEDICAL HYDROGEL AND METHOD OF PRODUCING THEREOF - Google Patents

HYDROGEL WITH APPLICABILITY AS MEDICAL HYDROGEL AND METHOD OF PRODUCING THEREOF Download PDF

Info

Publication number
DK151816B
DK151816B DK003775AA DK3775A DK151816B DK 151816 B DK151816 B DK 151816B DK 003775A A DK003775A A DK 003775AA DK 3775 A DK3775 A DK 3775A DK 151816 B DK151816 B DK 151816B
Authority
DK
Denmark
Prior art keywords
monomer
polymer
hydrophilic
copolymerizable
copolymer
Prior art date
Application number
DK003775AA
Other languages
Danish (da)
Other versions
DK151816C (en
DK3775A (en
Inventor
Ralph Milkovich
Mutong Thomas Chiang
Original Assignee
Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US432788A external-priority patent/US3928255A/en
Application filed by Research Corp filed Critical Research Corp
Publication of DK3775A publication Critical patent/DK3775A/da
Publication of DK151816B publication Critical patent/DK151816B/en
Application granted granted Critical
Publication of DK151816C publication Critical patent/DK151816C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • C08F2/08Organic solvent with the aid of dispersing agents for the polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/044Polymers of aromatic monomers as defined in group C08F12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/02Alkylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/08Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Medical Uses (AREA)
  • Eyeglasses (AREA)
  • External Artificial Organs (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

DK 151816 BDK 151816 B

Den foreliggende opfindelse angår en hydrogel med anvendelighed som medicinsk hydrogel (såsom kontaktlinser, kunstige organer etc.) og bestående af en kemisk bundet, fasesepareret, selvhærdet, termoplastisk, vanduopløselig, i vand kvældbar podecopolyner og fra ca. 10 vægt% til ca. 95vægt% vand, regnet i forhold til vægten af copoly= meren, hvilken copolymer er fremstillet ved copolymerisation af en hydrofob makromolekylær monomer og en hydrofil copolymeriserbar monomer.The present invention relates to a hydrogel useful as a medical hydrogel (such as contact lenses, artificial organs, etc.) and consisting of a chemically bonded, phase-separated, self-cured, thermoplastic, water-insoluble, water-swellable graft copolymer and from ca. 10% by weight to approx. 95% by weight of water, based on the weight of the copolymer, which copolymer is prepared by copolymerization of a hydrophobic macromolecular monomer and a hydrophilic copolymerizable monomer.

En betydelig forskning og udvikling har været helliget det formål 10 at opnå hydrofile polymere, der har tilstrækkelig vådstyrke til at blive gjort i det væsentlige vanduopløselige. F.eks. er en type hydrofil polymer med forøget vådstyrke beskrevet i U.S.A. patentskrifterne nr. 2.976.576 og nr. 3.220.960 (Otto Wichterle et al ogConsiderable research and development has been devoted to the purpose of obtaining hydrophilic polymers having sufficient wet strength to be rendered substantially water insoluble. Eg. is a type of increased wet strength hydrophilic polymer described in U.S.A. U.S. Patent Nos. 2,976,576 and 3,220,960 (Otto Wichterle et al. and

2 ; DK 151816 B2; DK 151816 B

M.E . Ref030 et al, Journal of Applied Polymer Science, bind 9, side 2425-2435 (1965)). Pisse polymere fremstilles ved samtidig polymerisering af en vandopløselig monoester af acrylsyre eller methacrylsyre, i hvilke esterdelen indeholder mindst én hydrofil 5 gruppe, såsom en hydroxygruppe, og tværbinding af monomeren med et polyumættet, tværbindende middel, såsom ethylendiglycoldimethacrylat, når den polymeriserer. Mængden af et sådant tværbindende middel er sædvanligvis mindre end ca. 1 molfo af monoesteren. Sådanne polymerisationer udføres generelt i nærværelse af en redox-initiator.M.E. Ref030 et al., Journal of Applied Polymer Science, Vol. 9, pages 2425-2435 (1965)). Pissing polymers are prepared by simultaneously polymerizing a water-soluble monoester of acrylic acid or methacrylic acid in which the ester moiety contains at least one hydrophilic group, such as a hydroxy group, and cross-linking the monomer with a polyunsaturated, crosslinking agent such as ethylene glycol dimethacrylate as it polymerizes. The amount of such a cross-linking agent is usually less than about 10%. 1 molfo of the monoester. Such polymerizations are generally carried out in the presence of a redox initiator.

10 Hydrofile polymere med forbedret vådstyrke afledt fra en polymer, der opnås ved copolymerisering af en vandopløselig vinylmonomer indeholdende mindst ét nitrogenatom med en ringe mængde af en bifunktionel monomer, er også blevet beskrevet. Pisse polymere har været foreslået som værende anvendelige til forskellige biomediske anvendel-15 ser som følge af deres forligelighed med legemsvæv og/eller mucosa. Nogle af disse polymere er beskrevet i U.S.A. patentskrifterne nr. 3.659.524 og nr. 5.767.731 (Maurice Seiderman).10 Hydrophilic polymers with improved wet strength derived from a polymer obtained by copolymerizing a water-soluble vinyl monomer containing at least one nitrogen atom with a small amount of a bifunctional monomer have also been described. Pissing polymers have been proposed as being useful for various biomedical applications due to their compatibility with body tissues and / or mucosa. Some of these polymers are described in U.S.A. U.S. Patent Nos. 3,659,524 and 5,767,731 (Maurice Seiderman).

En af de nødvendige faktorer ved fremstillingen af disse kendte hydrofile polymere, der har en forøget vådstyrke, består i anvendelsen 20 af en ringe mængde polyumættet, tværbindende middel. Eftersom mængden af det benyttede tværbindende middel generelt er meget lille, kan mængden kun varieres en smule. Eølgelig er det ikke muligt effektivt at tilpasse de endelige egenskaber af den hydrofile polymer ved at variere mængden af tværbindende middel, Forskellige forsøg på 25 at undgå dette problem er blevet beskrevet i U.S.A. patentskrift nr. 3.503.942 (Seiderman) og i U.S.A. patentskrift nr. 3.758.448 (Paul Stamberger).One of the necessary factors in the preparation of these known hydrophilic polymers having an increased wet strength consists in the use of a small amount of polyunsaturated, crosslinking agent. Since the amount of crosslinking agent used is generally very small, the amount can be varied only slightly. Therefore, it is not possible to effectively adjust the final properties of the hydrophilic polymer by varying the amount of crosslinking agent. Various attempts to avoid this problem have been described in U.S.A. U.S. Patent No. 3,503,942 (Seiderman) and U.S. Pat. Patent No. 3,758,448 (Paul Stamberger).

I U.S.A. patentskrift nr. 3.786.116 er den banebrydende opdagelse ved fremstilling af kemisk forbundne, faseseparerede, termoplastiske 30 podecopolymere beskrevet. Disse copolymere er dybest set polymere af den fysisk tværbundne type (i modsætning til kemisk tværbundne) og har været omtalt som "selvhærdnede" eller "selvforstærkede" termoplastiske podecopolymere. Dette fænomen fremkommer ved tilvejebringelse af en styret dispersion af en makromolekylær sidekæde i én fase (et område) inden i 25 polymerfase-grundskelettet (matrix). På grund af at alle de makromolekylære mono-mersidekædeområder er en intergrerende del eller er placeret mellem store ·. ν' DK 151816Β 3 segmenter af polymergrundskelettet, har den resulterende podecopoly= mer egenskaber som en tværbundet polymer, hvis der er en stor forskel mellem Tg eller Tm i grundskelettet og sidekædesegmenterne.IN USA. U.S. Patent No. 3,786,116 describes the pioneering discovery in the preparation of chemically linked, phase-separated, thermoplastic graft copolymers. These copolymers are basically polymers of the physically cross-linked type (as opposed to chemically cross-linked) and have been referred to as "self-cured" or "self-reinforced" thermoplastic graft copolymers. This phenomenon arises by providing a controlled dispersion of a single phase macromolecular side chain within the polymer phase backbone (matrix). Because all the macromolecular monomer side chain regions are an integral part or are placed between large ·. ν 'DK 151816Β 3 segments of the polymer backbone, has the resulting graft copolymer properties as a cross-linked polymer if there is a large difference between Tg or Tm in the backbone and the side chain segments.

Dette er tilfældet op til den temperatur, som kræves til brydning 5 af den termodynamiske tværbinding i den dispergerede fase. For at den dispergerede fases område af podecopolymerene skal bibringe den ønskede tværbindingsvirkning eller "selvhærdnende" virkning, er det vigtigt, at de makromolekylære monomere, som omfatter den dispergerede fases område,har i det væsentlige samme molekylvægt, d.v.s. at de 10 makromolekylære monomere skal have et Mw/Mn-forhold, som ikke er væsentligt over ca. 1,1. Makromolekylære monomere, som har en bredere molekylvægtsfordeling, d.v.s. et forhold over ca. 1,5 eller 2, vil sædvanligvis omfatte polymertyper med meget lav molekylvægt, som bibringer en "copolymerisk" virkning på polymergrundske-15 lettet, og polymere med meget høj molekylvægt, som vil danne en anden dispergeret fase eller et område, som har en størrelse, der er anderledes end den primært dispergerede fase. Slutresultatet er en uigennemsigtig polymer af ringe kvalitet i forhold til de ønskede fysiske egenskaber, som polymergrundskelettet har.This is the case up to the temperature required for breaking 5 of the thermodynamic crosslink in the dispersed phase. In order for the dispersed phase region of the graft copolymers to impart the desired crosslinking or "self-curing" effect, it is important that the macromolecular monomers comprising the dispersed phase region have substantially the same molecular weight, i.e. that the 10 macromolecular monomers must have a Mw / Mn ratio which is not substantially above ca. 1.1. Macromolecular monomers having a wider molecular weight distribution, i.e. a ratio of approx. 1.5 or 2, will usually comprise very low molecular weight polymers which impart a "copolymeric" effect on the polymer backbone, and very high molecular weight polymers which will form another dispersed phase or region having a size. , which is different from the mainly dispersed phase. The end result is a poor quality opaque polymer in relation to the desired physical properties of the polymer backbone.

20 Hydrogelen ifølge opfindelsen er ejendommelig ved det i krav l's kendetegnende del anførte.The hydrogel according to the invention is characterized by the characterizing part of claim 1.

I forhold til de kendte ^ydrogeler er hydrogelen ifølge opfindelsen gennemsigtig og klar, og den kan derfor benyttes som medicinsk hydrogel, såsom kontaktlinser, kunstige organer, etc. Den i hydrogelen ind-25 gående copolymer kan frembringe fugtighedsabsorption og vandgennemtræn-gelighed (anvendeligt til dialyserør) samt bibringe forskellige produkter antistatiske egenskaber.Compared to the known outer hydrogels, the hydrogel according to the invention is transparent and clear and can therefore be used as a medical hydrogel such as contact lenses, artificial organs, etc. The copolymer contained in the hydrogel can produce moisture absorption and water permeability (useful for dialysis tubes) as well as impart antistatic properties to various products.

Podecopolymeren i hydrogelen ifølge opfindelsen antager en "T"-typestruktur, når kun én sidekæde copolymeriseres ind i det hydrofile, co-3q polymere grundskelet. Når imidlertid mere end én sidekæde copolymeriseres ind i det hydrofile polymergrundskelet, kan podecopolymeren karakteriseres som havende en kamlignende form, som illustreres på følgende måde:The graft copolymer of the hydrogel of the invention assumes a "T" type structure when only one side chain is copolymerized into the hydrophilic, co-3q polymeric backbone. However, when more than one side chain is copolymerized into the hydrophilic polymer backbone, the graft copolymer can be characterized as having a comb-like shape, illustrated as follows:

DK 151816BDK 151816B

4 c-c-c-b-c-c-c-b-c-c-c ...4 c-c-c-b-c-c-c-b-c-c-c ...

I II I

a aa a

I II I

a aa a

I II I

a a hvori "a" betegner en i det væsentlige lineær, normalt hydrofob polymer med ensartet molekylvægt eller en copolymer med en tilstrækkelig molekylvægt, så at de fysiske egenskaber hos mindst én af de i det væsentlige lineære, hydrofobe polymere kommer til udtryk, og "b" 5 betegner en omsat og copolymeriseret endegruppe, der er kemisk bundet til sidekæden "a", der er integralt copolymeriseret ind i polymer-grundskelettet, og "c" er det hydrofile polymergrundskelet med uafbrudte segmenter med tilstrækkelig molekylvægt, så at de fysiske egenskaber af den hydrofile polymer kommer til udtryk.- 1Q Grundskelettet i podecopolymeren i hydrogelen ifølge opfindelsen indeholder _ mindst ca. 20 uafbrudt tilbagevendede monomere en-- heder i hvert segment. Det har imidlertid vist sig, at mindst ca. 100 uafbrudt tilbagevendende monomere enheder i hvert segment tilvejebringer særligt ønskværdige fysiske egenskaber. Det har vist sig, at den-^5 ne tilstand tilvejebringer en podecopolymer, som har samme egenskaber som det hydrofile polymergrundskelet. Med andre ord tilvejebringer tilstedeværelsen af segmenter indeholdende mindst ca. 20 uafbrudt tilbagevendende monomere enheder podecopolymerene med de fysiske egenskaber, som knytter sig til det polymere grundskelet, såsom vandfor-2q ligelighed og vandkvældende egenskaber.aa wherein "a" represents a substantially linear, normally hydrophobic polymer of uniform molecular weight or a copolymer of sufficient molecular weight to express the physical properties of at least one of the substantially linear, hydrophobic polymers, and "b "5" represents a reacted and copolymerized end group chemically bonded to the side chain "a" integrally copolymerized into the polymer backbone, and "c" is the hydrophilic polymer backbone with uninterrupted molecular weight segments to provide the physical properties of The hydrophilic polymer is expressed. The basic skeleton of the graft copolymer of the hydrogel according to the invention contains at least approx. 20 uninterrupted returned monomeric units in each segment. However, it has been found that at least approx. 100 uninterrupted recurrent monomeric units in each segment provide particularly desirable physical properties. It has been found that this state provides a graft copolymer having the same properties as the hydrophilic polymer backbone. In other words, the presence of segments containing at least approx. 20 uninterrupted recurrent monomeric units graft copolymers with the physical properties associated with the polymeric backbone, such as water solubility and water swelling properties.

De polymere grundskeletsegmenter af den kemisk bundne, faseseparerede, selvhærdnede, hydrofile, termoplastiske podecopolymer i hydrogelen ifølge opfindelsen er afledt af acrylsyre, et hydroxyalkylacry-lat, et dialkylacrylamid eller vinylacetat.The polymeric backbone segments of the chemically bonded, phase-separated, self-cured, hydrophilic, thermoplastic graft copolymer in the hydrogel of the invention are derived from acrylic acid, a hydroxyalkyl acrylate, a dialkylacrylamide or vinyl acetate.

25 Opfindelsen angår endvidere en fremgangsmåde til fremstilling af den omhandlede hydrogel, hvilken fremgangsmåde er ejendommelig ved det i krav 7 angivne.The invention further relates to a process for the preparation of the present hydrogel, which is characterized by the method of claim 7.

Et særlig foretrukket eksempel på hydrofile monomereer vinylacetat.A particularly preferred example of hydrophilic monomer is vinyl acetate.

55

DK 151816 BDK 151816 B

Vinylacetatet copolyraeriseres med den copolymeriserbare, hydrofobe, macromolekylære monomer, som har en copolymeriserbar dobbeltbinding ved sin molekylkædeende, og efter copolymerisationen forsæbes den resulterende podecopolymer med henblik på at gøre det polymere grundskelet hy-5 drofilt. Med andre ord indeholder det polymere grundskelet polyvinyl-alkohol.The vinyl acetate is copolymerized with the copolymerizable, hydrophobic, macromolecular monomer having a copolymerizable double bond at its molecular chain end, and after copolymerization, the resulting graft copolymer is saponified to make the polymeric backbone hydrophilic. In other words, the polymeric backbone contains polyvinyl alcohol.

Som det vil fremgå af beskrivelsen af de copolymeriserbare, makromo-lekylære monomere, der beskrives i det følgende, indbefatter valget af de copolymeriserbare endegrupper en hvilken som helst copolymeri-10 serbar i handelen gående monomer. Følgelig kan valget af respektive copolymeriserbare endegrupper på den makromolekylære monomer samt den copolymeriserbare -monomer træffes baseret på relative reaktivitetsforhold under de respektive copolymerisationsreaktionsbetingelser, der er egnede til copolymerisation. Yed simpel undersø-15 gelse af reaktiviteten af forskellige comonomere par i litteraturen er man således i stand til at tilvejebringe den behørige endegruppe på den macromolekylære monomer og den copolymeriserbare .monomer. Fortrinsvis vil r-værdierne for de respektive copolymeriserbare dele være så nær ved enhed som muligt, som det vil være velkendt for fag-20 manden på copolymerisationsområdet. F.eks. copolymeriserer en acry-lat- eller methacrylat-endestillet maCromolekylær monomer med acry-later og methacrylater under fri-radikal-betingelser på en måde, der bestemmes af de respektive reaktivitetsforhold for monomerene.As will be apparent from the description of the copolymerizable macromolecular monomers described below, the choice of the copolymerizable end groups includes any commercially available copolymerizable monomer. Accordingly, the choice of respective copolymerizable end groups on the macromolecular monomer as well as the copolymerizable monomer can be made based on relative reactivity conditions under the respective copolymerization reaction conditions suitable for copolymerization. Thus, by simply examining the reactivity of various comonomer pairs in the literature, one is able to provide the appropriate end group on the macromolecular monomer and the copolymerizable monomer. Preferably, the r-values of the respective copolymerizable moieties will be as close to unity as possible, as will be well known to those skilled in the art of copolymerization. Eg. copolymerizes an acrylate or methacrylate-terminated macromolecular monomer with acrylates and methacrylates under free radical conditions in a manner determined by the respective reactivity conditions of the monomers.

Som det vil blive forklaret i det følgende, skyldes den fortrinliqe 25 kombination af gunstige egenskaber, som podecopolymeren i hydrogelen ifølge opfindelsen er i besiddelse af, de store segmenter af uafbrudte copolymere, hydrofile skeletter, samt de integralt copolymerisere-de, lineære, hydrofobe polymere sidekæder med styret molekylvægt og snæver fordeling af molekylvægt.As will be explained below, the preferred combination of favorable properties that the graft copolymer of the hydrogel of the invention possesses, the large segments of uninterrupted copolymers, hydrophilic skeletons, and the integrally copolymerized, linear, hydrophobic polymers controlled molecular weight side chains and narrow molecular weight distribution.

30 Udtrykket "lineær" som omtalt i det foregående benyttes i ordets sædvanlige betydning til at vedrøre et polymert grundskelet, som er fri for tværbinding.The term "linear" as discussed above is used in the usual sense of the term to refer to a polymeric backbone which is free of crosslinking.

Udtrykket "hydrofil" som omtalt i det foregående benyttes i sin konventionelle betydning til at vedrøre et polymert eller monomert stof 35 eller system, der absorberer eller adsorberer vand.The term "hydrophilic" as mentioned above is used in its conventional sense to refer to a polymeric or monomeric substance or system which absorbs or adsorbs water.

66

DK 151816 BDK 151816 B

Udtrykket "hydrofob" som omtalt i det foregående benyttes i sin konventionelle betydning til at vedrøre et polymert stof, der afviser vand.The term "hydrophobic" as discussed above is used in its conventional sense to refer to a polymeric substance which rejects water.

Sidekædepolymerene, der har i det væsentlige ensartet molekylvægt, 5 omfatter i det væsentlige lineære, hydrofobe polymere og copolymere fremstillet ved anionisk polymerisation af en anionisk;polymeriser-bar monomer, som nævnt ovenfor, eller blanding deraf, som resulterer i en polymer, der er hydrofob. Sidekædepolymeren vil øjensynligt være anderledes end det hydrofile polymergrundskelet.The side chain polymers having substantially uniform molecular weight 5 comprise substantially linear, hydrophobic polymers and copolymers prepared by anionic polymerization of an anionic; polymerizable monomer, as mentioned above, or mixture thereof, resulting in a polymer which is hydrophobic. The side chain polymer will apparently be different from the hydrophilic polymer backbone.

10 Det foretrækkes, at mindst ét segment i de omhandlede podecopolymeres sidekædepolymer har en molekylvægt, der er tilstrækkelig til at give sig udtryk i gunstige egenskaber hos de respektive polymere. Med andre ord vil sidekædepolymerenes fysiske egenskaber, såsom glasovergangstemperaturen (Tg), komme til udtryk. De polymere sidekæ-15 ders molekylvægt ligger mellem 2.000 og 50.000. Særlig ønskelige resultater er opnået, når de polymere sidekæder har en molekylvægt i området fra ca. 10.000 til ca. 35.000, fortrinsvis i området fra ca. 12.000 til ca. 25.000.It is preferred that at least one segment of the graft copolymer side chain polymer of the present invention has a molecular weight sufficient to express favorable properties of the respective polymers. In other words, the physical properties of the side chain polymers, such as the glass transition temperature (Tg), will be expressed. The molecular weight of the polymeric side chains is between 2,000 and 50,000. Particularly desirable results have been obtained when the polymeric side chains have a molecular weight in the range of approx. 10,000 to approx. 35,000, preferably in the range of from approx. 12,000 to approx. 25,000.

På baggrund af de usædvanlige og forbedrede fysiske egenskaber, som 20 termoplastpodecopolymeren i hydrogelen ifølge opfindelsen er i besiddelse af, antages det, at de monofunktionelt bundne polymere sidekæder, som har en i det væsentlige ensartet molekylvægt, danner hvad der er kendt som "områder", der viser sig som spredte smådråber, der er udfældet i polymergrundskelettets matrix. Eftersom områderne el-25 ler smådråberne er mikroskopiske, ligger de generelt under bølgelæng den for lys gennem grundskeletpolymeren. Den endeligt opnåede podeco-polymer er klar eller transparent. De hydrofobe polymere sidekæder, som frembringer den selvhærdnende eller selvforstærkende virkning på det hydrofile polymergrundskelet, forøger vådstyrken af den endeli-30 ge polymer.In view of the unusual and improved physical properties possessed by the thermoplastic graft copolymer in the hydrogel of the invention, it is believed that the monofunctionally bound polymeric side chains which have a substantially uniform molecular weight form what are known as "regions" , which appear as scattered droplets deposited in the matrix matrix of the polymer backbone. Since the regions or droplets are microscopic, they are generally below wavelength too light through the base skeletal polymer. The final obtained podeco polymer is clear or transparent. The hydrophobic polymeric side chains which produce the self-curing or self-reinforcing effect on the hydrophilic polymer backbone increase the wet strength of the final polymer.

De copolymeriserbare, hydrofobe, makromolekylære monomere.The copolymerizable, hydrophobic, macromolecular monomers.

77

DK 151816 BDK 151816 B

De hydrofobe polymere sidekæder på de kemisk bundne, faseseparerede, selvhærdnede, hydrofile podecopolymere frembringes fortrinsvis ved hjælp af anionisk polymerisation af en polymeriserbar monomer eller kombination af monomere. Sådanne monomere har formlen r[z]· X, hvor 5 r er en lavere alkylgruppe, Z er gentagne monomerenheder af en vinylaromatisk forbindelse: med indtil 12 carbonatomer og/eller af en konjugeret dien med 4-8 carbonatomer, n er et helt tal med en sådan værdi, at polymerens molekylvægt ligger mellem 2.000 og 50.000, og X er en polymeriserbar gruppe, 10 Det første trin ved fremstilling af de copolymeriserbare, hydrofobe, makromolekylære monomere består i at fremstille reaktionsdygtige polymere. Reaktionsdygtige polymere fremstilles hensigtsmæssigt ved at bringe monomeren i kontakt med en alkalimetalhydrocarbon eller alkoxidsalte i nærværelse af et indifferent, organisk fortyndingsmid-15 del, som ikke deltager i eller generer polymerisationsreaktionen.The hydrophobic polymeric side chains of the chemically bonded, phase-separated, self-cured, hydrophilic graft copolymers are preferably produced by anionic polymerization of a polymerizable monomer or combination of monomers. Such monomers have the formula r [z] · X, where 5 r is a lower alkyl group, Z is repeating monomer units of a vinyl aromatic compound: with up to 12 carbon atoms and / or of a conjugated diene of 4-8 carbon atoms, with a value such that the molecular weight of the polymer is between 2,000 and 50,000, and X is a polymerizable group. The first step in preparing the copolymerizable, hydrophobic, macromolecular monomers consists in producing reactive polymers. Reactive polymers are conveniently prepared by contacting the monomer with an alkali metal hydrocarbon or alkoxide salts in the presence of an inert organic diluent which does not participate in or generate the polymerization reaction.

De monomere indeholdende olefiniske grupper, der er egnet til fremstilling af de hydrofobe,makromolekylære monomere, er som nævnt de konjugerede diener indeholdende 4-8 carbonatomer pr. molekyle, 2o samt de vinylsubstituerede, aromatiske hydrocarboner indeholdende indtil ca. 12 carbonatomer. Særligt foretrukne monomere indbefatter styren, α-methylstyren, butadien og isopren.The monomers containing olefinic groups suitable for preparing the hydrophobic macromolecular monomers are, as mentioned, the conjugated dienes containing 4 to 8 carbon atoms per minute. molecule, 2o, and the vinyl-substituted aromatic hydrocarbons containing up to ca. 12 carbon atoms. Particularly preferred monomers include styrene, α-methylstyrene, butadiene and isoprene.

Initiatorerne for disse anioniske polymerisationer er hvilke som 25 helst alkalimetalhydrocarboner og alkoxidsalte, der danner en monofunktionel reaktionsdygtig polymer, d.v.s. at kun én ende af polymeren indeholder en reaktiv anion. De katalysatorer, som findes egnede, indbefatter hydrocarboner med lithium, natrium eller kalium repræsenteret ved formlen RMe, hvori Me betegner et alkalimetal, så-som natrium, lithium eller kalium, og R betegner en hydrocarbongruppe, f.eks. en alkylgruppe indeholdende indtil ca. 20 carbonatomer eller flere, fortrinsvis indtil ca. 8 carbonatomer, en arylgruppe, en alka^ rylgruppe eller en aralkylgxuppe. Eksempler på alkalimetalhydrocarboner indbefatter ethylnatrium, n-propylnatrium, n-butylkalium, 35The initiators of these anionic polymerizations are any alkali metal hydrocarbons and alkoxide salts which form a monofunctional reactive polymer, i.e. only one end of the polymer contains a reactive anion. The catalysts found suitable include hydrocarbons having lithium, sodium or potassium represented by the formula RMe, wherein Me represents an alkali metal such as sodium, lithium or potassium, and R represents a hydrocarbon group, e.g. an alkyl group containing up to approx. 20 or more carbon atoms, preferably up to about 8 carbon atoms, an aryl group, an alkyl group or an aralkyl group. Examples of alkali metal hydrocarbons include ethyl sodium, n-propyl sodium, n-butyl potassium,

DK 151816 BDK 151816 B

8 n-octylkalium, phenylnatrium, ehtyllthium, sek.-butyllithium, t-butyllithium og 2-ethylhexyllithium. Sek.-butyllithium er den fo-., retrukne initiator, fordi det har en hurtig initiering, som er vigtig ved fremstilling af polymere med snæver molekylvægtforde-5 ling. Det foretrækkes at benytte alkalimetalsaltene af tertiære alkoholer, såsom kalium-t-butylalkoxylat, når der polymeriseres monomere med en nitril- eller carbonyl-funktionel gruppe.8 n-octyl potassium, phenyl sodium, ethylthithium, sec-butyllithium, t-butyllithium and 2-ethylhexyllithium. Sec-butyllithium is the preferred retarding initiator because it has a rapid initiation which is important in the preparation of polymers with narrow molecular weight distribution. It is preferred to use the alkali metal salts of tertiary alcohols such as potassium t-butyl alkoxylate when polymerizing monomers with a nitrile or carbonyl functional group.

iin

Alkalimetalhydrocarbonerne og alkalimetalalkoxylaterne er enten i 10 handelen gående forbindelser eller kan fremstilles ved kendte metoder, såsom ved omsætning af en halogenhydrocarbon, en halogenbenzen eller en alkohol med det behørige alkalimetal.The alkali metal hydrocarbons and alkali metal alkoxylates are either commercially available compounds or can be prepared by known methods, such as by reacting a halogenated hydrocarbon, a halogenobenzene or an alcohol with the appropriate alkali metal.

iin

Der benyttes generelt et indifferent opløsningsmiddel til at lette 15 varmeoverføring og passende blanding af initiator og monomer.Generally, an inert solvent is used to facilitate heat transfer and appropriate mixing of initiator and monomer.

Hydrocarboner og ethere er de foretrukne opløsningsmidler. Opløsningsmidler, som er anvendelige ved de anioniske polymerisationsprocesser, indbefatter de aromatiske hydrocarboner, såsom benzen, --toluen, xylen, ethylbenzen, t-butylbenzen, etc. Egnede er endvi-20 dere de mættede alifatiske og cykloalifatiske hydrocarboner, såsom n-hexan, n-heptan, n-octan, cyklohexan og lignende. Desuden kan der anvendes alifatiske og cykliske etheropløsningsmidler, f.eks. dimethylether, diethylether, dibutylether, tetrahydrofuran, dioxan, anisol, tetrahydropyran, diglyme, glyme, etc.. Polymeri-25 sationshastighederne er højere i etheropløsningsmidlerne end i hydrocarbonopløsningsmidlerne, og små mængder ether i hydrocarbon-opløsningsmidlet forøger polymerisationshastighederne.Hydrocarbons and ethers are the preferred solvents. Solvents useful in the anionic polymerization processes include the aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, t-butylbenzene, etc. Suitable are also the saturated aliphatic and cycloaliphatic hydrocarbons such as n-hexane. n-heptane, n-octane, cyclohexane and the like. In addition, aliphatic and cyclic ether solvents, e.g. dimethyl ether, diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, anisole, tetrahydropyran, diglyme, glyme, etc .. The rates of polymerization are higher in the ether solvents than in the hydrocarbon solvents and small amounts of ether in the hydrocarbon solvent increase polymerization.

Initiatormængden er en vigtig faktor ved anionisk polymerisation, 30 fordi den bestemmer molekylvægten af den reaktionsdygtige polymer.The initiator amount is an important factor in anionic polymerization because it determines the molecular weight of the reactive polymer.

DK 151816 BDK 151816 B

r 9r 9

Hvis en ringe mængde initiator benyttes i forhold til monomermængden, vil molekylvægten af den reaktionsdygtige polymer blive større, end 5 hvis en større mængde initiator benyttes. Generelt er det tilrådeligt at sætte initiator dråbevis til monomeren (når det er den valgte tilsætningsorden), indtil den organiske anions karakteristiske farve er vedvarende, hvorpå den beregnede mængde initiator til den ønskede molekylvægt tilsættes. Den foreløbige dråbevise tilsætning tjener 10 til ødelæggelse af forureninger og muliggør således bedre styring af polymerisationen.If a small amount of initiator is used relative to the amount of monomer, the molecular weight of the reactive polymer will be greater than 5 if a greater amount of initiator is used. In general, it is advisable to add the initiator dropwise to the monomer (when it is the order of addition) until the characteristic color of the organic anion persists, and then add the calculated amount of initiator to the desired molecular weight. The preliminary drop addition serves to destroy contaminants and thus enables better control of the polymerization.

Til fremstilling af en polymer med snæver molekylvægtfordeling foretrækkes det generelt samtidigt at indføre alle de relative stoftyper i systemet. Ved hjælp af denne teknik foregår polymervæksten ved 15 hjælp af efterfølgende tilsætning af monomer med samme hastighed frem til en aktiv, endestillet gruppe, uden at der sker kædeoverføring eller afslutningsomsætning. Hår dette er foretaget, styres polymerens molekylvægt ved hjælp af forholdet mellem monomer og initiator, således som det fremgår af følgende ligning: molekylvægt _ moi monomer molekylvægt τα.. ,a , . -i mol initiator x a reaktionsdygtig polymer monomer 20 Som det fremgår af ovenstående ligning, fører høje initiatorkoncen-trationer til dannelse af polymere med lav molekylvægt, hvorimod lave initiatorkoncentrationer fører til dannelse af polymere med høj molekylvægt .For the preparation of a polymer with narrow molecular weight distribution, it is generally preferred to simultaneously introduce all the relative types of substances into the system. By this technique, polymer growth is accomplished by the subsequent addition of monomers at the same rate to an active, terminated group, without chain transfer or termination. Once this is done, the molecular weight of the polymer is controlled by the ratio of monomer to initiator, as can be seen from the following equation: molecular weight - moi monomer molecular weight τα .., a ,. -i mole initiator x a reactive polymer monomer 20 As can be seen from the above equation, high initiator concentrations lead to the formation of low molecular weight polymers, whereas low initiator concentrations lead to the formation of high molecular weight polymers.

Koncentrationen af den på reaktionsbeholderen fyldte monomer kan va-25 riere indenfor vide grænser, og den begrænses af reaktionsapparaturets evne til at fjerne polymerisationsvarmen og til på passende måde at blande de resulterende viskose opløsninger af den reaktionsdygtige polymer. Monomerkoncentrationer så høje som 50 vægt$ eller mere baseret på vægten af reaktionsblandingen kan benyttes. Den foretrukne 30 monomerkoncentration ligger imidlertid fra ca. 5f° til ca. 251° med henblik på opnåelse af en passende blanding.The concentration of the monomer loaded on the reaction vessel may vary within wide limits and is limited by the ability of the reaction apparatus to remove the heat of polymerization and to appropriately mix the resulting viscous solutions of the reactive polymer. Monomer concentrations as high as 50% by weight or more based on the weight of the reaction mixture can be used. However, the preferred monomer concentration ranges from ca. 5 ° to approx. 251 ° to obtain a suitable mixture.

10 DK 151816 BDK 151816 B

Som det fremgår af den ovenstående formel og de ovennævnte "begrænsninger i henseende til monomerkoncentrationen er initiatorkoncentra-tionen kritisk, men kan varieres i overensstemmelse med den ønskede molekylvægt for den reaktionsdygtige polymer og den relative koncen-5 tration af monomeren. Generelt kan initiatorkoncentrationen andrage fra ca. 0,001 til ca. 0,1 mol aktivt alkalimetal pr. mol monomer eller mere. Initiatorkoncentrationen vil fortrinsvis andrage fra ca. 0,01 til ca. 0,004 mol aktivt alkalimetal pr. mol monomer.As can be seen from the above formula and the aforementioned "monomer concentration limitations, the initiator concentration is critical, but can be varied according to the desired molecular weight of the reactive polymer and the relative concentration of the monomer. In general, the initiator concentration may be from about 0.001 to about 0.1 mole of active alkali metal per mole of monomer or more The initiator concentration will preferably range from about 0.01 to about 0.004 mole of active alkali metal per mole of monomer.

Polymerisationstemperaturen vil afhænge af monomeren. Generelt kan 10 reaktionen udføres ved temperaturer fra ca. -100°0 og op til ca.The polymerization temperature will depend on the monomer. In general, the reaction can be carried out at temperatures of about -100 ° 0 and up to approx.

100°G. Når der benyttes alifatiske hydrocarbonfortyndingsmidler, andrager den foretrukne temperatur fra ca. -10°0 til ca. 100°C. Med ethere som opløsningsmiddel ligger den foretrukne temperatur fra ca. -100°C til ca. 100°0. Polymerisationen af styren udføres generelt 15 ved lidt over stuetemperatur, og polymerisation af α-methylstyren udføres fortrinsvis ved lavere temperaturer, f.eks. -80°C.100 ° G. When aliphatic hydrocarbon diluents are used, the preferred temperature is from approx. -10 ° 0 to approx. 100 ° C. With ethers as the solvent, the preferred temperature ranges from approx. -100 ° C to approx. 100 ° 0th The polymerization of styrene is generally carried out at slightly above room temperature, and polymerization of α-methylstyrene is preferably carried out at lower temperatures, e.g. -80.

Fremstillingen af den reaktionsdygtige polymer kan udføres ved at sætte en opløsning af alkalimetalhydrocarboninitiatoren i et indifferent, organisk opløsningsmiddel til en blanding af monomer og for-20 tyndingsmiddel ved den ønskede polymerisationstemperatur, samt ved at lade blandingen henstå med eller uden omrøring, indtil polymerisationen er færdig. En alternativ fremgangsmåde består i at sætte monomer til en opløsning af katalysatoren i fortyndingsmidlet ved den ønskede polymerisationstemperatur og med den hastighed, hvormed 25 den polymeriseres. Ved begge fremgangsmåder omdannes monomeren kvantitativt til en reaktionsdygtig polymer, så længe systemet forbliver fri for urenheder, som inaktiverer de anioniske stoftyper. Som anført i det foregående er det imidlertid vigtigt at tilsætte alle de reaktive bestanddele sammen og hurtigt med henblik på at sikre dan-30 nelse af en ensartet molekylvægtfordeling hos polymeren.The preparation of the reactive polymer can be carried out by adding a solution of the alkali metal hydrocarbon initiator in an inert organic solvent to a mixture of monomer and diluent at the desired polymerization temperature, and leaving the mixture with or without stirring until the polymerization is complete. . An alternative method consists of adding monomer to a solution of the catalyst in the diluent at the desired polymerization temperature and at the rate at which it is polymerized. In both processes, the monomer is quantitatively converted to a reactive polymer as long as the system remains free of impurities which inactivate the anionic types of substance. However, as stated above, it is important to add all of the reactive components together and quickly to ensure uniform molecular weight distribution of the polymer.

Den anioniske polymerisation skal udføres under omhyggeligt styrede betingelser, så at stoffer, der ødelægger den katalytiske virkning af katalysatoren eller initiatoren, udelukkes. F.eks. sådanne urenheder som vand, oxygen, carbonmonooxid, carbondioxid og lignende.The anionic polymerization must be carried out under carefully controlled conditions to exclude substances that destroy the catalytic action of the catalyst or initiator. Eg. such impurities as water, oxygen, carbon monoxide, carbon dioxide and the like.

35 Polymerisationerne udføres således generelt i et tørt udstyr under anvendelse af vandfrie reaktanter og under en indifferent gasatmosfære, såsom nitrogen, helium, argon, methan og lignende.Thus, the polymerizations are generally carried out in dry equipment using anhydrous reactants and under an inert gas atmosphere such as nitrogen, helium, argon, methane and the like.

ΓΓ

u DK 151816 Bu DK 151816 B

De ovenfor "beskrevne reaktionsdygtige polymere er i stand til at undergå yderligere omsætninger indbefattet yderligere polymerisation.The reactive polymers described above are capable of undergoing further reactions including further polymerization.

Hvis en yderligere monomer, såsom styren, således sættes til den reaktionsdygtige polymer, fornys polymerisationen, og kæden vokser, 5 indtil der ikke er mere monomert styren tilbage. Alternativt, hvis en anden anderledes anionisk polymeriserbar monomer tilsættes, såsom butadien eller ethylenoxid, initierer den ovennævnte reaktionsdygtige polymer polymerisationen af butadienen eller ethylenoxidet, og den endeligt opnåede reaktionsdygtige polymer, som resulterer heraf, belt) står af et polystyrensegment og et polybutadien- eller polyoxyethylen-segment.Thus, if an additional monomer such as styrene is added to the reactive polymer, the polymerization is renewed and the chain grows until no more monomeric styrene is left. Alternatively, if another different anionic polymerizable monomer is added, such as butadiene or ethylene oxide, the above reactive polymer initiates the polymerization of the butadiene or ethylene oxide, and the finally obtained reactive polymer resulting therefrom is made of a polystyrene segment and a polybutadiene or polyoxyethylene. -segment.

En diblok-hydrofob copolymer kan fremstilles ved at bringe den første reaktionsdygtige polymer, f.eks. en reaktionsdygtig polymer af en vinyl-aromatisk forbindelse, såsom reaktionsdygtigt polystyren eller 15 reaktionsdygtigt poly(a-methylstyren) i kontakt med en anden anionisk polymeriserbar monomer, f.eks. en konjugeret dien som butadien eller isopren. På denne måde opnås en reaktionsdygtig diblok-polymer, som kan afsluttes ved hjælp af fremgangsmåderne benyttet ved udøvelsen af den foreliggende opfindelse. Under anvendelse af denne tek-20 nik kan der opnås en reaktionsdygtig diblok-polymer med følgende formel: ΘA diblock-hydrophobic copolymer can be prepared by bringing the first reactive polymer, e.g. a reactive polymer of a vinyl-aromatic compound such as reactive polystyrene or reactive poly (α-methylstyrene) in contact with another anionic polymerizable monomer, e.g. a conjugated diene such as butadiene or isoprene. In this way, a reactive diblock polymer is obtained which can be terminated by the methods used in the practice of the present invention. Using this technique, a reactive diblock polymer of the following formula can be obtained: Θ

A-BA-B

hvori A er en polymer blok af en vinyl-aromatisk forbindelse, og B er en polymer blok af en konjugeret dien. Copolymeriserbare, macro-molekylære monomere, som har en diblok-struktur, er beskrevet i U.S.A.wherein A is a polymer block of a vinyl-aromatic compound and B is a polymer block of a conjugated diene. Copolymerizable, macro-molecular monomers having a diblock structure are described in U.S.A.

25 patentansøgning Serial Ho. 347.116 . '25 Patent Application Serial Ho. 347.116. '

Som anført i det foregående er de reaktive polymere benyttet ved fremgangsmåden ifølge den foreliggende opfindelse karakteriseret ved en relativt ensartet molekylvægt, d.v.s. at fordelingen af molekylvægte i blandingen af fremstillede reaktionsdygtige polymere er 30 ret smal. Dette står i udpræget modsætning til den typiske polymer, hvor molekylvægtfordelingen er ret bred. Forskellen i molekylvægtfordeling fremgår særlig udtalt ud fra en analyse af det gelgennem-trængningskromatogram af i handelen gående polystyren (Dow 666u), der fremstilles ved fri-radikal-polymerisation,og af polystyren frem-35 stillet ved den anioniske polymerisationsproces, som benyttes ved udøvelsen af fremgangsmåden ifølge opfindelsen. De reaktionsdygtigeAs stated above, the reactive polymers used in the process of the present invention are characterized by a relatively uniform molecular weight, i.e. that the distribution of molecular weights in the mixture of prepared reactive polymers is quite narrow. This is in marked contrast to the typical polymer, where the molecular weight distribution is quite wide. The difference in molecular weight distribution is particularly evident from an analysis of the gel permeation chromatogram of commercial polystyrene (Dow 666u) produced by free radical polymerization and of polystyrene prepared by the anionic polymerization process used in the practice of the process of the invention. They are responsive

12 DK 151816 B12 DK 151816 B

polymere fremstillet ved fremgangsmåden ifølge opfindelsen er således karakteriseret ved at have et Mw/Mn-forhold, som ikke er væsentligt over ca. 1,1, hvor Mw er den vejede gennemsnitlige molekylvægt af den reaktionsdygtige polymer, og Mn er antallet af den talmæssige 5 gennemsnitlige molekylvægt for den reaktionsdygtige polymer bestemt ved sædvanlig analytisk teknik, såsom gelgennemtrængningskromatografi (G-PC).Thus, polymers prepared by the process of the invention are characterized by having an Mw / Mn ratio which is not substantially greater than ca. 1.1, where Mw is the weighted average molecular weight of the reactive polymer and Mn is the number of numerical average molecular weight of the reactive polymer determined by conventional analytical techniques such as gel permeation chromatography (G-PC).

De her omhandlede reaktionsdygtige polymere er afsluttet ved hjælp af omsætning med en halogenholdig forbindelse, som også indeholder 10 en polymeriserbar del, såsom en olefinisk gruppe eller en epoxy- eller thioepoxygruppe. Egnede halogenholdige afslutningsmidler indbefatter vinylhalogenalkylethrene, hvori alkylgrupperne indeholder 6 eller færre carbonatomer, såsom methyl, ethyl, propyl, butyl, iso= butyl, sek.-butyl, amyl og hexyl, vinylestere eller halogenalkansy-15 rer, hvori alkansyren indeholder 6 eller færre carbonatomer, såsom eddikesyre, propionsyre, smørsyre, valerianesyre og capronsyre, olefiniske halogenider med 6 eller færre carbonatomer, såsom vinyl= halogenid, allylhalogenid, methallylhalogenid, 6-halogen-l-hexen, etc., halogenider af diener, såsom 2-halogenmethyl-l,3-butadien, 20 epihalogenhydriner, acrylyl- og methacrylylhalogenider, halogenal-kylmaleinsyreanhydrider, halogenalkylmaleatestere, vinylhalogenal-kylsilaner, vinylhalogenaryler og vinylhalogenalkaryler, såsom vi-nylbenzenchlorid (VBC), halogenalkylnorbornener, såsom bromethyl= norbornen, bromnorbornan, og epoxyforbindelser, såsom ethylen- eller 25 propylenoxid. Halogengruppen kan være chlor, fluor, brom eller jod, men fortrinsvis er den chlor. Anhydrider af forbindelser med en olefinisk gruppe eller en epoxy- eller thioepoxygruppe kan også benyttes, såsom maleinsyreanhydrid, acrylsyreanhydrid eller methacryl= syreanhydrid.The reactive polymers herein are terminated by reaction with a halogen-containing compound which also contains a polymerizable moiety such as an olefinic group or an epoxy or thioepoxy group. Suitable halogen-containing termination agents include the vinyl haloalkyl ethers wherein the alkyl groups contain 6 or fewer carbon atoms, such as methyl, ethyl, propyl, butyl, isobutyl, sec-butyl, amyl and hexyl, vinyl esters or haloalkanoic acids, wherein the alkanoic acid contains 6 or fewer carbon atoms. , such as acetic acid, propionic acid, butyric acid, valeric acid and capric acid, olefinic halides with 6 or fewer carbon atoms such as vinyl halide, allyl halide, methallyl halide, 6-halo-1-hexene, etc., halides of dienes such as 2-halo methyl-1 ; or propylene oxide. The halogen group may be chlorine, fluorine, bromine or iodine, but preferably it is chlorine. Anhydrides of compounds with an olefinic group or an epoxy or thioepoxy group may also be used, such as maleic anhydride, acrylic anhydride or methacrylic anhydride.

30 Afslutning af den reaktionsdygtige polymer foretages på simpel måde ved at sætte afslutningsmidlet til opløsningen af reaktionsdygtig polymer ved den temperatur, ved hvilken den reaktionsdygtige polymer fremstilles. Omsætningen er øjeblikkelig, og udbyttet er det teoretiske. Et ringe molært overskud af afslutningsmidlet i forhold til 35 mængden af anionisk initiator kan benyttes, selv om omsætningen foregår på en mol-til-mol-basis.Termination of the reactive polymer is accomplished simply by adding the termination agent to the solution of reactive polymer at the temperature at which the reactive polymer is prepared. The turnover is immediate and the yield is theoretical. A slight molar excess of the terminating agent relative to the amount of anionic initiator may be employed, although the reaction is carried out on a mole-to-mole basis.

Afslutningen kan udføres i et hvilket som helst passende indifferentThe termination may be carried out in any suitable inert

is DK 151816 Bis DK 151816 B

r opløsningsmiddel. Generelt er det tilrådeligt at benytte samme opløsningsmiddelsystem, som benyttet ved fremstillingen af den reaktionsdygtige polymer. .· . En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen omfatter udførelse af afslutningsreak-5 tionen i et hydrocarbonopløsningsmiddel i stedet for opløsningsmidler af den polære ethertype, såsom tetrahydrofuran. Det har vist sig, at hydrocarbonopløsningsmidler, såsom de aromatiske hydrocarboner, mættede alifatiske og cykloalifatiske hydrocarboner bevirker flere forskelle i reaktionsbetingelserne og i det resulterende produkt. F.is solvent. In general, it is advisable to use the same solvent system as used in the preparation of the reactive polymer. . ·. A preferred embodiment of the process of the invention comprises performing the termination reaction in a hydrocarbon solvent instead of the polar ether-type solvents such as tetrahydrofuran. It has been found that hydrocarbon solvents such as the aromatic hydrocarbons, saturated aliphatic and cycloaliphatic hydrocarbons cause several differences in the reaction conditions and in the resulting product. F.

10 eks. kan afslutningsreaktionen udføres ved højere temperaturer med hydrocarbonopløsningsmidler end med etheropløsningsmidlerne.For example, the quenching reaction can be carried out at higher temperatures with hydrocarbon solvents than with the ether solvents.

Som følge af naturen af den reaktionsdygtige polymer og den monomer, hvorfra den fremstilles, eller på grund af naturen af afslutningsmidlet forekommer der i nogle tilfælde visse uheldige sidereaktioner, 15 som resulterer i et urent produkt. P.eks. har carbanionen i visse reaktionsdygtige polymere en tendens til at reagere med-funktionelle grupper eller hvilke som helst aktive hydrogenatomer i afslutningsmidlet. Selv om acrylylchlorid eller methacrylylchlorid fungerer som afslutningsmidler som følge af tilstedeværelsen af ehloratomet 20 i deres struktur, tilvejebringer de således f.eks. også en carbonyl= gruppe i den afsluttede polymerkæde, og denne carbonylgruppe kan tilvejebringe et centrum for angreb ved hjælp af en anden meget reaktiv reaktionsdygtig polymer. Den resulterende polymer har enten den dobbelte af den forventede molekylvægt eller indeholder noget chlor, 25 hvilket viser, at noget af den reaktionsdygtige polymer er blevet afsluttet ved omsætning med en anden reaktionsdygtig polymer eller med et af de aktive hydrocarboner fra acrylyl- eller methacrylyl= chloridet.Due to the nature of the reactive polymer and the monomer from which it is made, or because of the nature of the terminating agent, in some cases, certain adverse side reactions occur, resulting in an impure product. P.eks. For example, the carbanion in certain reactive polymers tends to react with functional groups or any active hydrogen atoms in the terminating agent. Thus, although acrylyl chloride or methacrylyl chloride act as termination agents due to the presence of the ehlor atom 20 in their structure, they thus provide e.g. also a carbonyl group in the terminated polymer chain, and this carbonyl group can provide a center of attack by another highly reactive polymer. The resulting polymer either has twice the expected molecular weight or contains some chlorine, which shows that some of the reactive polymer has been terminated by reaction with another reactive polymer or with one of the active hydrocarbons from the acrylyl or methacrylyl chloride. .

Det har vist sig, at midler til at afhjælpe den ovennævnte ulempe er 30 at gøre den reaktive carbanion mindre udsat for omsætning med de funktionelle grupper eller hvilke som helst aktive hydrogenatomer hos et afslutningsmiddel. En foretrukket fremgangsmåde til at gøre den reaktionsdygtige polymer mere udsat for den uheldige omsætning består i at "beskytte"den særligt reaktive reaktionsdygtige polymer 35 med en mindre reaktiv reaktant. Eksempler på nogle foretrukne "beskyttelsesmidler" indbefatter de lavere alkylenoxider, d.v.s. et med 8 eller færre carbonatomer, såsom ethylen- og propylenoxid, diphenyl= ethylen, etc. Den "beskyttende" omsætning giver et produkt, som stadigIt has been found that the means for alleviating the above drawback are to make the reactive carbanion less susceptible to reaction with the functional groups or any active hydrogen atoms of a termination agent. A preferred method of making the reactive polymer more susceptible to the adverse reaction consists of "protecting" the particularly reactive polymer with a less reactive reactant. Examples of some preferred "protecting agents" include the lower alkylene oxides, i.e. one having 8 or fewer carbon atoms, such as ethylene and propylene oxide, diphenyl = ethylene, etc. The "protective" reaction gives a product which still

14 DK 151816B14 DK 151816B

er en reaktionsdygtig polymer, men giver et renere produkt, når der derefter omsættes med et afslutningsmiddel indeholdende en funktionel gruppe eller aktivt hydrogen.is a reactive polymer, but provides a cleaner product when then reacted with a termination agent containing a functional group or active hydrogen.

Det har vist sig, at diphenylethylen er et fortrinligt "beskyttelsesmid” 5 del", når der benyttes afslutningsmidler som f.eks. vinylchloralkanoater.It has been found that diphenylethylene is an excellent "protector" part 5 when terminating agents such as e.g. vinylchloralkanoater.

Et særlig foretrukket "beskyttelsesmiddel" er et alkylenoxid, såsom ethylen-oxid. Dette reagerer med den reaktionsdygtige polymer under nedbrydning af dennes oxiranring. I det følgende gives en typisk illustration af den "beskyttende reaktion", som viser omsætning af ethylen= 10 oxid som dækkende middel med en reaktionsdygtig polymer fremstillet ved polymerisation af styren med sek.-butyllithium som initiator: ΓΊΘΘ ΓΊ ΘΘ sek.-Bu—-CH0CH—-CH0CH li + CH0 GH9->-sek.-Bu--CH0CH--CHCJCH—CH9CH90H-Ii 16¾ v 1 6¾A particularly preferred "protective agent" is an alkylene oxide such as ethylene oxide. This reacts with the reactive polymer during degradation of its oxirane ring. The following is a typical illustration of the "protective reaction" which shows the reaction of ethylene = 10 oxide as a covering agent with a reactive polymer prepared by polymerization of styrene with sec-butyllithium as initiator: ΓΊΘΘ ΓΊ ΘΘ sec.-Bu- -CHOCH —- CHOCH li + CH0 GH9 -> - sec.-Bu - CHOCH - CHCJCH — CH9CH90H-II 16¾ v 1 6¾

Den·-beskyttende omsætning udføres ganske simpelt som i tilfælde af afslutningsreaktionen ved at sætte den dækkende reaktant til den reaktionsdygtige polymer ved polymerisationstemperaturer. Reaktionen 15 foregår øjeblikkeligt, lige som i tilfælde af afslutningsreaktionen kan der benyttes et ringe molært overskud af den dækkende reaktant i forhold til mængden af initiator. Reaktionen foregår på en mol-til-mol-basis.The · protective reaction is carried out quite simply as in the case of the termination reaction by adding the covering reactant to the reactive polymer at polymerization temperatures. Reaction 15 takes place immediately, just as in the case of the termination reaction, a slight molar excess of the covering reactant can be used relative to the amount of initiator. The reaction takes place on a mole-to-mole basis.

Det vil fremgå, at når et stort molært overskud af alkylenoxid omsæt-20 tes med den reaktionsdygtige polymer, fremstilles en reaktionsdygtig polymer med to polymere blokke. Et typisk eksempel med polystyrensegmenter og polyoxyalkylensegmenter er som følger: ”1 Θ ® sek.- Bu—CH2CH—CH2CH(CH2CH20)x—‘CH2CH20 + Li - hvori x er et positivt, helt tal.It will be seen that when a large molar excess of alkylene oxide is reacted with the reactive polymer, a reactive polymer having two polymeric blocks is prepared. A typical example of polystyrene segments and polyoxyalkylene segments is as follows: “1 Θ ® sec.- Bu — CH2CH — CH2CH (CH2CH2O) x—

Begge de ovenfor beskrevne med ethylenoxid "beskyttede" polymere kan hensigtsmæssigt afsluttes med en forbindelse indeholdende en del, 25 der kan reagere med den dækkede polymers anion og en polymeriserbar endegruppe, indbefattet følgende typiske forbindelser: acrylylchlo-rid, methacrylylchlorid, vinyl-2-chlorethylether, vinylchloracetat, rConveniently, both of the above described with ethylene oxide "protected" polymers may be terminated with a compound containing a moiety which can react with the anion of the covered polymer and a polymerizable end group, including the following typical compounds: acrylyl chloride, methacrylyl chloride, vinyl 2-chloroethyl ether. , vinyl chloroacetate, r

15 DK 151816 BDK 151816 B

chlormethylmaleinsyreanhydrid og estere deraf, maleinsyreanhydrid (giver halvestere af maleinsyre efter protonering med vand), allyl-chlorid og methallylchlorid samt vinylbenzylchlorid.chloromethylmaleic anhydride and esters thereof, maleic anhydride (yields half esters of maleic acid after protonation with water), allyl chloride and methallyl chloride, and vinyl benzyl chloride.

Omsætningen af de ovennævnte"beskyttede" reaktionsdygtige polymere med 5 såvel acrylylchlorid som methacrylylchlorid kan illustreres ved hjælp af følgende reaktioner: 0The reaction of the above "protected" reactive polymers with both acrylyl chloride and methacrylyl chloride can be illustrated by the following reactions:

IIII

ch2 = c - c - Cl . . © Θ sek.-Bu^-CH2-CH--(0Η20Η20)χ—CH2CH20 + li ---► L bi r -I och2 = c - c - Cl. . © Θ sec.-Bu ^ -CH2-CH - (0Η20Η20) χ — CH2CH20 + li --- ► L bi r -I o

, . II,. II

sek.-Bu--CH2-0H--(CH2CH20)x—CH2OH2OCC = CH2 + LiCl c. O Jn H« hvori n er et positivt, helt tal på ca, mindst 50, x er enten 0 eller et positivt, helt tal, og R^ er enten hydrogen eller methyl.sec-Bu - CH2-OH - (CH2 CH2 O) x-CH2 OH2OCC = CH2 + LiCl c. O Jn H «wherein n is a positive integer of about number and R 1 is either hydrogen or methyl.

liår en epihalogenhydrin benyttes som det afsluttende reagens, inde-10 holder den resulterende polymer en endestillet epoxygruppe. Denne endestillede epoxygruppe kan selv anvendes som den polymeriserbare gruppe, såsom ved fremstilling af en polypropylenoxid-grundskelet-podeco= polymer, eller kan omdannes til forskellige andre anvendelige polymeriserbare endegrupper ved hjælp af en hvilken som helst af flere kend-15 te reaktioner.When an epihalohydrin is used as the final reagent, the resulting polymer contains a terminal epoxy group. This terminal epoxy group can itself be used as the polymerizable group, such as in the preparation of a polypropylene oxide backbone graft copolymer, or can be converted to various other useful polymerizable end groups by any of several known reactions.

Som en udførelsesform for fremgangsmåden ifølge opfindelsen kan den afsluttede, reaktionsdygtige polymer indeholdende en epoxy- eller thioepoxyendegruppe omsættes med et polymeriserbart carboxylsyreha-logenid, såsom acrylsyrehalogenid, methacrylsyrehalogenid eller ma-20 leinsyrehalogenid, med henblik på fremstilling af en p-hydroxyalkyl= acrylat-, -methacrylat- eller -maleatester som den polymeriserbare endedel af polymeren med i det væsentlige ensartet molekylvægt. De samme polymeriserbare estere kan fremstilles ud fra den epoxyafsluttede polymer ved først at omdanne epoxygruppen til den tilsvarende 25 glycol ved opvarmning af polymeren sammen med vandigt natriumhydroxid, efterfulgt af konventionel esterifikation af glycolendegrup-pen med den behørige polymeriserbare carboxylsyre eller syrehaloge-nidet.As an embodiment of the process according to the invention, the finished reactive polymer containing an epoxy or thioepoxy end group can be reacted with a polymerizable carboxylic acid halide, such as acrylic acid halide, methacrylic acid halide or maleic acid halide, to prepare a p-hydroxyalkyl, methacrylate or maleate ester as the polymerizable end portion of the polymer of substantially uniform molecular weight. The same polymerizable esters can be prepared from the epoxy-terminated polymer by first converting the epoxy group to the corresponding glycol by heating the polymer together with aqueous sodium hydroxide, followed by conventional esterification of the glycol end group with the appropriate polymerizable carboxylic acid or acid halide.

16 DK 151816B16 DK 151816B

Den resulterende glycol opnået ved hjælp af den vandige hydrolyse af epoxygruppen i nærværelse af en hase kan omdannes til en copolymer ved omsætning med en dicarboxylsyre med høj molekylvægt, som f.eks« kan fremstilles ved polymerisation af en glycol eller diamin med et 5 molært overskud af phthalsyreanhydrid, maleinsyreanhydrid, ravsyre= anhydrid eller lignende. Disse omsætninger kan modificeres til opnåelse af en polystyrenhlok og en polyamidhlok (nylon). Den glycol= afsluttede polymer kan også omsættes med et diisocyanat til dannelse af en polyurethan. Diisocyanatet kan f.eks. være reaktionsproduktet 10 af en polyethylenglycol med en gennemsnitlig molekylvægt på 400 med et molært overskud af phenylendiisocyanat.The resulting glycol obtained by the aqueous hydrolysis of the epoxy group in the presence of a rabbit can be converted to a copolymer by reaction with a high molecular weight dicarboxylic acid, such as may be prepared by polymerization of a glycol or diamine with a 5 molar excess. of phthalic anhydride, maleic anhydride, succinic anhydride or the like. These reactions can be modified to obtain a polystyrene cap and a polyamide cap (nylon). The glycol-terminated polymer can also be reacted with a diisocyanate to form a polyurethane. The diisocyanate can e.g. be the reaction product 10 of a polyethylene glycol having an average molecular weight of 400 with a molar excess of phenylene diisocyanate.

I en anden udførelsesform for opfindelsen copolymeriseres et organisk epoxid med en afsluttet polymer indeholdende en epoxy- eller thioep= oxyendegruppe. Den resulterende podecopolymer er karakteriseret ved 15 et grundskelet med uafbrudte segmenter med mindst ca. 20 og fortrinsvis mindst ca. 30 tilbagevendende enheder af det organiske epoxid. Foretrukne organiske epoxider indbefatter ethylenoxid, cyklohexen= epoxid og styrenoxid, d.v.s. dem med 8 eller færre carbonatomer. Med simpel hydrolyse kan grundskeletpolymeren gøres hydrofil.In another embodiment of the invention, an organic epoxide is copolymerized with a terminated polymer containing an epoxy or thioepoxy end group. The resultant graft copolymer is characterized by a base skeleton with continuous segments of at least approx. 20 and preferably at least approx. 30 recurring units of the organic epoxide. Preferred organic epoxides include ethylene oxide, cyclohexene = epoxide and styrene oxide, i.e. those with 8 or fewer carbon atoms. With simple hydrolysis, the backbone polymer can be made hydrophilic.

20 Hvis det er ønskeligt at isolere og yderligere rense den macromolekylære monomer for det opløsningsmiddel, hvorfra den blev fremstillet, kan der benyttes en hvilken som helst af de kendte metoder, som benyttes af fagmanden på området ved genvinding af polymere materialer. Disse metoder indbefatter: (1) opløsningsmiddel-ikke-opløsningsmiddel-25 fældning, (2) afdampning af opløsningsmiddel i et vandigt medium, og (3) afdampning af opløsningsmiddel, såsom ved vakuumvalsetørring, spraytørring, frysetørring, og (4) dampstrålekoagulation.If it is desirable to isolate and further purify the macromolecular monomer of the solvent from which it was prepared, any of the known methods employed by those skilled in the art can be employed in the recovery of polymeric materials. These methods include: (1) solvent-non-solvent precipitation, (2) solvent evaporation in an aqueous medium, and (3) solvent evaporation such as vacuum roll drying, spray drying, freeze drying, and (4) steam jet coagulation.

Isolation og genvinding af den makromolekylære monomer er ikke et kritisk træk ved opfindelsen. I virkeligheden behøver den makromo-30 lekylære monomer slet ikke at blive genvundet. Som anført på anden måde kan den makromolekylære monomer, når den først er danne t, kombiner es med den egnede monomer samt polymerisationskatalysator til udførelse af podecopolymerisationen i det samme system som det, hvori den ma-cromolekylære monomer blev fremstillet, forudsat at opløsningsmidlet 35 og materialerne i fremstillingsbeholderen for den makromolekylære monomer ikke forgifter katalysatoren eller virker på en skadelig mådeIsolation and recovery of the macromolecular monomer is not a critical feature of the invention. In fact, the macromolecular monomer need not be recovered at all. As stated otherwise, the macromolecular monomer, once formed, can be combined with the appropriate monomer and polymerization catalyst to perform the graft copolymerization in the same system as that in which the macromolecular monomer was prepared, provided that the solvent 35 and the materials in the macromolecular monomer preparation container do not poison the catalyst or act in a harmful way

17 DK 151816B17 DK 151816B

overfor podecopolymerisationsprocessen. En omhyggelig udvælgelse af opløsningsmidlet og rensningen af reaktorsystemet ved fremstillingen af den makromolekylære monomer kan således til slut resultere i en stor besparelse ved fremstillingen af podecopolymerene ifølge opfin-5 delsen.to the graft copolymerization process. Thus, careful selection of the solvent and purification of the reactor system in the preparation of the macromolecular monomer can ultimately result in a great saving in the preparation of the graft copolymers of the invention.

Som anført i det foregående skal de makromolekylære monomere, som til slut bliver til sidekæderne på podecopolymerene ved at blive integralt polymeriseret ind i grundske le tp o lymeren, liave en smal molekylvægtfordeling. fremgangsmåder ved bestemmelse af den molekylære 20 vægtfordeling for polymere, såsom de makromolekylære monomere, er kendte. Ved anvendelse af disse kendte metoder kan den vægtede gennemsnitlige molekylvægt (Mw) og den talmæssigt gennemsnitlige molekylvægt (Mn) fastslås, og molekylvægtfordelingen (Mw/Mn) kan bestemmes for den makromolekylære monomer. De makromolekylære monomere 25 skal have næsten en Poisson-molekylvægtfordeling eller i virkeligheden være monodisperse for at have den højeste funktionalitetsgrad, d.v.s. at forholdet Mw/Mn ikke vil være væsentligt over 1,1. Fortrinsvis vil forholdet Mw/Mn for de hidtil ukendte mak romolekylære monomere være mindre end ca. 1,1. De makromolekylære monomere ifølge 20 den foreliggende opfindelse har, som nævnt i det foregående, en smal molekylvægtfordeling samt renhed som følge af fremgangsmåden ved deres fremstilling, som beskrevet i det foregående. Eet er således vigtigt, at rækkefølgen af trin ved fremstilling af de måkromoleky-lære monomere fastholdes med henblik på opnåelse af de optimale re-25 sultater i henseende til podecopolymerenes gunstige egenskaber.As stated above, the macromolecular monomers, which eventually become the side chains of the graft copolymers by being integrally polymerized into basic le tp o lymers, must exhibit a narrow molecular weight distribution. methods for determining the molecular weight distribution for polymers, such as the macromolecular monomers, are known. Using these known methods, the weighted average molecular weight (Mw) and the numerically average molecular weight (Mn) can be determined and the molecular weight distribution (Mw / Mn) can be determined for the macromolecular monomer. The macromolecular monomers 25 must have almost a Poisson molecular weight distribution or, in fact, be monodisperse in order to have the highest degree of functionality, i.e. that the ratio Mw / Mn will not be significantly above 1.1. Preferably, the ratio Mw / Mn of the novel macromolecular monomers will be less than ca. 1.1. The macromolecular monomers of the present invention, as mentioned above, have a narrow molecular weight distribution as well as purity following the process of their preparation, as described above. Thus, it is important that the sequence of steps in preparing the macromolecular monomers be maintained in order to obtain the optimum results in terms of the favorable properties of the graft copolymers.

Som det fremgår af det foregående, angives de omhandlede hydrofobe, copolymeriserbare, makromolekylære monomere generelt ved den følaen-de strukturformel: 18 DK 151816B *·.As can be seen from the foregoing, the hydrophobic copolymerizable macromolecular monomers of the present invention are generally indicated by the following structural formula:

W “ O—«W “O—”

IIII

O—pcj ✓'Τ'*O — pcj ✓'Τ '*

O CMO CM

WW

U p 3/1U p 3/1

H \MH \ M

ω o j 0 oω o j 0 o

'T'T

0=0 w σ10 = 0 w σ1

OISLAND

UU

(D(D

iHI h

HH

(1)(1)

COCO

ftft

CMCM

WW

OISLAND

ww

___O___ISLAND

i__Ii__I

CMCM

ωω

OISLAND

J?J?

CMCM

PMPM

V4/ ^ riV4 / ^ ri

HH

FMFM

HH

19 DK 151816 Β Γ hvori I er den tilbageværende rest af den monofunktionelle, anioniske initiator, P er mindst én anionisk polymeriseret monomer, P er mindst én anionisk polymeriseret monomer, der er den samme som eller er forskellig fra P1, E er enten hydrogen eller lavere alkyl, R' er 5 enten hydrogen ellerWherein I is the residual residue of the monofunctional anionic initiator, P is at least one anionic polymerized monomer, P is at least one anionic polymerized monomer which is the same or different from P1, E is either hydrogen or lower alkyl, R 'is either hydrogen or

OISLAND

IIII

-C—ox, hvori X er enten hydrogen, lavere alkyl eller et monovalent metal, n er et positivt, helt tal på mindst ca. 20, m er enten 0 eller et positivt, helt tal, og summen af n og m er således, at molekylvægten af den macromolekylære monomer er mindst ca. 2000 og fortrinsvis mel-10 lem ca. 5000 og ca. 50.000, o, q, r og s er enten 0 eller 1, og p er enten 0 eller et positivt, helt tal i området fra 1 til ca. 8, med det forbehold, at når o og p er 1, er q lig med 0, r er 0 eller 1, s er 0 eller 1, og t er 0, og når o er 0, kan p være et positivt, helt tal, og q, r, s og t kan være 0 eller 1, når o, q, r, s og t er 15 0, er p et positivt, helt tal, s kan være 0 eller 1, og u og v er enten 0 eller 1, med det forbehold, at når u er 1, er v lig med 0, og når v er 1, er u lig med 0, hvilken copolymeriserbare, macromolekylære monomer er karakteriseret ved at have en i det væsentlige ensartet molekylvægtfordeling, så at dens Mw/Mn-forhold ikke er væsent-20 ligt over ca. 1,1, hvorhos Mw er den vægtede gennemsnitlige molekylvægt af monomeren, og Mn er den talmæssigt gennemsnitlige molekylvægt af monomeren.-C-ox, wherein X is either hydrogen, lower alkyl or a monovalent metal, n is a positive integer of at least ca. 20, m is either 0 or a positive integer, and the sum of n and m is such that the molecular weight of the macromolecular monomer is at least approx. 2000 and preferably between approx. 5000 and approx. 50,000, o, q, r and s are either 0 or 1, and p is either 0 or a positive integer in the range of 1 to approx. 8, with the proviso that when o and p are 1, q is equal to 0, r is 0 or 1, s is 0 or 1, and t is 0, and when o is 0, p can be a positive, whole number, and q, r, s and t can be 0 or 1, when o, q, r, s and t are 0, p is a positive integer, s can be 0 or 1, and u and v are either 0 or 1, with the proviso that when u is 1, v is equal to 0, and when v is 1, u is equal to 0, which copolymerizable macromolecular monomer is characterized by having a substantially uniform molecular weight distribution, so that its Mw / Mn ratio is not substantially above approx. 1.1, where Mw is the weighted average molecular weight of the monomer and Mn is the numerically average molecular weight of the monomer.

1 21 2

Som nævnt i det foregående er P og P polymere af vinylaromatiske forbindelser og konjugerede diener.As mentioned above, P and P are polymers of vinyl aromatic compounds and conjugated dienes.

25 De copolymeriserbare, hydrofile (vandopløselige) forbindelser.The copolymerizable hydrophilic (water-soluble) compounds.

De copolymeriserbare monomere, som er egnede til opnåelse af pode-copolymerens hydrofile, polymere grundskelet, skal være vandopløselige eller være i stand til at blive gjort vandopløselige efter copolymer isation. Disse forbindelse er valgt blandt acrylsyre, et hy-3q droxyalkylacrylat, et dialkylacrylamid eller vinylacetat.The copolymerizable monomers suitable for obtaining the hydrophilic polymeric backbone of the graft copolymer must be water soluble or capable of being made water soluble after copolymer isation. These compounds are selected from acrylic acid, a hydroxyalkyl acrylate, a dialkylacrylamide or vinyl acetate.

Den ovennævnte "copolymeriserbare, hydrofobe, copolymeriserbare, makromolekylære monomer", som copolymeriseres med den copolymeriserbare comonomer, der danner det hydrofile, copolymere grundskelet7 20The above "copolymerizable, hydrophobic, copolymerizable, macromolecular monomer" copolymerized with the copolymerizable comonomer forming the hydrophilic copolymeric backbone7 20

DK 151816 BDK 151816 B

bør være til stede i mængder gående fra ca. 1 vægt$ til ca. 95 vægt$, beregnet i forhold til den copolymeriserbare comonomer, som danner det hydrofile, polymere grundskelet. Sagt på anden måde omfatter de kemisk forbundne, faseseparerede, termoplastiske podecopolymere, 5 som har hydrofile, polymere grundskeletter, (1) fra ca. 1 vægt$ til ca. 95 vægt$ af den copolymeriserbare, hydrofobe, makromolekylære monomer, der har en smal molekylvægtfordeling, og (2) fra ca. 99 vægt$ til ca. 5 vægt% af den copolymeriserbare .monomer, som danner det hydrofile, polymere grundskelet. Podecopolymeren vil fortrinsvis indeholde indtil ca. 60 vægt$ og fortrinsvis fra ca. 2 vægt% til ca.should be present in quantities ranging from approx. 1 weight $ to approx. 95% by weight relative to the copolymerizable comonomer which forms the hydrophilic polymeric backbone. Stated otherwise, the chemically bonded, phase-separated, thermoplastic graft copolymers which have hydrophilic polymeric backbones comprise (1) from ca. 1 weight $ to approx. 95% by weight of the copolymerizable, hydrophobic, macromolecular monomer having a narrow molecular weight distribution, and (2) from ca. $ 99 weight to approx. 5% by weight of the copolymerizable monomer forming the hydrophilic polymeric backbone. Preferably, the graft copolymer will contain up to ca. About 60% by weight and preferably from ca. 2% by weight to approx.

40 vægt fo af den ovenfor beskrevne hydrofobe, makr omolekylære monomer med henblik på opnåelse af polymerens endelige mekaniske styrke.40 weight fo of the hydrophobic macromolecular monomer described above to obtain the final mechanical strength of the polymer.

Copolymerisationen af den copolymeriserbare, hydrofobe, makromoleky-15 lære monomer og den copolymeriserbare monomer, der danner det hydrofile, polymere grundskelet i podecopolymeren (og valgfrit en ringe mængde af en passende monomer eller modificerende monomer, som der undertiden henvises til i den kendte teknik), kan udføres ved opløsningspolymerisation, emulsionspolymerisation, bulkpolymerisation, 20 suspensionspolymerisation og ikke-vandig suspensionspolymerisation.The copolymerization of the copolymerizable, hydrophobic, macromolecular monomer and the copolymerizable monomer forming the hydrophilic polymeric backbone of the graft copolymer (and optionally a small amount of a suitable monomer or modifying monomer sometimes referred to in the prior art) , can be performed by solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and non-aqueous suspension polymerization.

Det er generelt ønskeligt efter fuldførelse af copolymerisationsom-sætningen at fjerne en hvilken som helst copolymeriserbar, hydrofob, makromolekylær monomer, der er forblevet uomsat i polymerisationssystemet. Fjernelsen af den mafcromolekylære monomer kan udføres ved 25 hjælp af hvilke som helst passende midler, såsom opløsningsmiddelekstraktion.It is generally desirable, upon completion of the copolymerization reaction, to remove any copolymerizable, hydrophobic, macromolecular monomer that has remained unreacted in the polymerization system. The removal of the mafromomolecular monomer can be accomplished by any suitable means, such as solvent extraction.

Om ønsket, og navnlig i tilfælde af bulkpolymerisation, kan copolymerisationen udføres i en formgivet form, såsom en kontaktlinseform.If desired, and especially in the case of bulk polymerization, the copolymerization may be carried out in a molded form, such as a contact lens mold.

I et sådant tilfælde kan et tværbindende middel tilsættes under copo-30 lymerisationsomsætningen til yderligere at forbedre vådstynkeegen skaberne af podecopolymeren. Passende tværbindende midler til dette formål indbefatter ethylenglycoldimethacrylat, diethylenglycoldi= methacrylat, divinylbenzen og ΪΤ,Κ-methylen-bis-methacrylamid. Mængden af benyttet tværbindende middel afhænger generelt af den ønskede 35 tværbindingsgrad. Passende mængder tværbindende middel kan andrage fra ca. 0,1 vægt$ til ca. 2 vægtf» eller generelt andrage mindre end 1 mol$ baseret på vægten af monomeren, som danner det hydrofile, po-Ivmere grundskelet.In such a case, a cross-linking agent may be added during the copolymerization reaction to further enhance the wet-jet properties of the graft copolymer. Suitable crosslinking agents for this purpose include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, divinylbenzene and ΪΤ, Κ-methylene-bis-methacrylamide. The amount of crosslinking agent used generally depends on the degree of crosslinking desired. Appropriate amounts of cross-linking agent may range from approx. 0.1 wt. 2 weight percent or generally less than 1 mole $ based on the weight of the monomer forming the hydrophilic polymeric backbone.

Γ DK 151816 Β 21Γ DK 151816 Β 21

Hvis en polymerisationskatalysator benyttes til copolymerisationen, bør der benyttes polymerisationsbetingelser, der er passende for katalysatoren. P.eks. er olie- eller opløsningsmiddelopløselige per= oxider, såsom benzoylperoxid, generelt effektive, når den copolyme-5 riserbare, hydrofobe, makromolekylære monomer copolymeriseres med en ethylenisk umættet 'monomer under bulk-betingelser, i opløsning i et organisk opløsningsmiddel, såsom benzen, cyklohexan, toluen og xylen, etc. eller i vandig suspension. Vandopløselige peroxider, såsom natrium-, kalium-, lithium- og ammoniumpersulfater, etc., er 20 anvendelige i vandig suspension og i emulsionssystemer. Ved copolymerisationen af mange af de copolymeriserbare, hydrofobe, makromolekylære monomere, såsom de, der har en ethylenisk umættet endegruppe samt en polystyren-, polyisopren- eller polybutadien-gentagelsesenhed, kan en emulgator eller et dispersionsmiddel benyttes i et vandigt 15 suspensionssystem. I disse systemer kan der opnås særlige fordele ved opløsning af den vanduopløselige, polymeriserbare, makromolekylære monomer i en ringe mængde af et egnet opløsningsmiddel, såsom en hydrocarbon. Ved hjælp af denne hidtil ukendte teknik copolyme-riserer comonomeren med den polymeriserbare, makromolekylære monomer 20. . i opløsningsmidlet, i et vandigt system, der omgiver opløsningsmiddelpolymer sys ternet. Polymerisationskatalysatoren vælges selvsagt således, at den vil være opløselig i polymerisationssystemets organiske fase.If a polymerization catalyst is used for the copolymerization, polymerization conditions appropriate for the catalyst should be used. P.eks. For example, oil or solvent-soluble peroxides such as benzoyl peroxide are generally effective when the copolymerizable, hydrophobic, macromolecular monomer is copolymerized with an ethylenically unsaturated monomer under bulk conditions, in solution in an organic solvent such as benzene, cyclohexane, toluene and xylene, etc. or in aqueous suspension. Water-soluble peroxides, such as sodium, potassium, lithium and ammonium persulfates, etc., are useful in aqueous suspension and in emulsion systems. In the copolymerization of many of the copolymerizable, hydrophobic, macromolecular monomers, such as those having an ethylenically unsaturated end group and a polystyrene, polyisoprene or polybutadiene repeat unit, an emulsifier or dispersant can be used in an aqueous suspension system. In these systems, particular advantages can be obtained by dissolving the water-insoluble polymerizable macromolecular monomer in a small amount of a suitable solvent, such as a hydrocarbon. By this novel technique, the comonomer copolymerizes with the polymerizable macromolecular monomer 20. in the solvent, in an aqueous system surrounding the solvent polymer is stained. The polymerization catalyst is of course selected so that it will be soluble in the organic phase of the polymerization system.

Den benyttede polymerisationskatalysator kan være en hvilken som 25 helst af de katalysatorer, der er egnede til polymerisering af forbindelser indeholdende ethylenisk umættethed (forudsat at ovennævnte kriterier er opfyldt) ,· og som fortrinsvis er fri-radikal katalysatorer. Af særlig interesse er katalysatorer, såsom azobisisobuty= ronitril og peroxidkatalysatorer. Nogle eksempler på egnede peroxid= 30 katalysatorer indbefatter hydrogenperoxid, benzoylperoxid, tert.- butylperoctoat, phthalsyreperoxid, ravsyreperoxid, benzoyleddikesyre= peroxid, kokosnøddeoliesyreperoxid, laurinsyreperoxid, stearinsyre= peroxid, maleinsyreperoxid, tert.-butylhydrogenperoxid, di-tert.-butylperoxid og lignende.The polymerization catalyst used may be any of the catalysts suitable for polymerizing compounds containing ethylenic unsaturation (provided that the above criteria are met) and which are preferably free-radical catalysts. Of particular interest are catalysts such as azobisisobutyronitrile and peroxide catalysts. Some examples of suitable peroxide = catalysts include hydrogen peroxide, benzoyl peroxide, tert-butyl peroctoate, phthalic acid peroxide, succinic peroxide, benzoylacetic acid peroxide, coconut oil oleic acid peroxide, tertiary peroxide, stearic acid peroxide, stearic acid = peroxide

2222

DK 151816 BDK 151816 B

Den foretrukne katalysator er en katalysator, som er effektiv ved moderat lave temperaturer, såsom omkring 45-85°C.The preferred catalyst is a catalyst which is effective at moderately low temperatures, such as about 45-85 ° C.

Foruden fri-radikal polymerisationskatalysatorerne kan katalysatorerne indbefatte sådanne materialer, som polymeriserer primært ved åb-5 ning af epoxidgruppen, såsom den epoxyafsluttede, copolymeriserbare, hydrofobe, makromolekylære monomer. Sådanne katalysatorer indbefatter p-toluensulfonsyre, svovlsyre, phosphorsyre, aluminiumchlorid, stannichlorid, ferrichlorid, bortrifluorid, bortrifluorid-ethylether= kompleks og jod. Det kan være ønskeligt at benytte en flertrinspo-10 lymerisationsproees.In addition to the free-radical polymerization catalysts, the catalysts may include such materials which polymerize primarily by opening the epoxide group, such as the epoxy-terminated, copolymerizable, hydrophobic, macromolecular monomer. Such catalysts include p-toluenesulfonic acid, sulfuric acid, phosphoric acid, aluminum chloride, stannous chloride, ferric chloride, boron trifluoride, boron trifluoride-ethyl ether complex and iodine. It may be desirable to use a multistage polymerization process.

Mængden af benyttet katalysator afhænger af typen af benyttet katalysatorsystem og andrager generelt fra ca. 0,1 til ca. 10 vægtdele pr. 100 dele :monomerblanding og andrager fortrinsvis fra ca. 0,1 til ca. 1 vægtdel pr. 100 dele . •monomerblanding.The amount of catalyst used depends on the type of catalyst system used and is generally from approx. 0.1 to approx. 10 parts by weight per 100 parts: monomer mixture and preferably ranges from approx. 0.1 to approx. 1 part by weight 100 parts. • monomer.

15 Copolymerisationen udføres generelt ved en temperatur fra ca. stuetemperatur til ca. 165°C. Det er imidlertid generelt foretrukket at initiere polymerisationen ved en relativt lav temperatur, såsom fra ca. 40°C til ca. 85°C, og derefter forøge temperaturen til ca. 90°C til ca. 165°C, efterhånden som reaktionen fortsætter, og fortrinsvis 20 efter at det meste af omsætningen er forløbet til ende. Det mest foretrukne begyndelsestemperaturområde for polymerisation er mellem ca. 45°C og 70°C. Polymerisationen udføres sædvanligvis under selvdannet tryk i en lukket reaktionsbeholder. Imidlertid kan der benyttes hvilke som helst passende midler til at hindre væsentlig fordamp-25 ning af nogen af monomerene.The copolymerization is generally carried out at a temperature of approx. room temperature to approx. 165 ° C. However, it is generally preferred to initiate the polymerization at a relatively low temperature, such as from ca. 40 ° C to approx. 85 ° C, and then increase the temperature to approx. 90 ° C to approx. 165 ° C as the reaction proceeds, and preferably 20 after most of the reaction has been completed. The most preferred initial temperature range for polymerization is between ca. 45 ° C and 70 ° C. The polymerization is usually carried out under self-generated pressure in a closed reaction vessel. However, any suitable means can be used to prevent substantial evaporation of any of the monomers.

Copolymerisationen er generelt ført til ende på ca. 4 til ca. 48 timer og afsluttes fortrinsvis på ca. 6 til ca. 24 timer. Det forstås selvsagt, at tiden og temperaturen står i omvendt relation. Dette vil sige, at den ved den øvre ende af temperaturområdet benyttede 30 temperatur vil frembringe polymerisationsprocesser, som kan føres til ende på nær ved den nedre ende af tidsintervallet.The copolymerization is generally completed at approx. 4 to approx. 48 hours and preferably ends in approx. 6 to approx. 24 hours. Of course, it is understood that time and temperature are inversely related. That is, the temperature used at the upper end of the temperature range will produce polymerization processes which can be terminated at near the lower end of the time interval.

2323

DK 151816BDK 151816B

rr

Efter copolymerisationen kan podecopolymeren efterhærdnes ved hjælp af hvilke som helst passende midler, hvis det ønskes. Som følge af den selvforstærkende og selvhærdnende effekt hos podecopolymerene ifølge den foreliggende opfindelse er en sådan efterhærdning imidler-5 tid generelt ikke nødvendig, med undtagelse ved anvendelser, hvor extrem styrke er påkrævet. I det tilfælde, at der ønskes en efter-hærdningsreaktion, kan denne udføres i en form eller et støbehulrum, der svarer til den generelle eller nøjagtige facon og/eller størrelse af det ønskede produkt. Efter at polymeren er færdigfremstillet, 10 indbefattet en hvilken som helst efterhærdning, er der opnået en fast, stiv og klar copolymer. Det fremstillede produkt kan derpå kvældes i en passende væske, indtil ligevægt er nået, eller indtil der er nået en hydrogel indeholdende den ønskede mængde væske, såsom en vandig væske. Desuden skal det oplyses, at hydrogelerne kan op-15 nås ved kvældning af polymerene i hydrogelen ifølge opfindelsen med vandopløselige kvældemidler i stedet for vandige opløsninger. Nogle eksempler på vandopløselige kvældemidler indbefatter ethylenglycol, de flydende polyethylenglycoler, glycolesterne af mælkesyre, formamid, dimethylformamid, dimethylsulfoxid og lignende.After the copolymerization, the graft copolymer can be cured by any suitable means, if desired. However, due to the self-reinforcing and self-curing effect of the graft copolymers of the present invention, such post-curing is generally not necessary, except in applications where extreme strength is required. In the event that a post-curing reaction is desired, this may be carried out in a mold or mold cavity corresponding to the general or exact shape and / or size of the desired product. After the polymer is finished, including any post-cure, a solid, rigid and clear copolymer is obtained. The prepared product can then be swollen in a suitable liquid until equilibrium is reached or until a hydrogel containing the desired amount of liquid such as an aqueous liquid is reached. In addition, it should be noted that the hydrogels can be obtained by swelling the polymers in the hydrogel of the invention with water-soluble swelling agents instead of aqueous solutions. Some examples of water-soluble swelling agents include ethylene glycol, the liquid polyethylene glycols, the glycol esters of lactic acid, formamide, dimethylformamide, dimethyl sulfoxide and the like.

2q Copolymerene i hydrogelen ifølge opfindelsen kan foruden at blive dannet in situ forarbejdes ved kompressionsformning, extrusionsform-ning eller sprøjtestøbning. Det kommer også i betragtning indenfor den foreliggende opfindelses rammer, at copolymeren kan påføres som overtræk på andre substratmaterialer. I dette tilfælde er podecopo-25 lymerene i hydrogelen ifølge opfindelsen særligt anvendelige, eftersom de indeholder såvel hydrofile som hydrofobe grupper. Den ene eller den anden af disse grupper eller dem begge kan være foreligelige med det overtrukne substrat.2q The copolymers of the hydrogel according to the invention, in addition to being formed in situ, can be processed by compression molding, extrusion molding or injection molding. It is also contemplated within the scope of the present invention that the copolymer can be applied as a coating to other substrate materials. In this case, the pod copolymers of the hydrogel of the invention are particularly useful since they contain both hydrophilic and hydrophobic groups. One or the other of these groups or both may be present with the coated substrate.

Som anført i U.S.A. patentskrift nr. 3.786.116 er den copolymeriser-30 bare eller reaktive endegruppe på den hydrofobe, makrornolekylære monomer, som copolymeriseres med den anden monomer, specielt udvalgt baseret på de relative reaktivitetsforhold hos den anden monomer, der er valgt til dannelse af det hydrofile, polymere grundskelet.As stated in U.S.A. U.S. Patent No. 3,786,116 is the copolymerizable or reactive end group of the hydrophobic macromolecular monomer copolymerized with the second monomer, specially selected based on the relative reactivity ratios of the second monomer selected to form the hydrophilic, polymeric backbone.

Den foreliggende opfindelse tilvejebringer således et middel til 35 styring af strukturen af podecopolymeren. Nærmere betegnet kan styringen af podecopolymerens struktur opnås ved hjælp af en hvilken som helst af eller alle de følgende måder: 24Thus, the present invention provides a means for controlling the structure of the graft copolymer. More specifically, the control of the structure of the graft copolymer can be achieved by any or all of the following ways:

DK 151816 BDK 151816 B

1) ved bestemmelse af reaktivitetsforholdet mellem den copolymeriser-bare,hydrofobe, makromolekylære monomer og den anden monomer under copolymerisationsreaktionen kan der fremstilles en ren podecopolymer, som er fri for forurening med homopolymere; 5 2) ved styring af hastighederne af monomertilsætning under copolyme- riseringen af den copolymeriserbare, hydrofobe, makromolekylære mono- , mer og den anden comonomer kan afstanden mellem sidekæderne i polymerstrukturen styres; og 3) størrelsen af podekæden kan forudbestemmes og styres på det an-10 ioniske polymerisationstrin ved fremstillingen af den copolymeriserbare, hydrofobe, makromolekylære monomer.1) by determining the reactivity ratio of the copolymerizable, hydrophobic, macromolecular monomer to the other monomer during the copolymerization reaction, a pure graft copolymer free of contamination with homopolymers can be prepared; 2) by controlling the rates of monomer addition during the copolymerization of the copolymerizable, hydrophobic, macromolecular monomer, and the other comonomer, the distance between the side chains of the polymer structure can be controlled; and 3) the size of the seed chain can be predetermined and controlled at the anionic polymerization step in the preparation of the copolymerizable, hydrophobic, macromolecular monomer.

!!

Det vil fremgå for fagmanden på området, at ved hjælp af passende valg af afslutningsmidler kan alle copolymerisationsmekanismer benyttes ved fremstilling af de styrede, faseseparerede podecopolymere.It will be apparent to those skilled in the art that by the appropriate choice of termination agents, all copolymerization mechanisms can be utilized in the preparation of the controlled, phase-separated graft copolymers.

15 Af fundamental vigtighed er det faktum, at placeringen af sidekæden i det polymere grundskelet afhænger af den makromolekylære monomers endestillede gruppe og den anden copolymeriserbare monomer. Fordelingen af sidekædepolymeren langs grundskeletpolymeren styres således ved hjælp af de respektive monomeres reaktivitetsforhold.Of fundamental importance is the fact that the location of the side chain in the polymeric backbone depends on the terminal group of the macromolecular monomer and the second copolymerizable monomer. Thus, the distribution of the side chain polymer along the backbone polymer is controlled by the reactivity ratio of the respective monomers.

20 Som anført i det foregående copolymeriserer ifølge opfindelsen de copolymeriserbare, hydrofobe, makromolekylære monomere med de monomere, som danner det hydrofile, polymere grundskelet, på en forudsigelig måde, således som bestemt ved relative reaktivitetsforhold.As stated above, according to the invention, the copolymerizable hydrophobic macromolecular monomers with the monomers forming the hydrophilic polymeric backbone in a predictable manner, as determined by relative reactivity ratio.

Det kan vises, at den foreliggende copolymerligning: dM1 M1 „ r1 mVm2 + 1 p “ X η dir LirJ Mx , 2 ~p + rIt can be shown that the present copolymer equation: dM1 M1 „r1 mVm2 + 1p“ X η dir LirJ Mx, 2 ~ p + r

L Ir JL Ir J

25 på simpel måde reduceres til tilnærmelsen: (2) 4 ^ π25 is simply reduced to the approximation: (2) 4 ^ π

dM r MdM r M

m Α*ν» ·Ρλ7>δ 1 i η·π·ΰ7» ? τηΩη·α4· 1 βττώ τηηΊ olrtfl η λΔυι 4-υ»λ 4*·ΐ 25 -1m Α * ν »· Ρλ7> δ 1 i η · π · ΰ7»? τηΩη · α4 · 1 βττώ τηηΊ olrtfl η λΔυι 4-υ »λ 4 * · ΐ 25 -1

DK 151816 BDK 151816 B

i i_i i_

Copolymerisationerne af den makromolekylære monomer (M1) med andre monomere (M ) beskrives således kun ved hjælp af r -værdier og sammensætninger af monomertilførsel. Omgruppering af ligningen (2) giver: t-7\ „2 dM^/M^ io omdannelse K5) r = —Ί -y = L---r dM /M $ omdannelse M 2Thus, the copolymerizations of the macromolecular monomer (M1) with other monomers (M) are described only by r-values and compositions of monomer addition. Re-grouping of Equation (2) gives: t-7 \ "2 dM ^ / M ^ io conversion K5) r = —Ί -y = L --- r dM / M $ conversion M 2

Reaktivitetsforholdet r kan bedømmes ud fra en prøve med relativt 5 lav omdannelse fra et enkelt copolymerisationsforsøg. Gyldigheden af denne opfattelse af en forudsigelig og kontrollerbar reaktivitet af den copolymeriserbare, hydrofobe, makromolekylære monomer kan derved fastslås. Det har vist sig, at reaktiviteten af i handelen gående monomere med de copolymeriserbare, hydrofobe, makromolekylære mo- 10 nomere med forskellige endegrupper korrelerer med tilgængelige lit- 2 teraturværdier for r -reaktivitetsforhold.The reactivity ratio r can be judged from a relatively low conversion sample from a single copolymerization experiment. The validity of this notion of predictable and controllable reactivity of the copolymerizable, hydrophobic, macromolecular monomer can thus be established. It has been found that the reactivity of commercially available monomers with the copolymerizable, hydrophobic, macromolecular monomers with different end groups correlates with available literature values for r-reactivity ratios.

Yed at følge de ovenfor anførte procedurer fremstilles podeeopolymere, der har enestående egenskabskombinationer. Disse enestående kombinationer af egenskaber er muliggjort ved hjælp af den her beskrevne 15 hidtil ukendte fremgangsmåde, som fremtvinger forligelighed af ellers uforligelige polymere segmenter. Disse uforligelige segmenter segre-gerer i faser af deres egen art. I tilfælde af de foreliggende pode-copolymere, som har et hydrofilt, polymert grundskelet og en hydrofob, 20 polymer sidekæde, dannes der således separate faser af de respektive polymere. Produktmorfologien består af et hydrofobt område, som spredes i en hydrofil, polymer matrix. De hydrofobe områder er indbyrdes forbundet ved hjælp af vandopløselige kædesegmenter. De hydrofobe områder fungerer som tværbindinger og tilvejebringer vådstyrken hos 25 · det vandkvældede, polymere grundskelet. Kvældningsgraden i vand kan styres ved hjælp af mængden og molekylvægten af den copolymeriserede, hydrofobe, makromolekylære monomer og ved hjælp af sammensætningen af det vandopløselige eller hydrofile, polymere grundskelet. En eksempeltype omfatter et materiale, hvori det hydrofile grundskelet er 30 sammensat af en 5/95 acrylsyre/ethylacrylat til 100/0 acrylsyre/ ethylacrylat og en methacrylatafsluttet polystyren med en molekylvægt i området fra ca. 10.000 til ca. 35eOOO og et vægtområde på 20 til ca. 80i af det totale produkt. Dette produkt kan kvældes med vand til opnåelse af en anvendelig hydrogel.Following the above procedures, graft copolymers having unique property combinations are prepared. These unique combinations of properties are made possible by the above-described method, which forces compatibility of otherwise incompatible polymeric segments. These incompatible segments segregate into phases of their own kind. Thus, in the case of the present seed copolymers having a hydrophilic polymeric backbone and a hydrophobic polymeric side chain, separate phases of the respective polymers are formed. The product morphology consists of a hydrophobic region which spreads into a hydrophilic polymer matrix. The hydrophobic regions are interconnected by water-soluble chain segments. The hydrophobic regions act as cross-links and provide the wet strength of the water-swollen polymeric backbone. The degree of swelling in water can be controlled by the amount and molecular weight of the copolymerized, hydrophobic, macromolecular monomer and by the composition of the water-soluble or hydrophilic polymeric backbone. An example type comprises a material wherein the hydrophilic backbone is composed of a 5/95 acrylic acid / ethyl acrylate to 100/0 acrylic acid / ethyl acrylate and a methacrylate terminated polystyrene having a molecular weight in the range of about 10,000 to approx. 35eOOO and a weight range of 20 to approx. 80i of the total product. This product can be swollen with water to obtain a useful hydrogel.

_I I_I I

sr . -sr. -

DK 151816BDK 151816B

2626

Opløsningsegenskaberne af podecolymerene i hydrogelen ifølge opfindelsen afviger fra "tilfældige" (random) copolymere. Medens opløsningsegenskaber i tilfælde af en tilfældig copolymer kan behandles, som om de gjaldt for en ny polymer sammensat af en enkelt monomeren-5 hed, indeholder podecopolymerene i hydrogelen ifølge opfindelsen elementer af egenskaberne for de indgående homopolymerkæder. Så snart vekselvirkningen mellem de to uens polymerkæder bliver fremherskende, bliver uforligelighed og faseseparation reglen.The dissolution properties of the graft polymers in the hydrogel of the invention differ from "random" copolymers. While in the case of a random copolymer, dissolution properties can be treated as if they were for a new polymer composed of a single monomer unit, the graft copolymers in the hydrogel of the invention contain elements of the properties of the incoming homopolymer chains. As soon as the interaction between the two different polymer chains becomes dominant, incompatibility and phase separation become the rule.

Når f.eks. en podecopolymer bestående af de vandopløselige og vand-10 uopløselige komponentkæder sættes til en kompounderet latex, finder vekselvirkning mellem det polymere tykkelsesmiddel og latexpartikler, pigmenter eller ler sted, og de polymere tykkelsesmiddelmolekyler klapper sammen. Eftersom to homopolymere kæder er uforligelige, samles de hydrofobe kæder til dannelse af en microgelpartikel. Elok-15 kulationen skrider hurtigt frem til dannelse af store aggregater, og til slut dannes et netværk, hvor alle partikler er bundet sammen ved hjælp af latex-tykkelsesmiddelmolekyler, hvor microgelpartikler fra den hydrofobe del af tykkelsesmiddelmolekylerne fungerer som tværbindingspunkter. Ved anvendelse af polymermaterialer som industri-20 elle tykkelsesmidler, flokkulanter, etc., er de mest effektive strukturer blok- eller podecopolymere indeholdende to uforligelige homopolymerkæder, d.v.s. at den ene er hydrofil, og den anden er hydrofob. Den hydrofile del af molekylet solubiliserer den hydrofobe del med henblik på at gøre hele molekylet vand- (eller alkali-) -opløse-25 ligt. Når tykkelsesmidlet imidlertid sættes til en kompounderet latex, foregår der vekselvirkning mellem tykkelsesmiddel og latexpartikler, ler eller pigmenter, og podecopolymeren reducerer dens vand-opløselighed. Den hydrofobe del af molekylet bliver vanduopløselig og aggregerer til dannelse af en microgel, eftersom den er uforlige-30 lig med en anden del af molekylet.For example, when a graft copolymer consisting of the water-soluble and water-insoluble component chains is added to a compounded latex, interaction between the polymeric thickener and latex particles, pigments or clay takes place, and the polymeric thickener molecules collapse. Since two homopolymer chains are incompatible, the hydrophobic chains are assembled to form a microgel particle. The Elok-15 culture progresses rapidly to form large aggregates, and finally a network is formed where all particles are bonded together by latex thickener molecules, where microgel particles from the hydrophobic portion of the thickener molecules act as crosslinking points. Using polymeric materials such as industrial thickening agents, flocculants, etc., the most effective structures are block or graft copolymers containing two incompatible homopolymer chains, i.e. that one is hydrophilic and the other is hydrophobic. The hydrophilic portion of the molecule solubilizes the hydrophobic portion to render the entire molecule water (or alkali) soluble. However, when the thickener is added to a compounded latex, interaction between the thickener and latex particles, clay or pigments takes place and the graft copolymer reduces its water solubility. The hydrophobic portion of the molecule becomes water-insoluble and aggregates to form a microgel as it is incompatible with another portion of the molecule.

Opfindelsen forklares yderligere i de følgende eksempler.The invention is further explained in the following examples.

I hvert tilfælde skal alle materialerne være rene, og man skal være omhyggelig med at holde de omsatte blandinger tørre og fri for forureninger. Alle dele og procenter er vægtdele og vægtprocenter, med 35 mindre andet udtrykkeligt er anført.In each case, all materials must be clean and care must be taken to keep the reacted mixtures dry and free of contaminants. All parts and percentages are parts by weight and percentages, with 35 unless otherwise explicitly stated.

DK 151816 BDK 151816 B

27 I I_27 I I_

Eksempel 1 (fremstilling af hydrofob, makromolekylær monomer) IExample 1 (Preparation of hydrophobic, macromolecular monomer) I

ffremstilling af en polystyren, som er afsluttet med allylchlorid.preparation of a polystyrene terminated with allyl chloride.

En rustfri stålbeholder påfyldes 76,56 dele A.O.S.-kvalitet benzen (thiophenfri), som forinden er blevet tørret ved hjælp af linde-5 molekylsigter og calciumhydrid. Beholderen opvarmes til 40°G, og 0,015 dele diphenylethylen sættes til reaktoren ved hjælp af en hypo-derm sprøjte. En 12,1$'s opløsning af sek.-butyllithium i hexan sættes portionsvis til reaktoren, indtil der opretholdes en permanent orange-gul farve, på hvilket tidspunkt yderligere 0,885 dele (1,67 10 mol) sek.-butyllithiumopløsning tilsættes efterfulgt af tilsætning af 22,7 dele (218 mol) styren over et tidsrum på 44 minutter. Reaktortemperaturen holdes ved 36-42°C. Den reaktionsdygtige polystyren afsluttes ved at sætte 0,127 dele allylchlorid til reaktionsblandingen. Den resulterende polymer udfældes ved tilsætning af en a-olefin= 15 afsluttet polystyrenbenzenopløsning i methanol, hvorpå polymeren fælder ud af opløsningen. Den cc-olefinafsluttede polystyren tørres i en lufttørrer med cirkulerende atmosfære ved 40-45°C og derpå i et fluidiseret lag til fjernelse af spormængder af methanol. Methanol-indholdet efter rensning er 10 parts pr. million. Molekylvægten af >0 polymeren bestemt ved hjælp af membranfaseosmometri er 15.400 (teoretisk 13.000), og molekylvægtfordelingen er meget smal, d.v.s. at Mw/Mn er mindre end 1,05. Den makromolekylære monomer har følgende strukturformel: 0H30H2(CH3)CH—0H2 CH--CH2-CH = CH2 L o i hvor n har en sådan værdi, at polymerens molekylvægt er 15.400.A stainless steel container is charged with 76.56 parts of A.O.S. grade benzene (thiophene free) which has previously been dried by lime 5 molecular sieves and calcium hydride. The vessel is heated to 40 ° G and 0.015 parts of diphenylethylene is added to the reactor using a hypodermic syringe. A 12.1 $ solution of sec-butyllithium in hexane is added portionwise to the reactor until a permanent orange-yellow color is maintained, at which time an additional 0.885 parts (1.67 10 moles) of sec-butyllithium solution is added, followed by addition of 22.7 parts (218 moles) of styrene over a period of 44 minutes. The reactor temperature is maintained at 36-42 ° C. The reactive polystyrene is terminated by adding 0.127 parts of allyl chloride to the reaction mixture. The resulting polymer is precipitated by the addition of an α-olefin = 15 polystyrene benzene solution in methanol and the polymer precipitates out of solution. The cc-olefin-terminated polystyrene is dried in an air dryer with circulating atmosphere at 40-45 ° C and then in a fluidized layer to remove trace amounts of methanol. The methanol content after purification is 10 parts per million. The molecular weight of> 0 polymer determined by membrane phase osmometry is 15,400 (theoretically 13,000) and the molecular weight distribution is very narrow, i.e. that Mw / Mn is less than 1.05. The macromolecular monomer has the following structural formula: OH 30 H 2 (CH 3) CH-OH 2 CH - CH 2 -CH = CH 2 L o where n has such a value that the molecular weight of the polymer is 15,400.

5 Eksempel 2 (fremstilling af hydrofob, makromolykylær monomer) ffremstilling af poly(q-methylstyren) afsluttet med allylchlorid.Example 2 (Preparation of hydrophobic, macromolecular monomer) Preparation of poly (q-methylstyrene) completed with allyl chloride.

En opløsning af 472 g (4,0 mol) α-methylstyren i 2500 ml tetrahydro= furan behandles dråbevis med en 12$Ts opløsning af n-butyllithium i hexan, indtil vedvarende lyserød farve. Yderligere 30 ml (0,383 mol) ) af denne n-butyllithiumopløsning tilsættes, hvilket resulterer i udvikling af en klar, rød farve. Blandingens temperatur sænkes derpå 28A solution of 472 g (4.0 mole) of α-methylstyrene in 2500 ml of tetrahydro = furan is treated dropwise with a 12 $ Ts solution of n-butyllithium in hexane until a persistent pink color. An additional 30 ml (0.383 mol) of this n-butyllithium solution is added, resulting in the development of a clear red color. The temperature of the mixture is then lowered 28

DK 151816BDK 151816B

til -80°C, og efter 30 minutter ved denne temperatur tilsættes 4,5 g (0,06 mol) allylchlorid. Den røde farve forsvinder næsten øjeblikkeligt, hvilket angiver afslutning af den reaktionsdygtige polymer. Den resulterende farveløse opløsning udhældes i methanol til fæld-5 ning af den α-olefinafsluttede poly(oc-methylstyren), som ved hjælp af dampfaseosmometri vises at have en talmæssigt gennemsnitlig molekylvægt på 11.000 (teoretisk 12.300), og molekylvægtfordelingen er meget smal, d.v.s. at Mw/Mn er mindre end 1,05. Den fremstillede ma-kromolekylære monomer har følgende strukturformel: CH* i 3 CH5CH2CH2CH2—J-CH2—c--ch2ch = ch2 l 61 10 hvori n har en sådan værdi, at polymerens molekylvægt er 11.000.to -80 ° C and after 30 minutes at this temperature 4.5 g (0.06 mol) of allyl chloride is added. The red color disappears almost immediately, indicating the termination of the reactive polymer. The resulting colorless solution is poured into methanol to precipitate the α-olefin-terminated poly (oc-methylstyrene), which by vapor phase osmometry is shown to have a numerically average molecular weight of 11,000 (theoretically 12,300), and the molecular weight distribution is very narrow, i.e.. that Mw / Mn is less than 1.05. The prepared macromolecular monomer has the following structural formula: CH * in 3 CH 5 CH 2 CH 2 CH 2 - J-CH 2 - c - ch 2 ch = ch 2 l 61 10 wherein n has such a value that the molecular weight of the polymer is 11,000.

Eksempel 3 (fremstilling af hydrofob, makromolekylær monomer)Example 3 (Preparation of hydrophobic, macromolecular monomer)

Eremstilling af polystyren, der er afsluttet med vinylchloracetat.Production of polystyrene completed with vinyl chloroacetate.

En opløsning af 1 dråbe diphenylethylen i 2500 ml cyklohexan ved 40°C behandles portionsvis med en 12$’s opløsning af sek.-butylli-15 thium i cyklohexan, indtil en lyserød farve er vedvarende, på hvilket tidspunkt der tilsættes yderligere 18 ml (0,024 mol) sek.-butyl= lithium efterfulgt af 312 g (3,0 mol) styren. Temperaturen af polymerisationsblandingen holdes ved 40°C i 30 minutter. Hvorefter den reaktionsdygtige polystyren afbrydes ved behandling med 8 ml (0,040 20 mol) diphenylethylen og derpå afsluttes ved behandling med 6 ml (0,05 mol) vinylchloracetat. Den resulterende polymer fældes ved at sætte cyklohexanopløsningen til methanol, og polymeren separeres ved filtrering. Dens talmæssigt gennemsnitlige molekylvægt bestemt ved dampfaseosmometri er 12.000 (teoretisk 13.265), og molekylvægtforde-25 lingen er meget smal, d.v.s. at Mw/Mn er mindre end 1,06. Den fremstillede makromolekylære monomer har følgende strukturformel: r i 9 ? CH3CH2(CH3)CH—CH2-CH--ch2—C—CH2C0CH = ch2 o i 6 hvori n har en sådan værdi, at polvmerens molekylvægt er 12.000.A solution of 1 drop of diphenylethylene in 2500 ml of cyclohexane at 40 ° C is treated portionwise with a 12 $ solution of sec-butyllithium in cyclohexane until a pink color persists, at which time another 18 ml is added ( 0.024 mol) sec-butyl = lithium followed by 312 g (3.0 mol) styrene. The temperature of the polymerization mixture is maintained at 40 ° C for 30 minutes. Then the reactive polystyrene is quenched by treatment with 8 ml (0.040 mol) of diphenylethylene and then terminated by treatment with 6 ml (0.05 mol) of vinyl chloroacetate. The resulting polymer is precipitated by adding the cyclohexane solution to methanol and the polymer is separated by filtration. Its numerically average molecular weight determined by vapor phase osmometry is 12,000 (theoretical 13,265) and the molecular weight distribution is very narrow, i.e. that Mw / Mn is less than 1.06. The macromolecular monomer produced has the following structural formula: r in 9? CH 3 CH 2 (CH 3) CH — CH 2 —CH - ch 2 —C — CH 2 COCH = ch 2 o in 6 wherein n has such a value that the molecular weight of the polymer is 12,000.

I I_ DK 151816 B.I I_ DK 151816 B.

29 ·29 ·

Eksempel 4 (fremstilling af hydrofob, makromolekylær monomer)Example 4 (Preparation of Hydrophobic, Macromolecular Monomer)

Fremstilling af poly(q-methylstyren), der er afsluttet med vinyl= chloracetat.Preparation of poly (q-methylstyrene) terminated with vinyl = chloroacetate.

En opløsning af 357 g (3,0 mol) α-methylstyren i 2500 ml tetrahydro-5 furan behandles dråbevis med en 12$'s opløsning af t-butyllithium i pentan, indtil en lyserød farve er vedvarende, herpå tilsættes yderligere 15,0 ml (0,03 mol) af t-butyllithiumopløsningen, hvilket resulterer i udvikling af en klar, rød farve. Blandingens temperatur sænkes derpå til -80°C, og efter 30 minutter ved denne temperatur 10 tilsættes 5,6 ml diphenylethylen. Den resulterende blanding udhældes i 5,0 ml (0,04 mol) vinylchloracetat, og den således afsluttede poly(oc-methylstyren) fældes med methanol og separeres ved filtrering.A solution of 357 g (3.0 mole) of α-methylstyrene in 2500 ml of tetrahydrofuran is treated dropwise with a 12 $ solution of t-butyllithium in pentane until a pink color is persisted, then an additional 15.0 is added. ml (0.03 mol) of the t-butyllithium solution resulting in the development of a clear red color. The temperature of the mixture is then lowered to -80 ° C, and after 30 minutes at this temperature 10 5.6 ml of diphenylethylene are added. The resulting mixture is poured into 5.0 ml (0.04 mole) of vinyl chloroacetate and the poly (oc-methylstyrene) thus completed is precipitated with methanol and separated by filtration.

Dens talmæssigt gennemsnitlige molekylvægt bestemt ved dampfaseosmo-metri er 14.280 (teoretisk 12.065), og molekylvægtfordelingen er me-15 get smal. Den fremstillede makromolekylære monomer har følgende strukturformel: chJ O 0Its numerically average molecular weight determined by vapor phase osmometry is 14,280 (theoretical, 12,065) and the molecular weight distribution is very narrow. The macromolecular monomer produced has the following structural formula: chJ O 0

I 3 T III 3 T II

CH3CH2(CH5)0H—ch2—c---ch2c— CH2C0CH = ch2 - 6 hvori n har en sådan værdi, at polymerens molekylvægt er 14.280.CH 3 CH 2 (CH 5) OH - ch 2 - c --- ch 2 c - CH 2 COCH = ch 2 - 6 wherein n has such a value that the molecular weight of the polymer is 14,280.

Eksempel 5 (fremstilling af hydrofob, makromolekylær monomer)Example 5 (Preparation of Hydrophobic, Macromolecular Monomer)

Fremstilling af en polystyren, som er afsluttet med vinyl-2-chlor= >0 ethylether,Preparation of a polystyrene terminated with vinyl-2-chloro => 0 ethyl ether,

En opløsning af 1 dråbe diphenylethylen blandes ved 40°C dråbevis med en 12$’s opløsning af t-butyllithium i pentan, indtil en lyserød farve er vedvarende, på hvilket tidspunkt yderligere 30 ml (0,04 mol) af t-butyllithiumopløsningen tilsættes efterfulgt af 312 g (3,0 mol) ,5 styren. Temperaturen af polymerisationsblandingen holdes ved 40°C i 30 minutter, hvorpå den reaktionsdygtige polystyren afsluttes ved behandling med 8 ml (0,08 mol) vinyl-2-chlorethylether. Den resulterende polymer fældes ved at sætte benzenopløsningen til methanol, og polymeren separeres ved filtrering. Dens talmæssigt gennemsnitlige 0 molekylvægt bestemt ved dampfaseosmometri er 7.200 (teoretisk 7870),A solution of 1 drop of diphenylethylene is mixed at 40 ° C dropwise with a 12 $ solution of t-butyllithium in pentane until a pink color persists, at which time an additional 30 ml (0.04 mole) of the t-butyllithium solution is added. followed by 312 g (3.0 mol), 5 styrene. The temperature of the polymerization mixture is maintained at 40 ° C for 30 minutes, after which the reactive polystyrene is terminated by treatment with 8 ml (0.08 mol) of vinyl-2-chloroethyl ether. The resulting polymer is precipitated by adding the benzene solution to methanol and the polymer is separated by filtration. Its numerically average 0 molecular weight determined by vapor phase osmometry is 7,200 (theoretical 7870),

DK 151816 BDK 151816 B

30 og molekylvægtfordelingen er meget smal, d.v.s. at Mw/Mn er mindre end 1,06. Den fremstillede makromolekylære monomer har følgende strukturformel: (ch5)3c—ch2—ch--ch2ch2och = ch2And the molecular weight distribution is very narrow, i.e. that Mw / Mn is less than 1.06. The prepared macromolecular monomer has the following structural formula: (ch5) 3c - ch2 - ch - ch2ch2 and = ch2

L 6 -LL 6 -L

hvori n har en sådan værdi, at polymerens molekylvægt er 7200.wherein n has such a value that the molecular weight of the polymer is 7200.

5 Eksempel 6 (fremstilling af hydrofob, makromolekylær monomer)Example 6 (Preparation of hydrophobic, macromolecular monomer)

Eremstilling af polystyren, der er afsluttet med epichlorhydrin.Production of polystyrene completed with epichlorohydrin.

En benzenopløsning af reaktionsdygtig polystyren fremstilles som anført i eksempel 5 og afsluttes ved behandling med 10 g (0,10 mol) epichlorhydrin. Den resulterende afsluttede polystyren fældes med 10 methanol og separeres ved filtrering. Dens molekylvægt bestemt ved dampfaseosmometri er 8660 (teoretisk 7757), og dens talmæssigt gennemsnitlige molekylvægtfordeling er meget smal. Den fremstillede makromolekylære monomer har følgende strukturformel: ( ch3 ) 2— c—ch2— ch--ch2ch-——ch2 L 6 i hvori n har en sådan værdi, at polymerens molekylvægt er 8660.A benzene solution of reactive polystyrene is prepared as set forth in Example 5 and terminated by treatment with 10 g (0.10 mol) of epichlorohydrin. The resulting finished polystyrene is precipitated with 10 methanol and separated by filtration. Its molecular weight determined by vapor phase osmometry is 8660 (theoretical 7757) and its numerically average molecular weight distribution is very narrow. The macromolecular monomer produced has the following structural formula: (ch3) 2 - c - ch 2 - ch - ch 2

15 Eksempel 7 (fremstilling af hydrofob, makromolekylær monomer)Example 7 (Preparation of hydrophobic, macromolecular monomer)

Eremstilling af polystyren, der er afsluttet med methacrylylchlorid.Production of polystyrene terminated with methacrylyl chloride.

Til en opløsning af 0,2 ml diphenylethylen i 2500 ml benzen sættes dråbevis en 12%'s opløsning af n-butyllithium i hexan, indtil en lys rødlig-brun farve var vedvarende. Der tilsættes yderligere 24 ml 20 (0,051 mol) af denne n-butyllithiumopløsning, og derpå tilsættes 416 g (4,0 mol) styren, hvilket resulterer i udvikling af en orange farve. En temperatur på 40°0 opretholdes overalt ved hjælp af ydre køling og ved styring af den hastighed, hvormed styrenet tilsættes. Denne temperatur holdes i yderligere 30 minutter, efter at alt styrenet er 25 blevet tilsat, og temperaturen sænkes derpå til 20°C, hvorefter 4,4 g I I_ 31To a solution of 0.2 ml of diphenylethylene in 2500 ml of benzene is added dropwise a 12% solution of n-butyllithium in hexane until a light reddish-brown color persists. An additional 24 ml (0.051 mol) of this n-butyllithium solution is added and then 416 g (4.0 mol) of styrene is added, resulting in the development of an orange color. A temperature of 40 ° 0 is maintained throughout by external cooling and by controlling the rate at which the styrene is added. This temperature is maintained for a further 30 minutes after all the styrene has been added and the temperature is then lowered to 20 ° C, after which 4.4 g of I

DK 151816 BDK 151816 B

(0,1 mol) ethylenoxid tilsættes, hvilket medfører, at opløsningen bliver farveløs. Den reaktionsdygtige polymer afsluttes derpå ved omsætning med 10 ml (0,1 mol) methacrylylchlorid. Den resulterende polymer har en talmæssigt gennemsnitlig molekylvægt på 10.000 be-5 stemt ved dampfaseosmometri. Den makromolekylære monomer har følgende strukturformel: r- 0Ethylene oxide (0.1 mole) is added, causing the solution to become colorless. The reactive polymer is then terminated by reaction with 10 ml (0.1 mole) of methacrylyl chloride. The resulting polymer has a numerical average molecular weight of 10,000 determined by vapor phase osmometry. The macromolecular monomer has the following structural formula: r-0

IIII

CH5CH2CH2CH2—ch2—CH--CH2CH20CC = CH2 . o i k hvori n har en sådan værdi, at polymerens molekylvægt er 10.000.CH5CH2CH2CH2 - ch2 - CH - CH2CH20CC = CH2. o in k where n has such a value that the molecular weight of the polymer is 10,000.

Eksempel 8 (fremstilling af hydrofob, makromolekylær monomer)Example 8 (Preparation of Hydrophobic, Macromolecular Monomer)

Fremstilling af polystyren, der er afsluttet med methacrylylohlorid.Preparation of polystyrene terminated with methacrylylohloride.

10 En rustfri stålbeholder fyldes med 32 gallon A.C.S.-kvalitet benzen (thiophenfri), som forinden var blevet tørret ved hjælp af linde-molekylsigter og calciumhydrid. Reaktoren opvarmes til en temperatur mellem 38 og 40°C, og 10 ml diphenylethylen sættes til reaktoren ved hjælp af en hypoderm sprøjte. En 11,4$’s opløsning af sek.-butylli-15 thium i hexan sættes portionsvis til reaktoren, indtil der opnås en permanent orangegul farve (60 ml), på hvilket tidspunkt yderligere 1,562 kg sek.-butyllithium i hexan sættes til reaktoren efterfulgt af tilsætning af 37,455 kg renset styren over et tidsrum på 1 time og 40 minutter. Reaktortemperaturen opretholdes på 38-40°C. Den 20 reaktionsdygtige polystyren afbrydes ved tilsætning af 127,1 g ethylenoxid, og reaktionsopløsningen ændrer sig fra en rød-orange farve til gul farve. Den resulterende afbrudte reaktionsdygtige polystyren omsættes derefter med 260 ml methacrylylohlorid, og opløsningen skifter til en meget bleggul farve. Den methacrylatafsluttede 25 polystyren fældes ved at sætte polymer-benzenopløsningen til methanol, hvorpå polymeren fælder ud af opløsningen. Polymeren tørres i en lufttørrer med cirkulerende atmosfære ved 40-45°C og derefter i et fluidiseret lag til fjernelse af spor af methanol. Polymerens molekylvægt bestemt ved hjælp af membranfaseosmometri er 13.400, og 30 molekylvægtfordelingen er meget smal, d.v.s. at Mw/Mn er mindre end 1,05.10 A stainless steel container is filled with 32 gallons of A.C.S. grade benzene (thiophene free) which had previously been dried using lime molecular sieves and calcium hydride. The reactor is heated to a temperature between 38 and 40 ° C and 10 ml of diphenylethylene is added to the reactor by means of a hypodermic syringe. An 11.4 $ solution of sec-butyllithium in hexane is added portionwise to the reactor until a permanent orange-yellow color (60 ml) is obtained, at which time an additional 1,562 kg of sec-butyllithium in hexane is added to the reactor. followed by the addition of 37,455 kg of purified styrene over a period of 1 hour and 40 minutes. The reactor temperature is maintained at 38-40 ° C. The 20 reactive polystyrene is quenched by the addition of 127.1 g of ethylene oxide and the reaction solution changes from a red-orange color to a yellow color. The resulting quenched reactive polystyrene is then reacted with 260 ml of methacrylylohloride and the solution changes to a very pale yellow color. The methacrylate-terminated polystyrene is precipitated by adding the polymer-benzene solution to methanol, after which the polymer precipitates out of the solution. The polymer is dried in an air dryer with circulating atmosphere at 40-45 ° C and then in a fluidized layer to remove traces of methanol. The molecular weight of the polymer determined by membrane phase osmometry is 13,400, and the 30 molecular weight distribution is very narrow, i.e. that Mw / Mn is less than 1.05.

DK 151816B ·., 32DK 151816B ·., 32

_1 I_1 I

sr _ -sr _ -

Eksempel 9 (fremstilling af hydrofob, makromolekylær monomer)Example 9 (Preparation of Hydrophobic, Macromolecular Monomer)

Fremstilling af polystyren, Aer er afsluttet med maleinsyreanhydrid.Preparation of polystyrene, Aer is completed with maleic anhydride.

En rustfri stålbeholder fyldes med 2,5 liter A.C.S.-kvalitet benzen (thiophenfri), som forinden er blevet tørret ved hjælp af Linde-5 molekylsigter og calciumhydrid. Reaktoren opvarmes til 40°C, og 0,2 ml diphenylethylen tilsættes til reaktoren ved hjælp af en hypoderm sprøjte. En 12,1%'s opløsning af sek.-butyllithium i hexan sættes portionsvis til reaktoren, indtil opretholdelsen af en permanent orange-gul farve er opnået (0,7 ml), på hvilket tidspunkt der til-XO sættes yderligere 22,3 ml sek.-butyllithiumopløsning efterfulgt af tilsætning af 421,7 g styren over et tidsrum på 16 minutter. Reaktortemperaturen holdes på 40-45°C. 5 minutter efter at styrentil- sætningen er færdig, tilsættes ethylenoxid intermitterende under overfladen fra en "lecture"-flaske, indtil opløsningen er vand-hvid.A stainless steel container is filled with 2.5 liters of A.C.S. grade benzene (thiophene free) which has previously been dried using Linde-5 molecular sieves and calcium hydride. The reactor is heated to 40 ° C and 0.2 ml of diphenylethylene is added to the reactor by means of a hypodermic syringe. A 12.1% solution of sec-butyllithium in hexane is added portionwise to the reactor until a permanent orange-yellow color is obtained (0.7 ml), at which time an additional 22.3 is added to the XO. ml of sec-butyllithium solution followed by the addition of 421.7 g of styrene over a period of 16 minutes. The reactor temperature is maintained at 40-45 ° C. 5 minutes after the styrene addition is complete, ethylene oxide is added intermittently beneath the surface of a lecture flask until the solution is water-white.

X5 1 time efter at ethylenoxidtilsætningen er tilendebragt,sættes 20,55 ml maleinsyreanhydrid-benzenopløsning (maleinsyreanhydridopløsningen blev fremstillet ved opløsning af 84 g maleinsyreanhydrid i 550 g renset benzen) til den afbrudte, reaktionsdygtige polymer. 1 time efter tilsætningen af maleinsyreanhydridopløsningen udtømmes reak-20 torindholdet og fældes i methanol. Den med maleinsyrehalvester afsluttede polystyren havde en molekylvægt på ca. 14-000 bestemt ved gelgennemtrængningskromatografi. Den polymeriserbare, makromoleky-lære monomer har følgende strukturformel:X5 1 hour after the ethylene oxide addition is complete, 20.55 ml of maleic anhydride benzene solution (the maleic anhydride solution was prepared by dissolving 84 g of maleic anhydride in 550 g of purified benzene) is added to the quenched reactive polymer. One hour after the addition of the maleic anhydride solution, the reactor contents are discharged and precipitated in methanol. The polystyrene terminated with maleic acid halves had a molecular weight of approx. 14-000 determined by gel penetration chromatography. The polymerizable macromolecular monomer has the following structural formula:

.--.O.--.ISLAND

IIII

sek. -butyl--CH2-CH--CH2CH20CSEC. butyl - CH2-CH - CH2CH20C

A, \h L U Jn ||A, \ h L U Jn ||

CHCH

HOC^HOC ^

IIII

00

Eksempel 10 (fremstilling af hydrofob, makromolekylær monomer) 25 Fremstilling af polybutadien, der er afsluttet med allylchlorid.Example 10 (Preparation of hydrophobic, macromolecular monomer) Preparation of polybutadiene terminated with allyl chloride.

C.P.-kvalitet 1,3-butadien (99%’s renhed) kondenseres og opsamles i 1-pint sodaflasker. Disse flasker var blevet ovnbagt i 4 timer ved 150°C, renset med nitrogen under køling og derpå tilkapslet med en I I_ 33C.P. grade 1,3-butadiene (99% purity) is condensed and collected in 1-pint soda bottles. These bottles had been oven-baked for 4 hours at 150 ° C, purged with nitrogen under cooling and then encapsulated with an I-33

DK151816BDK151816B

perforeret metalkapsel under anvendelse af foringer af butylgummi og polyethylenfolie. Disse flasker indeholdende hutadienen opbevares ved -10°C med en nitrogentrykhøjde (10 psi) i en laboratoriefryser før anvendelse. Hexanopløsningsmiddel' fyldes på reaktorerne og op-5 varmes til 50°C efterfulgt af tilsætning af 0,2 ml diphenylethylen ved hjælp af en sprøjte. Sek.-butyllithium sættes dråbevis til reaktoren via en sprøjte, indtil den røde diphenylethylenanionfarve holder i mindst 10-15 minutter. Reaktortemperaturen sænkes til 0°C, og 528,0 g butadien fyldes på polymerisationsreaktoren efterfulgt af L0 tilsætning af 17,4 ml (0,02187 mol) af en 12$’s sek.-butyllithiumop-løsning i hexan, når halvdelen af butadienmængden er blevet sat til reaktoren. Butadienen polymeriseres i 18 timer i hexan ved 50°C.perforated metal capsule using butyl rubber and polyethylene foil linings. These bottles containing the hutadiene are stored at -10 ° C with a nitrogen pressure height (10 psi) in a laboratory freezer before use. Hexane solvent is charged to the reactors and heated to 50 ° C followed by the addition of 0.2 ml of diphenylethylene by syringe. Sec-butyllithium is added dropwise to the reactor via a syringe until the red diphenylethylene anion color lasts for at least 10-15 minutes. The reactor temperature is lowered to 0 ° C and 528.0 g of butadiene is charged to the polymerization reactor followed by L0 addition of 17.4 ml (0.02187 mole) of a 12 $ sec. Butyllithium solution in hexane when half the amount of butadiene is reached. has been added to the reactor. The butadiene is polymerized for 18 hours in hexane at 50 ° C.

Efter polymerisationen overføres under nitrogentryk 400 ml-portioner af opløsningen af den anioniske polybutadienopløsning i reaktoren L5 til tilkapslede flasker. Allylchlorid (0,48 ml, 0,00588 mol) indsprøjtes i hver af flaskerne. Elaskerne fastspændes i vandbade ved temperaturer på 50°C og 70°C i et tidsrum på mellem 1 time og op til 24 timer. Prøverne i hver af flaskerne short-stoppes med methanol og ionolopløsning og analyseres ved hjælp af gelgennemtrængningskro-2Q matografi. Hver af prøverne er vand-hvide, og analysen af gelgennem- trængningskromatografiskannerne viser, at hver af prøverne havde en smal molekylvægtfordeling.After the polymerization, 400 ml portions of the solution of the anionic polybutadiene solution in the reactor L5 are transferred to encapsulated bottles under nitrogen pressure. Allyl chloride (0.48 ml, 0.00588 mol) is injected into each of the bottles. The jellyfish are clamped in water baths at temperatures of 50 ° C and 70 ° C for a period of time between 1 hour and up to 24 hours. The samples in each of the bottles were short-stopped with methanol and ionol solution and analyzed by gel penetration chromatography. Each of the samples is water-white, and the analysis of the gel permeation chromatography scanners shows that each of the samples had a narrow molecular weight distribution.

Plere sammenligningsprøver blev udført i flasker kommende fra samme mængde reaktionsdygtig polybutadien, som blev afbrudt med 2-chlor= 25 butan (0,4 ml, 0,00376 mol) som afslutningsmidlet. De resulterende polymere, som var afsluttet med 2-chlorbutan, havde gul farve og viste sig efter henstand i et tidsrum på 24 timer ved 70°C at have en bred molekylvægtfordeling, hvilket viste sig ved hjælp af gelgennem-trængningskromatografiskanderen. Det vil fremgå, at omsætningen og 30 reaktionsproduktet af 2-chlorbutan med anionisk polybutadien er anderledes end omsætningen og reaktionsproduktet af allylchlorid og anionisk polybutadien.Multiple comparative tests were performed in bottles coming from the same amount of reactive polybutadiene which was quenched with 2-chloro = 25 butane (0.4 ml, 0.00376 mol) as the terminating agent. The resulting polymers, which were terminated with 2-chlorobutane, were yellow in color and, after standing for a period of 24 hours at 70 ° C, were found to have a wide molecular weight distribution, as evidenced by the gel penetration chromatography scanner. It will be seen that the reaction and reaction product of 2-chlorobutane with anionic polybutadiene is different from the reaction and reaction product of allyl chloride and anionic polybutadiene.

Eksempel 11 (fremstilling af hydrofob, makromolekylær monomer).Example 11 (Preparation of hydrophobic, macromolecular monomer).

Fremstilling af methacrylatafsluttet polyisopren.Preparation of methacrylate terminated polyisoprene.

35 En 3,8 liter Chemoglas-skålreaktor påfyldes 2,5 liter renset heptan, som forinden er blevet tørret ved hjælp af linde-molekylsigter og 34A 3.8 liter Chemoglas bowl reactor is charged with 2.5 liters of purified heptane, which has previously been dried by lime-molecular sieves and 34

DK 151816BDK 151816B

_I I_I I

*r calciumchlorid, efterfulgt af tilsætning af 0,2 ml diphenylethylen som indikator, og reaktoren steriliseres ved dråbevis tilsætning af en opløsning af tert.-butyllithium (12$ i hexan), indtil bibeholdelsen af den karakteristiske lysegule farve opnås. Reaktoren opvarmes 5 til 40°C, og 19,9 ml (0,025 mol) af en 12$'s opløsning af tert.-butyllithium i hexan indsprøjtes i reaktoren ved hjælp af en hypo-derm sprøjte, efterfulgt af tilsætning af 551,4 g (4,86 mol) isopren. Blandingen får lov til at henstå i 1 time ved 40°C, og 0,15 mol ethy-lenoxid fyldes på reaktoren til afbrydelse af den reaktionsdygtige 2o polyisopren. Den afbrudte, reaktionsdygtige polyisopren holdes ved 40°C i 40 minutter, hvorpå 0,041 mol methacrylylchlorid fyldes på reaktoren til afslutning af den afbrudte,reaktionsdygtige polymer. Blandingen holdes i 15 minutter ved 40°C efterfulgt af fjernelse af methanopløsningsmidlet ved hjælp af vakuumstripning. Baseret på gel-25 gennemtrængningskromatografiskannerne for polystyren var molekylvægten af den methacrylatafsluttede polyisopren ved gelgennemtrængnings-kromatografi ca. 10.000 (teoretisk 15.000). Den methacrylatafsluttede polyisopren-makromolekylære monomer har en strukturformel som følger: -i 0 , , li (CH5) 3— c — ch2 ^ ch2--ch2ch2oc — c = ch2 /c = \ k L°y H Jn 5 20 Eksempe 1 12 (fremstilling af hydrofob, makromolekylaer monomer) Eremstilling af q-olefinafsluttet polyisopren.calcium chloride, followed by the addition of 0.2 ml diphenylethylene as indicator and the reactor sterilized by dropwise addition of a solution of tert-butyllithium ($ 12 in hexane) until the characteristic pale yellow color is maintained. The reactor is heated to 5 to 40 ° C and 19.9 ml (0.025 mol) of a 12 $ solution of tert.-butyllithium in hexane is injected into the reactor by a hypodermic syringe, followed by the addition of 551.4 g (4.86 mol) of isoprene. The mixture is allowed to stand for 1 hour at 40 ° C and 0.15 mol of ethylene oxide is charged to the reactor to quench the reactive 20 polyisoprene. The quenched reactive polyisoprene is maintained at 40 ° C for 40 minutes, then 0.041 moles of methacrylyl chloride are charged to the reactor to terminate the quenched reactive polymer. The mixture is kept for 15 minutes at 40 ° C followed by removal of the methane solvent by vacuum stripping. Based on the gel-permeation chromatography scanners for polystyrene, the molecular weight of the methacrylate-terminated polyisoprene by gel permeation chromatography was approx. 10,000 (theoretically 15,000). The methacrylate-terminated polyisoprene macromolecular monomer has a structural formula as follows: -i 0,, li (CH 5) 3 - c - ch 2 ^ ch 2 - ch 2ch 2oc - c = ch 2 / c = \ k L ° y H Jn 5 Example 1 12 (Preparation of hydrophobic, macromolecular monomer) Preparation of q-olefin-terminated polyisoprene.

En 3,8 liter Chemoglas-skålreaktor påfyldes 2,5 liter renset heptan, som forinden er blevet tørret ved hjælp af en Linde-molekylsigte og calciumhydrid, efterfulgt af tilsætning af 0,2 ml diphenylethylen 25 som indikator. Reaktoren og opløsningsmidlet steriliseres ved hjælp af dråbevis tilsætning af en opløsning af tertiært butyllithium (12$ i hexan), indtil bibeholdelsen af den karakteristiske lysegule farve opnås. Reaktoren opvarmes til 40°C, og 19,05 ml (0,02426 mol) opløsning af tertiært butyllithium indsprøjtes i reaktoren ved hjælp 30 af en hypoderm sprøjte efterfulgt af tilsætning af 515,5 g (4,65 mol) isopren. Polymerisationen får lov til at skride frem ved 50°C i 66 minutter, og på dette tidspunkt sættes 2,0 ml (0,02451 mol) allylehlo- I I_ 35A 3.8 liter Chemoglas bowl reactor is charged with 2.5 liters of purified heptane, which has previously been dried using a Linde molecular sieve and calcium hydride, followed by the addition of 0.2 ml of diphenylethylene 25 as indicator. The reactor and solvent are sterilized by dropwise addition of a solution of tertiary butyllithium ($ 12 in hexane) until the characteristic light yellow color is maintained. The reactor is heated to 40 ° C and 19.05 ml (0.02426 mol) of tertiary butyl lithium solution is injected into the reactor by a hypodermic syringe followed by the addition of 515.5 g (4.65 mol) of isoprene. The polymerization is allowed to proceed at 50 ° C for 66 minutes, at which point 2.0 ml (0.02451 mole) of allyle hydrochloride is added.

DK 151816 BDK 151816 B

rid til den reaktionsdygtige polyisopren. Den afsluttede polyiso= Irid of the reactive polyisoprene. The completed polyiso = I

pren holdes ved 50°C i 38 minutter, hvorpå polymeren fjernes fra re- IThe prene is kept at 50 ° C for 38 minutes, after which the polymer is removed from the re

aktoren, der skal benyttes til copolymerisationsomsætninger. Poly- | meren blev analyseret ved hjælp af gelgennemtrængningskromatografi 5 og havde en meget smal molekylvægtfordeling, d.v.s. en Hw/Mn på mindre end 1,06. Den teoretiske molekylvægt af polymeren er 13.000.the actor to be used for copolymerization conversions. Poly- | the miter was analyzed by gel permeation chromatography 5 and had a very narrow molecular weight distribution, i.e. an Hw / Mn of less than 1.06. The theoretical molecular weight of the polymer is 13,000.

Den polymeriserbare, makromolekylære monomer har en strukturformel som følger: (ch3)3-—C—ch2v ^οη2--ch2ch = ch2 _oh3/ \h J nThe polymerizable macromolecular monomer has a structural formula as follows: (ch3) 3 - C - ch2v ^ οη2 - ch2ch = ch2 _oh3 / \ h J n

Eksempel 13 (fremstilling af hydrofob, makromolekylær monomer) 10 Eremstilling af en polystyren-makromolekylær monomer, der er afbrudt med butadien og afsluttet med allylchlorid.Example 13 (Preparation of hydrophobic, macromolecular monomer) Preparation of a polystyrene macromolecular monomer interrupted with butadiene and terminated with allyl chloride.

2,5 liter benzen (thiophenfrit) fyldes på reaktoren og opvarmes til 40°C. 0,2 ml diphenylethylen tilsættes som indikator, og reaktoren ^ steriliseres ved dråbevis tilsætning af en 12$’s opløsning af sek.-15 butyllithium, indtil bibeholdelse af en orange-rød farve. På dette tidspunkt tilsættes yderligere 18 ml (0,024 mol) opløsning af sek.-butyllithium (12$ i hexan) efterfulgt af 416 g (4,0 mol) styren. Polymerisationsblandingens temperatur holdes ved 40°C i 5 minutter.2.5 liters of benzene (thiophene-free) are charged to the reactor and heated to 40 ° C. 0.2 ml of diphenylethylene is added as indicator and the reactor is sterilized by dropwise addition of a 12 $ solution of sec-15 butyllithium until an orange-red color is maintained. At this time, an additional 18 ml (0.024 mole) of sec-butyllithium ($ 12 in hexane) solution is added followed by 416 g (4.0 mole) of styrene. The temperature of the polymerization mixture is maintained at 40 ° C for 5 minutes.

Derpå afbrydes den reaktionsdygtige polystyren med butadien ved gen-20 nembobling af butadiengas i reaktoren, indtil opløsningens farve ændres fra mørkerød til orange. Den reaktionsdygtige polymer afsluttes ved behandling med 4,1 ml (0,05 mol) allylchlorid. Den således fremstillede makromolekylære monomer fældes med methanol og separeres ved filtrering. Dens talmæssigt gennemsnitlige molekylvægt be-25 dømt ud fra gelgennemtrængningskromatografi er 25.000 (teoretisk 18.000), og molekylvægtfordelingen er meget smal. Den fremstillede makromolekylære monomer har følgende strukturformel: CEUCH/p-CH—GEd-CH---CH^ CH = CH CIL· CH$ CH = 0Ho 3 2 I 2 I L 2 2Jm 2 2 °%L O -1» hvor m er lig med 1 eller 2.The reactive polystyrene with butadiene is then quenched by re-bubbling of butadiene gas in the reactor until the color of the solution changes from dark red to orange. The reactive polymer is terminated by treatment with 4.1 ml (0.05 mole) of allyl chloride. The macromolecular monomer thus prepared is precipitated with methanol and separated by filtration. Its numerically average molecular weight judged from gel penetration chromatography is 25,000 (theoretically 18,000) and the molecular weight distribution is very narrow. The prepared macromolecular monomer has the following structural formula: CEUCH / p-CH-GEd-CH --- CH 2 CH = CH CIL · CH $ CH = 0Ho 3 2 I 2 IL 2 2 Jm 2 2 °% LO -1 where m is equal to 1 or 2.

3.6 DK 151816 B 43.6 DK 151816 B 4

Eksempel 14 (fremstilling af podecopolymer)Example 14 (Preparation of Graft Copolymer)

Fremstilling af en podecopolymer med et hydrofilt, polymert poly= acrylsyregrundskelet og hydrofole, polymere polystyrensidekæder.Preparation of a graft copolymer with a hydrophilic polymeric polyacrylic acid backbone and hydrophilic polymeric polystyrene side chains.

60 g af en polystyren, der er afsluttet med vinyl-2-chlorethyletlier, 5 således som fremstillet i eksempel 5, og med en molekylvægt på ca. 8000 og en meget smal molekylvægtfordeling, så at forholdet Mw/Mn er mindre end ca. 1,06, "blev opløst i 240 g acrylsyre og 50 g tetrahy-drofuran (TUF) i en 2-liter harpiksheholder. Der hlev placeret yderligere 500 g THF i 2-liter harpiks'beholderen, og derpå tilsattes 20 0,6 g henzoylperoxid. Beholderen hlev opvarmet til 65°C, og polyme risationen fik lov til at foregå i 2 timer. Efter polymerisationen sattes 300 g destilleret vand til harpiksheholderen, og THF-mængden hlev destilleret af. ' 25 Eksempel 15 (fremstilling af podecopolymer)60 g of a polystyrene terminated with vinyl-2-chloroethyl ethylene, 5 as prepared in Example 5, and having a molecular weight of approx. 8000 and a very narrow molecular weight distribution, so that the ratio Mw / Mn is less than approx. 1.06, "was dissolved in 240 g of acrylic acid and 50 g of tetrahydrofuran (TUF) in a 2-liter resin container. An additional 500 g of THF was placed in the 2-liter resin container, and then 0.6 g The container was heated to 65 ° C and the polymerization allowed to proceed for 2 hours. After polymerization, 300 g of distilled water was added to the resin holder and the THF amount distilled off. 25 Example 15 (Preparation of pod copolymer)

Fremstilling af en podecopolymer med et hydrofilt, polymert poly= acrylsyregrundskelet og hydrofobe, polymere polystyrensidekæder.Preparation of a graft copolymer with a hydrophilic polymeric polyacrylic acid backbone and hydrophobic polymeric polystyrene side chains.

4 g Triton X-100 hlev opløst i 500 g destilleret vand og placeret i 20 en Waring-hlander. 30 g tertiær hutylpolystyrenvinylether, fremstil let som anført i eksempel 5, hlev opløst i 60 g henzen, og opløsningen hlev sat til Waring-hlanderen indeholdende Triton X-100-opløsnin-gen under kraftig forskydningspåvirkning med henblik på fremstilling af en stabil dispersion. Dispersionen hlev fyldt på en 2-liter har-25 piksbeholder, der var udstyret med en omrører og en kondensator, og beholderen hlev renset med nitrogen i 1 time. Den hlev derpå opvarmet til 65°C, og der tilsattes 240 g acrylsyre (pH hlev neutraliseret til 8,0 med ammoniumhydroxid). 1 g henzoylperoxid hlev sat til harpiksheholderen, og polymerisation hlev udført ved 69°C i 3 timer.4 g Triton X-100 was dissolved in 500 g distilled water and placed in 20 a Waring mixer. 30 g of tertiary hutyl polystyrene vinyl ether, readily prepared as in Example 5, dissolved in 60 g of henzene and the solution added to the Waring mixer containing the Triton X-100 solution under heavy shear to produce a stable dispersion. The dispersion was poured onto a 2-liter resin tank equipped with a stirrer and a condenser, and the container was purged with nitrogen for 1 hour. It was then heated to 65 ° C and 240 g of acrylic acid were added (pH neutralized to 8.0 with ammonium hydroxide). 1 g of henzoyl peroxide was added to the resin holder and polymerization was carried out at 69 ° C for 3 hours.

30 Polymeren hlev udvundet som anført i eksempel 14, 37The polymer was recovered as set forth in Examples 14, 37

DK 151816BDK 151816B

I 1_I 1_

Eksempel 16 (fremstilling af podecopolymer) IExample 16 (Preparation of Graft Copolymer) I

Fremstilling af en podecopolymer med et hydrofilt, polymert poly= IPreparation of a graft copolymer with a hydrophilic polymeric poly = I

acrylsyregrundskelet og hydrofobe, polymere polystyrensidekæder.acrylic acid backbone and hydrophobic polymeric polystyrene side chains.

18 g Triton X-405 (eller 26 g 70$ fast Triton X-405) blev opløst i 5 300 g vand, og pH-værdien blev indstillet på 8 med ammoniumhydroxid, hvorpå opløsningen blev placeret i en Waring-blander. 30 g af den tertiære butylpolystyrenvinylether, som var fremstillet som anført i eksempel 5, blev opløst i 70 g ethylacrylat, og opløsningen bley sat til Waring-blanderen indeholdende Triton X-405-opløsning under 10 kraftig forskydningspåvirkning med henblik på fremstilling af en stabil dispersion. Dispersionen blev fyldt på en 2-liter harpiksbeholder, der var udstyret med en omrører og en kondensator, og renset med nitrogen i 1 time. Beholderen blev opvarmet til 65°C, og der tilsattes 0,1 g ammoniumpersulfat. 200 g ethylacrylat og 2$ 15 ammoniumpersulfatopløsning blev sat til polymerisationsbeholderen i løbet af en 3-timers periode, og polymerisationen blev udført Ted 65-67°C. Det polymere grundskelet blev gjort hydrofilt ved hydrolysering af acrylestergrupperne med alkali under varme. Den resul- a terende hydrofile-hydrofobe polymer blev udvundet på den i de fore- ™ 20 gående eksempler beskrevne måde.18 g of Triton X-405 (or 26 g of $ 70 solid Triton X-405) were dissolved in 5,300 g of water and the pH was adjusted to 8 with ammonium hydroxide, whereupon the solution was placed in a Waring mixer. 30 g of the tertiary butyl polystyrene vinyl ether prepared as in Example 5 was dissolved in 70 g of ethyl acrylate and the solution was added to the Waring mixer containing Triton X-405 solution under 10 strong shear to produce a stable dispersion. . The dispersion was charged to a 2-liter resin container equipped with a stirrer and a capacitor, and purged with nitrogen for 1 hour. The vessel was heated to 65 ° C and 0.1 g of ammonium persulfate was added. 200 g of ethyl acrylate and 2 $ 15 ammonium persulfate solution were added to the polymerization vessel over a 3-hour period and the polymerization was carried out at Ted 65-67 ° C. The polymeric backbone was made hydrophilic by hydrolyzing the acrylic ester groups with alkali under heat. The resulting hydrophilic-hydrophobic polymer was recovered in the manner described in the foregoing Examples.

Eksempel 17 (fremstilling af hydrogeler)Example 17 (Preparation of Hydrogels)

Datexfortykkelse med podepolymerisat, som har et hydrofilt, polymert polyacrylsyregrundskelet og hydrofobe, polymere polystyrensidékæder.Datex thickening with graft polymer having a hydrophilic polymeric polyacrylic acid backbone and hydrophobic polymeric polystyrene side chains.

Tre podecopolymere sammensat af 80$ polymere polyacrylsyregrundske-25 letter og 20$ polymere polystyrensidekæder, fremstillet som anført i de foregående eksempler, blev afprøvet som latexfortykkelsesmiddel. Størrelsen af polystyrensidekæderne var som følger: prøve A(G30),Three seed copolymers composed of $ 80 polymeric polyacrylic acid backbones and $ 20 polymeric polystyrene side chains prepared as set forth in the preceding examples were tested as a latex thickener. The size of the polystyrene side chains was as follows: Sample A (G30),

Mn lig med 1000; prøve B(G32), Mn lig med 4000; og prøve C(G33),Mn equals 1000; Sample B (G32), Mn equal to 4000; and sample C (G33),

Mn lig med 8000. Podecopolymerene blev afprøvet på følgende måde.Mn equals 8000. The seed copolymers were tested as follows.

30 Til 300 g prøver af Wica Latex 7035 (50$ fast stof) sattes henholdsvis 0,3 g, 0,6 g og 1,2 g af den hydrofile podecopolymer (faststofbasis), og viskositeten blev målt ved hjælp af et Brookfield LVT-viskosimeter (spindel nr. 3, 12 omdrejninger pr. minut). Resultaterne af dette forsøg var som følger: 38To 300 g samples of Wica Latex 7035 ($ 50 solid) were added 0.3 g, 0.6 g and 1.2 g of the hydrophilic graft copolymer (solid basis), and the viscosity was measured by a Brookfield LVT. viscosimeter (spindle # 3, 12 rpm). The results of this experiment were as follows:

DK 151816BDK 151816B

_I I_I I

srsr

Brookfield viskositet (centipoise) Mængde tilsat Prøve Prøve Prøve copolymer iA(Q30) Β(032) C(Q33) intet 1400 1430 1410 0,3 g 3100 3380 3550 0,6 g 4200 4900 5600 1,2 g 6500 7000 7500Brookfield viscosity (centipoise) Amount added Sample Sample Sample copolymer iA (Q30) Β (032) C (Q33) nothing 1400 1430 1410 0.3 g 3100 3380 3550 0.6 g 4200 4900 5600 1.2 g 6500 7000 7500

Som det fremgår af de ovenstående data, fungerer podecopolymerene ifølge opfindelsen som fortrinlige fortykkelsesmidler for latexer som følge af tilstedeværelsen af såvel hydrofile som hydrofobe,polymere segmenter. Det viste sig, at de polymere sidekæder, som har en 5 ensartet molekylvægtfordeling, bidrog til den totale kapacitet i henseende til dannelse af en stabil latex. Det fremgår også, at de polymere sidekæder med højere molekylvægt forøger den totale fortykkelseskapacitet. Dette skyldes det faktum, at de polymere sidekæder med højere molekylvægt, d.v.s. over ca. 2000, minder om egenskaberne 10 af en polystyrenpolymer, og der fremkommer en bedre faseseparation, når de polymere sidekæder har en højere molekylvægt.As can be seen from the above data, the graft copolymers of the invention act as excellent thickeners for latexes due to the presence of both hydrophilic and hydrophobic polymeric segments. It was found that the polymeric side chains, which have a uniform molecular weight distribution, contributed to the total capacity in terms of forming a stable latex. It is also seen that the higher molecular weight polymeric side chains increase the total thickening capacity. This is due to the fact that the higher molecular weight polymeric side chains, i.e. over approx. 2000, recalls the properties 10 of a polystyrene polymer and better phase separation occurs when the polymeric side chains have a higher molecular weight.

Eksempel 18 (fremstilling af podecopolymer)Example 18 (Preparation of Graft Copolymer)

Fremstilling af hydrofile, polymere polyvinylalkoholgrundskelet-podecopolymere, som har hydrofobe, polymere polystyrensidekæder.Preparation of hydrophilic polymeric polyvinyl alcohol backbone graft copolymers having hydrophobic polymeric polystyrene side chains.

15 60 g af den rensede, copolymeriserbare, hydrofobe, macromolekylære monomer, som har en vinyletherendegruppe, hvilken monomer er fremstillet ved proceduren ifølge eksempel 5 (den macromolekylære monomer blev fremstillet på samme måde, med den undtagelse, at sek.-butyllithium blev anvendt som initiator, og polymeren havde en mole-20 kylvægt på 2080 samt et Mw/Mn-forhold på mindre end ca. 1,1), blev copolymeriseret med 240 g vinylacetat i benzen under anvendelse af benzoylperoxid som katalysator. Den således fremstillede polyvinyl= acetat-styrenpodecopolymer (G-26) blev hydrolyseret til polyvinylal-kohol-styrenpodecopolymer i en 50/50 methanol/benzen-blanding under 25 anvendelse af natriummethoxid som katalysator. Den resulterende polymer blev vasket med methanol, vakuumtørret og derefter ekstraheret med benzen. Analyse af den ekstraherede copolymer viste, at der var15 g of the purified, copolymerizable, hydrophobic, macromolecular monomer having a vinyl ether group, which monomer is prepared by the procedure of Example 5 (the macromolecular monomer was prepared in the same way, except that sec-butyllithium was used as initiator, and the polymer had a molecular weight of 2080 as well as a Mw / Mn ratio of less than about 1.1), was copolymerized with 240 g of vinyl acetate in benzene using benzoyl peroxide as catalyst. The polyvinyl acetate-styrene graft copolymer (G-26) thus prepared was hydrolyzed to polyvinyl alcohol-styrene graft copolymer in a 50/50 methanol / benzene mixture using sodium methoxide as a catalyst. The resulting polymer was washed with methanol, vacuum dried and then extracted with benzene. Analysis of the extracted copolymer showed that there were

DK 151816BDK 151816B

39 I I_39 I I_

dannet en copolymer. Det forsæbede produkt blev støbt -til en folie I for at fastslå dets vandmodstandsdygtighed i sammenligning med i Iformed a copolymer. The saponified product was molded to a film I to determine its water resistance in comparison to

handelen gående polyvinylalkohol. Hver af folierne blev påført på Itrade in polyvinyl alcohol. Each of the foils was applied to I

glas og dyppet i vand ved stuetemperatur natten over. Yed simpel 5 visuel observation fremgik det tydeligt, at vandmodstandsdygtigheden af copolymerene var meget forbedret i 'forhold til vandmodstandsdygtigheden af kontrolpolyvinylalkoholen.glass and dipped in water at room temperature overnight. For simple visual observation, it was clear that the water resistance of the copolymers was much improved over the water resistance of the control polyvinyl alcohol.

Eksempel 19 (fremstilling af podecopolymer)Example 19 (Preparation of Graft Copolymer)

Eremstilling af hydrofile, polymere polyvinylalkoholgrundskelet-pode= 10 copolymere, som har hydrofobe, polymere polystyrensidekæder.Production of hydrophilic polymeric polyvinyl alcohol backbone graft = 10 copolymers having hydrophobic polymeric polystyrene side chains.

En latexcopolymerisationsomsætning blev udført ved at sætte 0,4 g natriumdodecylsulfat til 85 g vand under omrøring. 15 g af den me-thacrylatafsluttede polystyren, fremstillet som anført i eksempel 8, blev tilsat efterfulgt af tilsætning af 30 g vinylacetat. 0,15 g benzoylperoxid blev tilsat, og polymerisationen blev udført i 6 timer ved 40-50°C. Efter polymerisation blev copolymeren omrørt i 100 ml methanol, og 10 g natriummethoxid blev sat til opløsningen ^ over en 20 minutters periode. Opløsningen blev opvarmet under tilbagesvaling i 10 minutter, og polymeren blev vasket to gange med iso= 20 propanol og tørret ved 70°C under vakuum. Opløseligheden af det hydrolyserede produkt blev undersøgt under anvendelse af forskellige opløsningsmidler. Copolymeren var en smule opløselig i DMSO, men uopløselig i toluen, tetrahydrofuran, benzen og cresol. Folier fremstillet ud fra copolymeren var transparente og udviste god forlæn-25 gelse og fortrinlig vådstyrke.A latex copolymerization reaction was performed by adding 0.4 g of sodium dodecyl sulfate to 85 g of water with stirring. 15 g of the methacrylate terminated polystyrene prepared as set forth in Example 8 was added followed by the addition of 30 g of vinyl acetate. 0.15 g of benzoyl peroxide was added and the polymerization was carried out for 6 hours at 40-50 ° C. After polymerization, the copolymer was stirred in 100 ml of methanol and 10 g of sodium methoxide was added to the solution over a 20 minute period. The solution was refluxed for 10 minutes and the polymer was washed twice with iso = 20 propanol and dried at 70 ° C under vacuum. The solubility of the hydrolyzed product was investigated using various solvents. The copolymer was slightly soluble in DMSO, but insoluble in toluene, tetrahydrofuran, benzene and cresol. Films made from the copolymer were transparent and exhibited good elongation and excellent wet strength.

Eksempel 20 (fremstilling af podecopolymer)Example 20 (Preparation of Graft Copolymer)

Fremstilling af hydrofile, polymere methacrylatgrundskelet-podeco= polymere, som har hydrofobe, polymere polystyrensidekæder.Preparation of hydrophilic polymeric methacrylate backbone podeco = polymers having hydrophobic polymeric polystyrene side chains.

75 dele af en methacrylatafsluttet polystyren, fremstillet som anført 30 i eksempel 7 og med en ensartet eller smal molekylvægtfordeling, blev blandet med 125 dele hydroxyethylmethacrylat, og polymerisationen blev initieret med 0,4 dele tertiært butylperoctoat som polymerisationskatalysator. Polymerisationen af materialet blev udført ved til at begynde med at opvarme blandingen til ca. 50°C i 8 timer. Po-75 parts of a methacrylate-terminated polystyrene, prepared as set forth in Example 7 and with a uniform or narrow molecular weight distribution, were mixed with 125 parts of hydroxyethyl methacrylate and the polymerization was initiated with 0.4 parts of tertiary butyl peroctate as polymerization catalyst. The polymerization of the material was carried out by initially heating the mixture to ca. 50 ° C for 8 hours. Po

_I I_I I

sr 40sr 40

DK151816BDK151816B

lymerisationen "blev derefter fuldført ved opvarmning i 1 time ved 90°C og derefter ved opvarmning i yderligere 1 time ved 120°C. Efter at polymerisationen var fuldført, opnåedes en klar, fast og stiv copolymer. Polymeren "blev bragt i kontakt med en fysiologisk salt-5 opløsning, indtil den var i en tilstand af osmotisk ligevægt med den fysiologiske saltopløsning. Den således opnåede hydrogelfolie var klar, fleksibel og elastisk.The polymerization "was then completed by heating for 1 hour at 90 ° C and then by heating for an additional 1 hour at 120 ° C. After the polymerization was complete, a clear, solid and rigid copolymer was obtained. The polymer" was contacted with a physiological saline solution until it was in a state of osmotic equilibrium with the physiological saline solution. The hydrogel film thus obtained was clear, flexible and resilient.

Eksempel 21 (fremstilling af podecopolymer)Example 21 (Preparation of Graft Copolymer)

Fremstilling af en podecopolymer med et hydrofilt, polymert poly 10 (N,N-dimethylacrylamid)-grundskelet og hydrofobe, polymere poly= styrensidekæder.Preparation of a graft copolymer with a hydrophilic polymeric poly (N, N-dimethylacrylamide) backbone and hydrophobic polymeric polystyrene side chains.

40 g af den rensede, særdeles funktionelle methacrylatafsluttede polystyren, som blev fremstillet som anført i eksempel 8 (molekylvægt 13.400 og et Mw/Mn-forhold på mindre end 1,05), og 60 g N,]3-dimethyl= 15 acrylamid blev opløst i 150 g benzen. Blandingen blev blandet på et rysteapparat til opnåelse af en homogen opløsning. 0,12 g ΑΙΒΪΓ (YAZO) polymerisationsinitiator blev tilsat, og indholdet blev overført til en "one quart"-polymerisationsflaske. Indholdet blev gen-nemskyllet med nitrogen og forseglet efterfulgt af yderligere nitro-20 genrensning. Polymerisationsflasken blev placeret på et rysteapparat i et vandbad ved 60°C i 19 1/2 time efterfulgt af en afsluttende polymerisationstemperatur på 85°C i 2 timer. Den resulterende copolymer var en klar, meget viskos væske. 250 g benzen blev sat til den viskose, flydende copolymer for at gøre den mindre viskos. Væg-25 ten af opløsningsmidlet og copolymeren var 465 g, af hvilke 20,9$ var fast stof (95,4 g fast stof) til opnåelse af et copolymerudbytte på 95,4$.40 g of the purified highly functional methacrylate-terminated polystyrene prepared as set forth in Example 8 (molecular weight 13,400 and a Mw / Mn ratio of less than 1.05) and 60 g of N, 3-dimethyl = 15 acrylamide were obtained. dissolved in 150 g of benzene. The mixture was mixed on a shaker to obtain a homogeneous solution. 0.12 g of Y (YAZO) polymerization initiator was added and the contents transferred to a "one quart" polymerization bottle. The contents were purged with nitrogen and sealed, followed by further nitrogen purification. The polymerization bottle was placed on a shaker in a water bath at 60 ° C for 19 1/2 hours, followed by a final polymerization temperature of 85 ° C for 2 hours. The resulting copolymer was a clear, very viscous liquid. 250 g of benzene was added to the viscous liquid copolymer to make it less viscous. The weight of the solvent and copolymer was 465 g, of which $ 20.9 was solid (95.4 g solid) to give a copolymer yield of $ 95.4.

Folier af copolymeren blev støbt ved at trække benzen-copolymeropløs-ningen på glasplader under anvendelse af en trækkestang. Folierne 30 var optisk klare. De overtrukne plader blev dyppet i destilleret vand, og de resulterende, våde folier var hårde og forblev klare. Kvældeforholdet for folierne var 2,2 g vand pr. g copolymer. De våde folier havde en trækstyrke på 870 psi og en forlængelse på 100$. Folierne blev afprøvet for vanddamptransmission (WVT) under anven-35 delse af ASTM-prøvemetoden E96-63T(B), og WT-værdien for de våde fo- o lier var 1100 g/24 timer/m .Films of the copolymer were cast by drawing the benzene copolymer solution onto glass sheets using a drawbar. The films 30 were optically clear. The coated sheets were dipped in distilled water and the resulting wet films were hard and remained clear. The swelling ratio of the foils was 2.2 g water per day. g copolymer. The wet sheets had a tensile strength of 870 psi and an extension of $ 100. The films were tested for water vapor transmission (WVT) using the ASTM test method E96-63T (B), and the WT value for the wet films was 1100 g / 24 h / m.

i I_ DK 151816B > 41 - · .i I_ DK 151816B> 41 - ·.

ίί

Gelgennemtrængningskromatografianalyse af copolymeren viste, at der ikke var nogen uomsat, hydrofobe, makromolekylær monomer til stede. I Det faktum, at copolymeren ikke opløstes, når den blev dyppet i vand, | og den høje styrke af de våde folier, er tegn på, at de hydrofobe, 5 polymere sidekæder virkede som fysiske tværbindinger til det normalt , vandopløselige poly(N,N-dimethylacrylamid).Gel penetration chromatography analysis of the copolymer showed that no unreacted, hydrophobic, macromolecular monomer was present. In The fact that the copolymer did not dissolve when dipped in water, | and the high strength of the wet films are indicative of the hydrophobic, 5-polymer side chains acting as physical cross-links to the normal, water-soluble poly (N, N-dimethylacrylamide).

hen ovenfor omtalte copolymer blev inverteret i vand og bedømt for egenskaber i henseende til vanddamptransmission, hen våde copolymer= folie var, når den blev målt for WVT, 2000 g/24 timer"m2, hvilket 10 viste dens anvendelighed som en semipermeabel membran.The copolymer mentioned above was inverted in water and judged for properties in terms of water vapor transmission; wet copolymer = foil when measured for WVT was 2000 g / 24 h 2 m 2, showing its utility as a semi-permeable membrane.

Eksempel 22 (fremstilling af podecopolymer)Example 22 (Preparation of Graft Copolymer)

Fremstilling af en podecopolymer med hydrofilt, polymert poly(IT,N-dimethylacrylamid)-grundskelet og hydrofobe, polymere polystyren= sidekæder.Preparation of a graft copolymer with hydrophilic polymeric poly (IT, N-dimethylacrylamide) backbone and hydrophobic polymeric polystyrene = side chains.

15 10 dele af en methacrylatafsluttet polystyren, der var fremstillet ved fremgangsmåden beskrevet i eksempel 8 (den methacrylatafsluttede λ polystyren havde en molekylvasgt på 12.100 og et Mw/Sa-forhold på ® mindre end ca. 1,06 bestemt ved gengennemtrængningskromatografiana-lyse), blev opløst i en blanding af 90 dele ΙΤ,ΙΤ-dimethylacrylamid og 20 900 dele benzen. Blandingen blev placeret på et rysteapparat, ind til der opnåedes en homogen opløsning, herefter tilsattes 0,1 del AIBlf, og opløsningen blev fyldt på en "one quart"-polymerisations-flaske, der blev renset med nitrogen og tilkapslet. Efter en yderligere rensning af det tilkapslede system med nitrogen blev polyme-25 risationsblandingen placeret på et rysteapparat i varmt vand ved 67°C, og polymerisationen fik lov til at fortsætte i 12 timer. Efter polymerisation blev copolymeren genvundet ved fældning i hexan efterfulgt af filtrering og tørring. Copolymeren var en klar, viskos opløsning, som havde fortrinlige vådstyrkeegenskaber, når den blev 30 dyppet i vand.15 parts of a methacrylate-terminated polystyrene prepared by the procedure described in Example 8 (the methacrylate-terminated λ polystyrene had a molecular weight of 12,100 and a Mw / Sa ratio of ® less than about 1.06 as determined by permeation chromatography analysis), was dissolved in a mixture of 90 parts of ΙΤ, ΙΤ-dimethylacrylamide and 20,900 parts of benzene. The mixture was placed on a shaker until a homogeneous solution was obtained, then 0.1 part AIBlf was added and the solution was filled into a "one quart" polymerization bottle which was purified with nitrogen and encapsulated. After a further purification of the encapsulated system with nitrogen, the polymerization mixture was placed on a shaker in hot water at 67 ° C and the polymerization allowed to continue for 12 hours. After polymerization, the copolymer was recovered by precipitation in hexane followed by filtration and drying. The copolymer was a clear, viscous solution which had excellent wet strength properties when dipped in water.

42 DK 151816 B42 DK 151816 B

, . „1 I,. "1 I

Er-Is-

Eksempel 23 (fremstilling af podecopolymer)Example 23 (Preparation of Graft Copolymer)

Fremstilling af en pode copolymer med hydrofilt, polymert poly(N,N-dime thylacrylamid) -grund, ske le t og hydrofobe, polymere polystyren= sidekæder.Preparation of a graft copolymer with hydrophilic polymeric poly (N, N-dime thylacrylamide) base, splicing and hydrophobic polymeric polystyrene = side chains.

{ 5 10 dele af en methacrylatafsluttet polystyren, fremstillet i overens stemmelse med proceduren anført i eksempel 8 (den methacrylatafsluttede polystyren havde en molekylvægt på 12.700 og et Mw/Mn-forhold på mindre end ca. 1,05 "bestemt ved gelgennemtrængningskromatografi-analyse), hlev opløst i 90 dele Ν,Ν-dimethylacrylamid. 5 dele cal-10 ciumstearat hlev dispergeret i comonomerhlandingen, og 200 dele hep-tan samt 0,1 del AIBN hlev sat til comonomerhlandingen under hurtig omrøring. Systemet hlev fyldt på one guart-polymerisationsheholder, renset med nitrogen og tilkapslet. Eet tilkapslede system hlev udsat for en yderligere rensning med nitrogen til rensning af systemet. 15 Polymerisationen hlev udført ved anbringelse af polymerisationsbehol-deren på et rysteapparat i et varmt vandhad ved 67°C, og polymerisationen fik lov til at fortsætte i 12 timer. Copolymeren hlev opnået i form af et fint pulver, og dette hlev let filtreret og tørret. Udvindingen af copolymeren var særdeles vellykket som følge af an-20 vendeisen af den ikke-vandige emulsionspolymerisationsteknik. Analyse af produktet ved hjælp af gelgennemtrængningskromatografi viste, at der ikke var noget uomsat methacrylatafsluttet polystyren til stede. Copolymeren havde fortrinlig vådstyrke, når den hlev sænket i vand. Copolymeren var også anvendelig til fremstilling af en po-30 lyhlanding med polyvinylchlorid. På denne måde hlev der fremstillet forskellige polyhlandinger ved tørhlanding af 40-60 vægtdele af copolymeren med 60-40 vægtdele polyvinylchlorid. Tørhlandingerne hlev underkastet forskydningspåvirkning på en mølle ved forøgede temperaturer med henblik på opnåelse af folier med fortrinlige egenskaber 35 i henseende til vanddamptransmission. Vedrørende en yderligere beskrivelse af blandinger af polymere af N,N-dialkylacrylamider med polyvinylchloridharpikser henvises til U.S.A. patentansøgning Serial No. 559,284. "(5 parts of a methacrylate terminated polystyrene prepared according to the procedure set forth in Example 8 (the methacrylate terminated polystyrene had a molecular weight of 12,700 and a Mw / Mn ratio of less than about 1.05 "as determined by gel permeation chromatography analysis) , dissolved in 90 parts of Ν, dim-dimethyl acrylamide, 5 parts of calcium-10 cium stearate dispersed in the comonomer mixture, and 200 parts of hepatane and 0.1 part of AIBN were added to the comonomer mixture with rapid stirring. A polymerized container was subjected to a further nitrogen purification to purify the system. The polymerization was carried out by placing the polymerization container on a shaker in a hot water bath at 67 ° C, and polymerization was allowed. to continue for 12 hours The copolymer was obtained in the form of a fine powder and this was easily filtered and dried. The recovery of the copolymer was extremely successful due to the application of the non-aqueous emulsion polymerization technique. Analysis of the product by gel penetration chromatography revealed that no unreacted methacrylate-terminated polystyrene was present. The copolymer had excellent wet strength when immersed in water. The copolymer was also useful for preparing a polyvinyl chloride polyol blend. In this way, various poly mixtures were prepared by dry mixing 40-60 parts by weight of the copolymer with 60-40 parts by weight of polyvinyl chloride. The dry mixtures were subjected to shear action on a mill at elevated temperatures to obtain foils having excellent properties with respect to water vapor transmission. For a further description of mixtures of polymers of N, N-dialkylacrylamides with polyvinyl chloride resins, reference is made to U.S.A. Patent Application Serial No. 559,284. "

Som et særligt eksempel på en polyblanding hlev 33,3 dele af copo-35 lymeren beskrevet i det foregående tørblandet med 70 dele polyvinyl= chlorid (Vygen 110) og 70 dele dioctylphthalat (EOP). Een tørblandede blanding hlev placeret på en gummikværn ved 150°C i 8 minutter.As a particular example of a poly blend, 33.3 parts of the copolymer described in the foregoing dry blend with 70 parts of polyvinyl = chloride (Vygen 110) and 70 parts of dioctyl phthalate (EOP). A dry blended mixture was placed on a rubber grinder at 150 ° C for 8 minutes.

DK 151816BDK 151816B

I 1_ 43 '-;i'I 1_ 43 '-; i'

De blandede komponenter smeltede meget let og dannede en glat, klar I og transparent folie. Efter blanding og udsættelse af blandingen IThe blended components melted very lightly to form a smooth, clear I and transparent film. After mixing and exposing the mixture I

for kraftig forskydningspåvirkning bedømtes en 10 mil tyk films | egenskaber i henseende til vanddamptransmission og vandabsorption.for heavy shear, rated a 10 mil thick film | properties in terms of water vapor transmission and water absorption.

OISLAND

5 Polyblandingen havde en vanddamptransmission på 200 g/24 timer/m og absorberede 5,8$ fugt på 18 timer ved 85$'s relativ.fugtighed.The poly mixture had a water vapor transmission of 200 g / 24 h / m and absorbed 5.8 $ moisture in 18 hours at 85 $ relative humidity.

I sammenligning hermed havde en lignende blanding fremstillet med en homopolymer af Ν,ΪΤ-dimethylacrylamid med den blødgjorte polymer p af vinylchlorid en vanddamptransmission på 75 g/24 timer/nr og ab-10 sorberede 4,5$ fugt på 18 timer ved 85$’s relativ fugtighed. Det var ganske klart, at foruden de forbedrede fysiske egenskaber forbedrede de hydrofobe polystyrensidekæder forarbejdningen af poly= blandingen, og dette skyldtes opløseligheden af polystyrensidekæderne i dioctylphthalatet. Med andre ord forbedrede sidekæderne den 15 smelterheologi, som poly(F,F-dimethylacrylamid) var bibragt ved hjælp af disse podekæder.In comparison, a similar mixture made with a homopolymer of Ν, ΪΤ-dimethylacrylamide with the softened polymer β of vinyl chloride had a water vapor transmission of 75 g / 24 h / n and absorbed $ 4.5 moisture in 18 h at 85 $ relative humidity. It was quite clear that in addition to the improved physical properties, the hydrophobic polystyrene side chains improved the processing of the poly mixture, and this was due to the solubility of the polystyrene side chains in the dioctyl phthalate. In other words, the side chains improved the melting theology imparted to poly (F, F-dimethylacrylamide) by these seed chains.

Eksempel 24 (fremstilling af podecopolymer)Example 24 (Preparation of Graft Copolymer)

Eremstilling af en podecopolymer af hydrofilt, polymert poly(hydroxy= ethylmethacrylat)-grundskelet og hydrofobe, polymere polyisoprenside-20 kæder.Preparation of a graft copolymer of hydrophilic polymeric poly (hydroxy = ethyl methacrylate) backbone and hydrophobic polymeric polyisoprene side chains.

50 dele (baseret på tør faststofbasis) af den methacrylatafsluttede polyisopren, der var fremstillet som anført i eksempel 11 (den methacrylatafsluttede polyisopren havde en molekylvægt på 10.000 og et Mw/Ma-forhold på mindre end 1,1 bestemt ved gelgennemtrængningskro-25 matografi), blev i heptan blandet med 100 dele hydroxyethylmethacry-lat i en 1 liter polymerisationsreaktor. Den comonomere blanding blev renset med nitrogen og copolymeriseret ved tilsætning af 0,2 dele AIBU-polymerisationsinitiator ved en temperatur på 67°C over et tidsrum på 16 timer. Den resulterende copolymer var en klar, viskos 30 opløsning. Den klare, copolymere opløsning blev placeret i en form 4450 parts (based on dry solids basis) of the methacrylate-terminated polyisoprene prepared as set forth in Example 11 (the methacrylate-terminated polyisoprene had a molecular weight of 10,000 and a Mw / Ma ratio of less than 1.1 as determined by gel permeation chromatography) , in heptane was mixed with 100 parts of hydroxyethyl methacrylate in a 1 liter polymerization reactor. The comonomer mixture was purified with nitrogen and copolymerized by adding 0.2 parts of AIBU polymerization initiator at a temperature of 67 ° C over a period of 16 hours. The resulting copolymer was a clear, viscous solution. The clear copolymer solution was placed in a Form 44

DK 151816BDK 151816B

og underkastet gammabestråling i 20 minutter. Copolymeren "blev derefter sænket i fysiologisk saltopløsning. Den våde copolymer havde en fortrinlig vådstyrke, som hlev tillagt det faktum, at det hydrofile grundskelet hlev holdt sammen ved hjælp af de hydrofobe sidekæ-5 der, som var sammenknyttet ved hjælp af strålingstværbindingen. Copolymeren var således forstærket ved hjælp af en tværbundet, hydrofob områdestruktur, der kemisk var bundet til den hydrofile matrix-fase.and subjected to gamma irradiation for 20 minutes. The copolymer "was then immersed in physiological saline. The wet copolymer had an excellent wet strength which added to the fact that the hydrophilic backbone held together by the hydrophobic side chains linked by the radiation crosslinking. thus enhanced by a cross-linked hydrophobic region structure chemically bonded to the hydrophilic matrix phase.

De hydrofile-hydrofobe podecopolymere i hydrogelen ifølge opfindel-10 sen har uventet forbedrede fysiske egenskaber (f.eks. trækstyrke, vådstyrke, forlængelse, etc.), når de er i deres hydratiserede tilstand. Hydrofile polymere må generelt tværbindes med et kemisk tvær-bindende middel for at opnå disse forbedrede fysiske egenskaber. De omhandlede hidtil ukendte podecopolymere tilvejebringer imidlertid 15 på enestående måde en termisk labil, fysisk tværbinding, som tjener til forankring af de polymere grundskeletsegmenter, og tilvejebringer også en "fyldstofvirkning" og forøger således modulet og trækstyrken af den endelige polymer. Når podecopolymeren opvarmes til en temperatur, som er højere end Tg for den polymere sidekæde (90— 20 100°C for polystyren), bliver områderne fluide og flyder under tryk, så at de i virkeligheden er termoplastiske. Når podecopolymeren køles, gendannes områderne, og podecopolymeren får atter egenskaber som en tværbundet, hydrofil polymer.The hydrophilic-hydrophobic graft copolymers of the hydrogel of the invention unexpectedly have improved physical properties (e.g., tensile strength, wet strength, elongation, etc.) when in their hydrated state. Hydrophilic polymers must generally be cross-linked with a chemical cross-linking agent to achieve these improved physical properties. However, the aforementioned novel graft copolymers provide in a unique way a thermally labile, physical crosslinking which serves to anchor the polymeric backbone segments, and also provides a "filler effect", thus increasing the modulus and tensile strength of the final polymer. When the graft copolymer is heated to a temperature higher than Tg for the polymeric side chain (90-100 ° C for polystyrene), the regions become fluid and flow under pressure so that they are in fact thermoplastic. As the graft copolymer is cooled, the regions are restored and the graft copolymer regains properties as a cross-linked hydrophilic polymer.

Tilsætningen af en vandig væske fungerer blot til plastificering af 25 den hydrofile polymer uden at opløse hele copolymermaterialet. Pode-copolymerene kan formes til hydrogeler ved sænkning af dem i en vandig væske (vand eller fysiologisk saltopløsning, etc.). Mængden af vandig væske kan variere over et bredt interval, afhængigt af sammensætningen af podecopolymeren, d.v.s. at mængden af de polymere side- 30 kæder i podecopolymeren. Ifølge opfindelsen vil mængden af den vandige væske andrage fra ca. 10 vægt$ til ca. 95 vægt$ af podecopolymeren, fortrinsvis 45-80 vægt$. Selv når store mængder vandige væsker findes i hydrogelerne ifølge opfindelsen, er disse i stand til at bevare deres facon, hvilket gør dem anvendelige til fremstilling af kon-35 taktlinser, kropsimplanteringer og lignende. Dannelsen af hydrogelen ved sænkning af copolymeren i en vandig væske, som samles i copolymeren i form af ganske små dråber, der fylder mikroskopiske po-The addition of an aqueous liquid merely acts to plasticize the hydrophilic polymer without dissolving the entire copolymer material. The graft copolymers can be formed into hydrogels by immersing them in an aqueous liquid (water or physiological saline solution, etc.). The amount of aqueous liquid can vary over a wide range, depending on the composition of the graft copolymer, i.e. that amount of the polymeric side chains of the graft copolymer. According to the invention, the amount of the aqueous liquid will range from approx. 10 weight $ to approx. 95% by weight of the graft copolymer, preferably 45-80% by weight. Even when large amounts of aqueous fluids are present in the hydrogels of the invention, these are capable of retaining their shape, making them useful for making contact lenses, body implants and the like. The formation of the hydrogel by lowering the copolymer in an aqueous liquid which is collected in the copolymer in the form of tiny droplets filling microscopic polymer

Claims (8)

1, Hydrogel med anvendelighed som medicinsk hydrogel og bestående af en kemisk bundet, fasesepareret, selvhærdet, termoplastisk, vanduop-løselig, i vand kvældbar podecopolymer og fra ca. 10 vægt% til ca. 95 vægt% vand, regnet i forhold til vægten af copolymeren, hvilken 25 copolymer er fremstillet ved copolymerisation af en hydrofob makro-molekylær monomer og en hydrofil copolymeriserbar monomer, kendetegnet ved, at copolymeren er fremstillet ved podecopo-lymerisation, at podecopolymerens polymere grundskelet består af polymeriserede enheder af nævnte hydrofile copolymeriserbare mono-30 mer, at den hydrofobe mak romo lekyl ære monomer har formlen R£z"jn Xf hvor R jarlen ..lavere alkylgruppe , Z er gentagne monomerenheder af en vinylaromatisk forbindelse, med indtil 12 carbonatomer og/eller af en DK 151816 B ' konjugeret dien med 4-8 carbonatomer, n er et helt tal med en sådan værdi, at polymerens molekylvægt ligger mellem 2.000 og 50.000, og X er en polymeriserbar gruppe, evt. knyttet til et "beskyttelsesmiddel" for polymeren, idet samtidig det hydrofile grundskelet er op-5 bygget af enheder af acrylsyre, et hydroxyalkylacrylat, et dialkyl-acrylamid eller vinylacetat, at den hydrofobe makromolekylære monomer har en så ensartet molekylvægtfordeling, at dens Mw/ifo-forhold ikke væsentligt overstiger ca. 1,1, hvilken makromolekylære monomer yderligere er karakteriseret ved, at den ikke har mere end'én co-polymeriserbar gruppe pr. lineær polymer- eller copolymerkæde, idet copolymerisationen har fundet sted mellem den hydrofobe makromolekylære monomers copolymeriserbare endegruppe og den copolymeriser-bare hydrofile monomer, og at podecopolymerens lineære polymere sidekæder, der er copolymeriseret til det polymere grundskelet, er adskilt af mindst ca. 20 uafbrudt gentagne monomerenheder i nævnte hydrofile, polymere grundskelet, idet fordelingen af sidekæderne langs grundskelettet og copolymerisationen er opnået ved hjælp af reaktivitetsforholdet mellem den copolymeriserbare endegruppe på nævnte hydrofobe makromolekylære monomer og nævnte hydrofile copo-2ø lymeriserbare monomer.1, Hydrogel having utility as a medical hydrogel and consisting of a chemically bonded, phase-separated, self-cured, thermoplastic, water-insoluble, water-swellable graft copolymer and from ca. 10% by weight to approx. 95% by weight of water by weight of the copolymer, which copolymer is produced by copolymerization of a hydrophobic macromolecular monomer and a hydrophilic copolymerizable monomer, characterized in that the copolymer is made by graft copolymerization, the polymer backbone of the graft copolymer consists of polymerized units of said hydrophilic copolymerizable monomer that the hydrophobic macromolecular honor monomer has the formula R 2 z X 1 where R is the lower alkyl group, Z is repeating monomer units of a vinyl aromatic compound, with up to 12 carbon atoms and / or of a DK 151816 B 'conjugated diene with 4-8 carbon atoms, n is an integer of such value that the molecular weight of the polymer is between 2,000 and 50,000, and X is a polymerizable group, optionally attached to a "protecting agent" for the polymer, at the same time the hydrophilic backbone is made up of units of acrylic acid, a hydroxyalkyl acrylate, a dialkyl acrylamide or vinyl acetate, be macromolecular monomer has a uniform molecular weight distribution that its Mw / ifo ratio does not substantially exceed approx. 1.1, which macromolecular monomer is further characterized in that it has no more than one copolymerizable group per cell. linear polymer or copolymer chain, the copolymerization having occurred between the copolymerizable end group of the hydrophobic macromolecular monomer and the copolymerizable hydrophilic monomer, and the linear polymeric side chain copolymer copolymerized to the polymeric backbone separated by at least about 20 continuous monomer units in said hydrophilic polymeric backbone, the distribution of the side chains along the backbone and copolymerization being achieved by the reactivity ratio of the copolymerizable end group of said hydrophobic macromolecular monomer to said hydrophilic copolymeric monomer. 2. Hydrogel ifølge krav 1, kendetegnet ved, at den copolymeriserbare monomer, som danner det hydrofile polymergrundskelet, er en vandopløselig vinylmonomer, der indeholder mindst ét nitrogenatom i molekylet.Hydrogel according to claim 1, characterized in that the copolymerizable monomer forming the hydrophilic polymer backbone is a water-soluble vinyl monomer containing at least one nitrogen atom in the molecule. 3. Hydrogel ifølge krav 1, kendetegnet ved, at den copo lymeriserbare monomer efter podecopolymerisation er hydrolyseret til dannelse af et polyvinylalkoholgrundskelet.Hydrogel according to claim 1, characterized in that the copolymerizable monomer after graft copolymerization is hydrolyzed to form a polyvinyl alcohol backbone. 4. Hydrogel ifølge krav 1, kendetegnet ved, at den copolymeriserbare hydrofobe makromolekylære monomer har strukturformlen: R' R--CH2-C--CH2CH2OCH = CH2 6- DK Ί51816Β hvori R er lavere alkyl, R' er enten hydrogen eller lavere alkyl, og n er et positivt helt tal, som har en sådan størrelse, at polymerens molekylvægt ligger i området fra 5.000 til ca. 50.000.Hydrogel according to claim 1, characterized in that the copolymerizable hydrophobic macromolecular monomer has the structural formula: R 'R - CH2-C - CH2CH2OCH = CH2 6- DK 1851816Β wherein R is lower alkyl, R' is either hydrogen or lower alkyl and n is a positive integer having a size such that the molecular weight of the polymer is in the range of from 5,000 to about 5,000. 50,000. 5. Hydrogel ifølge kravl , kendetegnet ved, at den co= 5 polymeriserbare hydrofobe makromolekylære monomer har strukturformlen - O CH3CH2 (CH3)CH--CH2--CH--CH2CH20-C-C = CH2 An 0*3 hvori n er et sådant positivt helt tal, at polymerens molekylvægt ligger i området fra ca. 5.000 til ca. 50.000.Hydrogel according to claim, characterized in that the co = 5 polymerizable hydrophobic macromolecular monomer has the structural formula - O CH 3 CH 2 (CH 3) CH - CH 2 - CH - CH 2 CH 2 O-CC = CH 2 An 0 * 3 where n is such a positive integer, that the molecular weight of the polymer is in the range of approx. 5,000 to approx. 50,000. 6. Hydrogel ifølge krav i, kendetegnet ved, at den co= polymeriserbare hydrofobe makromolekylære monomer har strukturformlen “ ~ 0 tt CH3CH2 (CH3)CH--CH2--C = CH-CH2---ch2ch2oc-c = CH2 CH3 n CH3 10 hvori n er et sådant positivt helt tal, at polymerens molekylvægt ligger i området fra ca. 5.000 til 50.000.Hydrogel according to claim i, characterized in that the co-polymerizable hydrophobic macromolecular monomer has the structural formula "~ 0 tt CH3CH2 (CH3) CH - CH2 - C = CH-CH2 --- ch2ch2oc-c = CH2 CH3 n CH3 Wherein n is such a positive integer that the molecular weight of the polymer is in the range of about 5,000 to 50,000. 7. Fremgangsmåde til fremstilling af en hydrogel ifølge krav 1, kendetegnet ved, at man podecopolymeriserer fra ca. 1 til ca. 95 vægt% af en hydrofob, polymeriserbar makromonomer med 15 formlen R[jf|n X, hvor R, Z, n og X har de i krav 1 angivne betydninger og med en molekylvægt fra ca, 5.000 til ca. 50.000 og en i hovedsagen ensartet molekylvægtfordeling, så at dens Mw/Mn-forhold i det mindste er ca. 1,1 og yderligere med kun én polymeriserbar gruppe pr. lineær polymer- eller copolymerkæde, hvilken polymeriserbare 20 gruppe findes ved enden af kæden, og fra ca. 99 til ca. 5 vægt% af mindst én hydrofil copolymeriserbar monomer valgt blandt acryl-syre, et hydroxyalkylacrylat, et dialkylacrylamid eller vinylacetat, hvilke hydrofile copolymeriserbare monomere danne podecopolymerens DK 151816 B polymerhovedkæde, og hvilke copolymeriserbare hydrofobe makromo-lekylære monomere danner de lineære polymersidekæder hos podeco-polymeren, hvorhos podecopolymerens lineære polymersidekæder copolymeriseres til hovedkæde-polymeren via den polymeriserbare 5 endegruppe på den makromolekylære monomer, hvorhos podecopolymerens lineære polymersidekæder, der er copolymeriseret til polymerhoved-kæden, er adskilt af mindst ca. 20 uafbrudt gentagne monomerenheder i nævnte polymerhovedkæde, og copolymerisationen og fordelingen af sidekæderne langs polymerens hovedkæde reguleres ved hjælp af 10 de relative reaktivitetsforhold mellem den polymeriserbare endegruppe på den hydrofobe makromolekylære monomer og den hydrofile copolymeriserbare comonomer, og at man bringer den hydrofile pode-copolymer i kontakt med en vandholdig væske til dannelse af en hydrogel, som indeholder fra ca. 10 til ca. 95 vægt% af den vandhol-15 dige væske, regnet i forhold til vægten af podecopolymeren.Process for the preparation of a hydrogel according to claim 1, characterized in that graft copolymer is obtained from approx. 1 to approx. 95% by weight of a hydrophobic, polymerizable macromonomer of the formula R [cf. 50,000 and a substantially uniform molecular weight distribution, so that its Mw / Mn ratio is at least approx. 1.1 and further with only one polymerizable group per linear polymer or copolymer chain, which polymerizable group exists at the end of the chain, and from ca. 99 to approx. 5% by weight of at least one hydrophilic copolymerizable monomer selected from acrylic acid, a hydroxyalkyl acrylate, a dialkylacrylamide or vinyl acetate, which hydrophilic copolymerizable monomers form the polymer backbone of the graft copolymer, and which copolymerizable hydrophobic macromolecular monomeric monomeric monomeric monomeric monomer wherein the graft copolymer linear polymer side chains are copolymerized to the main chain polymer via the polymerizable end group of the macromolecular monomer, wherein the graft copolymer linear polymer side chains copolymerized to the polymer head chain are separated by at least about 20 uninterrupted repeating monomer units in said polymer main chain, and the copolymerization and distribution of the side chains along the polymer main chain is regulated by the relative reactivity ratio of the polymerizable end group of the hydrophobic macromolecular monomer to the hydrophilic copolymerizable comonomer and bringing the hydrophilic polymer into the copolymer. contact with an aqueous liquid to form a hydrogel containing from ca. 10 to approx. 95% by weight of the water-containing liquid, calculated in relation to the weight of the graft copolymer. 8. Fremgangsmåde ifølge krav 7, kendetegnet ved, at den copolymeriserbare forbindelse er vinylacetat, der gøres hydrofil ved hjælp af forsæbning efter podecopolymerisationen.Process according to claim 7, characterized in that the copolymerizable compound is vinyl acetate which is rendered hydrophilic by saponification after graft copolymerization.
DK003775A 1974-01-11 1975-01-08 HYDROGEL WITH APPLICABILITY AS MEDICAL HYDROGEL AND METHOD OF PRODUCING THEREOF DK151816C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US432788A US3928255A (en) 1971-02-22 1974-01-11 Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US43278874 1974-01-11

Publications (3)

Publication Number Publication Date
DK3775A DK3775A (en) 1975-08-25
DK151816B true DK151816B (en) 1988-01-04
DK151816C DK151816C (en) 1988-06-13

Family

ID=23717592

Family Applications (1)

Application Number Title Priority Date Filing Date
DK003775A DK151816C (en) 1974-01-11 1975-01-08 HYDROGEL WITH APPLICABILITY AS MEDICAL HYDROGEL AND METHOD OF PRODUCING THEREOF

Country Status (18)

Country Link
JP (2) JPS6015647B2 (en)
AT (1) AT342295B (en)
BE (1) BE824306A (en)
BR (1) BR7500180A (en)
CA (1) CA1083290A (en)
DD (1) DD116461A5 (en)
DE (1) DE2500494A1 (en)
DK (1) DK151816C (en)
ES (1) ES433703A1 (en)
FI (1) FI750060A (en)
FR (1) FR2273018B1 (en)
GB (1) GB1496931A (en)
IT (1) IT1030092B (en)
NL (1) NL182317C (en)
NO (1) NO750074L (en)
NZ (1) NZ176356A (en)
SE (2) SE428212B (en)
ZA (1) ZA75145B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744125B1 (en) * 1996-01-30 1998-06-05 Peintures Jefco GRAFT COPOLYMERS, THEIR MANUFACTURING METHOD, THE COMPOSITIONS CONTAINING THEM AND THEIR USE FOR THE PREPARATION OF PIGMENTAL DISPERSIONS IN AQUEOUS AND / OR ORGANIC MEDIA
JP4255192B2 (en) * 1999-12-21 2009-04-15 東レ・ダウコーニング株式会社 Fluorine-containing organopolysiloxane, dispersibility improver of fluororesin powder, and organic resin composition
ES2350120T3 (en) * 2005-06-13 2011-01-18 Alcon, Inc. MATERIALS FOR OPHTHALM AND OTORRINOLARINGOLOGICAL DEVICES.
TW200816966A (en) * 2006-07-21 2008-04-16 Alcon Mfg Ltd Low-tack ophthalmic and otorhinolaryngological device materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976576A (en) * 1956-04-24 1961-03-28 Wichterle Otto Process for producing shaped articles from three-dimensional hydrophilic high polymers
US3220960A (en) * 1960-12-21 1965-11-30 Wichterle Otto Cross-linked hydrophilic polymers and articles made therefrom
US3758448A (en) * 1971-10-05 1973-09-11 Union Optics Corp Copolymers and hydrogels of unsaturated esters
DE2318809A1 (en) * 1972-04-14 1973-10-31 Cpc International Inc Graft copolymers and their manufacturing process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503942A (en) * 1965-10-23 1970-03-31 Maurice Seiderman Hydrophilic plastic contact lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976576A (en) * 1956-04-24 1961-03-28 Wichterle Otto Process for producing shaped articles from three-dimensional hydrophilic high polymers
US3220960A (en) * 1960-12-21 1965-11-30 Wichterle Otto Cross-linked hydrophilic polymers and articles made therefrom
US3758448A (en) * 1971-10-05 1973-09-11 Union Optics Corp Copolymers and hydrogels of unsaturated esters
DE2318809A1 (en) * 1972-04-14 1973-10-31 Cpc International Inc Graft copolymers and their manufacturing process

Also Published As

Publication number Publication date
FR2273018B1 (en) 1980-05-23
SE428212B (en) 1983-06-13
SE449997B (en) 1987-06-01
SE8300048D0 (en) 1983-01-05
DK151816C (en) 1988-06-13
NL182317C (en) 1988-02-16
SE8300048L (en) 1983-01-05
JPS6015647B2 (en) 1985-04-20
DE2500494A1 (en) 1975-07-17
GB1496931A (en) 1978-01-05
BR7500180A (en) 1975-11-04
SE7500142L (en) 1975-07-12
NO750074L (en) 1975-08-04
JPS50116586A (en) 1975-09-11
IT1030092B (en) 1979-03-30
DK3775A (en) 1975-08-25
NZ176356A (en) 1978-06-20
BE824306A (en) 1975-07-10
AT342295B (en) 1978-03-28
FI750060A (en) 1975-07-12
JPS6116762B2 (en) 1986-05-02
NL7500340A (en) 1975-07-15
AU7723875A (en) 1976-07-15
ATA15475A (en) 1977-07-15
DD116461A5 (en) 1975-11-20
ZA75145B (en) 1976-04-28
ES433703A1 (en) 1977-02-16
NL182317B (en) 1987-09-16
FR2273018A1 (en) 1975-12-26
DE2500494C2 (en) 1990-03-08
CA1083290A (en) 1980-08-05
JPS60186516A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US4085168A (en) Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3928255A (en) Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3842059A (en) Acrylate and methacrylate terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3786116A (en) Chemically joined,phase separated thermoplastic graft copolymers
Rempp et al. Macromonomers: Synthesis, characterization and applications
US3862077A (en) Stable latexes of a chemically joined, phase separated thermoplastic graft copolymer and method for preparing the same
US4816520A (en) Terminally functionalized polymers and preparation thereof
US3862098A (en) Alpha-olefin terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3862267A (en) Chemically joined, phase separated graft copolymers having diblock polymeric sidechains
WO1997031041A1 (en) Strongly swellable, moderately cross-linked copolymers of vinylpyrrolidone and vinyl acetate
CA1037636A (en) Polymers and processes therefor
US3842058A (en) Vinyl ether terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3842057A (en) Vinyl ester terminated macromolecular monomers having a substantially uniform molecular weight distribution and process for preparing same
US3862101A (en) Acrylate and methacrylate terminated polydiene macromolecular monomers having a substantially uniform molecular weight distribution
Chiang et al. Studies of reactions with polymers. I. The reaction of maleic anhydride with PVA and the properties of the resultant
DK151816B (en) HYDROGEL WITH APPLICABILITY AS MEDICAL HYDROGEL AND METHOD OF PRODUCING THEREOF
US4544711A (en) Process for making terminally functional polymers
US3862097A (en) Process for preparing copolymerizable macromolecular monomers having a substantially uniform molecular weight distribution
DK160151B (en) COPOLYMER WITH LINEAR CHAIN AND LINEAR POLYMER SIDE CHAIN APPLICABLE FOR MAKE MOVIES AND PROCEDURES FOR PRODUCING THEM
US3842050A (en) Maleic acid half ester terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
SU694078A3 (en) Method of preparing crafted copolymers
US4029718A (en) Pivalolactone random graft copolymers
CN101747461B (en) Polymer containing hydroxystyrene on side group, preparation method and application thereof
CA1109193A (en) Method of degassing polymers and copolymers prepared by mass polymerizing a monomeric composition based on vinyl chloride
EP0686646B1 (en) Process for making allyl polymers and copolymers

Legal Events

Date Code Title Description
PUP Patent expired