DK151213B - PROCEDURE FOR GAS-OR OR DISSOLVED IOD BONDING - Google Patents

PROCEDURE FOR GAS-OR OR DISSOLVED IOD BONDING Download PDF

Info

Publication number
DK151213B
DK151213B DK558778AA DK558778A DK151213B DK 151213 B DK151213 B DK 151213B DK 558778A A DK558778A A DK 558778AA DK 558778 A DK558778 A DK 558778A DK 151213 B DK151213 B DK 151213B
Authority
DK
Denmark
Prior art keywords
iodine
resin
groups
bound
ethoxylated
Prior art date
Application number
DK558778AA
Other languages
Danish (da)
Other versions
DK558778A (en
DK151213C (en
Inventor
Lucien Person
Original Assignee
Ugine Kuhlmann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Kuhlmann filed Critical Ugine Kuhlmann
Publication of DK558778A publication Critical patent/DK558778A/en
Publication of DK151213B publication Critical patent/DK151213B/en
Application granted granted Critical
Publication of DK151213C publication Critical patent/DK151213C/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/13Iodine; Hydrogen iodide
    • C01B7/14Iodine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/007Recovery of isotopes from radioactive waste, e.g. fission products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

1 1512131 151213

Den foreliggende opfindelse angår en fremgangsmåde til fastbinding af gasformig eller opløst iod, især iod fra luftformige eller flydende spildstrømme med henblik på industriel fremstilling af iodet eller på bortfjernelse 5 deraf fra spildstrømme, som iodet forurener.The present invention relates to a method for bonding gaseous or dissolved iodine, especially iodine from gaseous or liquid waste streams, for industrial production of the iodine or on removal thereof from waste streams which pollute the iodine.

Iod forefindes meget udbredt i naturen, og industriel fremstilling deraf frembyder i almindelighed problemet med opkoncentrering ud fra vandige opløsninger eller gasformige blandinger. Det samme problem rejser sig i 10 forbindelse med genvinding af iod af økonomiske årsager ud fra flydende eller gasformige spildstrømme. Det er ligeledes vigtigt at opkoncentrere det radioaktive iod, der frigøres ved behandling af nukleær-brændsel med henblik på genvinding deraf eller på dets frigivelse under 15 oplagring.Iodine is very widespread in nature, and its industrial production generally presents the problem of concentration from aqueous solutions or gaseous mixtures. The same problem arises in connection with the recovery of iodine for economic reasons from liquid or gaseous waste streams. It is also important to concentrate on the radioactive iodine released by nuclear fuel processing for its recovery or on its release during storage.

Man kender forskellige fremgangsmåder til opkoncentrering af iod, som indeholdes i ringe mængder i vandige opløsninger eller i gasformige blandinger. Gennembobling af gasformige spildstrømme indeholdende iod i reaktions-20 dygtige opløsninger, såsom opløsninger af ammoniak, af natriumhydroxid, af natriumcarbonat, af natriumthiosul-fat, af natriumsulfit eller af sølvnitrat, er en hyppigt anvendt og effektiv metode, men den frembyder den ulempe, at man omdanner iodet til metaliodid, hvilket nødvendig-25 gør et yderligere trin i isoleringen af iod.Various methods for concentrating iodine are known which are contained in small amounts in aqueous solutions or in gaseous mixtures. Bubbling of gaseous waste streams containing iodine in reactive solutions, such as solutions of ammonia, sodium hydroxide, sodium carbonate, sodium thiosulphate, sodium sulfite or silver nitrate, is a frequently used and effective method, but it presents the disadvantage the iodine is converted to metal iodide, necessitating a further step in the isolation of iodine.

Gasformig eller opløst iod kan absorberes på porøse legemer, såsom aktivkul, zeolither, aluminiumoxid, magnesiumoxid, silica-gel, molekylærsigter og glaspulver. Adsorptionsevnen for disse legemer kan være meget betyde-30 lig, når opløsningerne eller de gasformige blandinger, der skal extraheres, er kraftig belastede med iod, men den er utilstrækkelig, når det drejer sig om tilfælde, hvor disse opløsninger eller gasformige blandinger indeholder meget små koncentrationer af iod. Denne adsorp-35 tionsevne kan forbedres ved imprægnering af de porøse 151213 2 legemer med et metal eller et metalsalt, der er reaktionsdygtigt over for iod. Der dannes så iodider, og eluerin-gen frembyder vanskeligheder. (Se "Nouveau Traité de Chi-mie Minérale" af Paul Pascal, redaktør Masson, hind XVI, 5 side 451 til 477).Gaseous or dissolved iodine can be absorbed on porous bodies such as activated carbon, zeolites, alumina, magnesium oxide, silica gel, molecular sieves, and glass powders. The adsorption capacity of these bodies can be very significant when the solutions or gaseous mixtures to be extracted are heavily loaded with iodine, but they are insufficient in cases where these solutions or gaseous mixtures contain very little concentrations of iodine. This adsorption ability can be enhanced by impregnating the porous bodies with a metal or metal salt-responsive iodine. Iodides are then formed and the elution presents difficulties. (See "Nouveau Traité de Chi-mie Minérale" by Paul Pascal, editor Masson, hind XVI, 5 pages 451 to 477).

Gasformig iod eller iod opløst i vandige opløsninger kan extraheres med talrige opløsningsmidler, der ikke er blandbare med vand. De hyppigst omtalte er tetrachlorkulstof, chloroform, svovlkulstof, benzen, petroleum 09 tributylphos-10 phat. Men disse extraktioner nødvendiggør håndtering af betydelige mængder opløsningsmidler, hvis behandling kræver betydelige forholdsregler ("Encyclopedia of Chemical Technology", KIRK-OTHMER, anden udgave, bind 11, side 852).Gaseous iodine or iodine dissolved in aqueous solutions can be extracted with numerous solvents which are not miscible with water. The most frequently mentioned are tetrachlorocarbon, chloroform, sulfur carbon, benzene, petroleum 09 tributylphosphate. However, these extractions necessitate the handling of substantial quantities of solvents, the treatment of which requires considerable precautions ("Encyclopedia of Chemical Technology", KIRK-OTHMER, second edition, volume 11, page 852).

15 Gasformig eller opløst iod kan fastbindes på anionbytter- harpikser (se "Chemical Abstracts", bind 74, nr. 8, reference 33067). Denne fastbinding er imidlertid kun mulig, dersom de gasformige blandinger eller opløsningerne ikke indeholder anioner, der er i stand til fortrinsvis for iodet 20 at binde sig på disse harpikser. Regenerering af disse harpikser omdanner det bundne iod til metaliodid, hvilket nødvendiggør en oxidation til genvinding af iodet.Gaseous or dissolved iodine can be bonded to anion exchange resins (see "Chemical Abstracts", Vol. 74, No. 8, reference 33067). However, this bonding is only possible if the gaseous mixtures or solutions do not contain anions capable of preferentially binding to the iodine 20 on these resins. Regeneration of these resins converts the bound iodine to metal iodide, necessitating an oxidation to recover the iodine.

Ansøgeren har tilvejebragt en fremgangsmåde, som gør det 25 muligt at fastbinde på harpiksen elementært, ikke bundet iod ud fra gasformige blandinger eller vandige opløsninger uden tilbageholdelse af syrer eller anioner, som er til stede i disse blandinger eller opløsninger, at bevare det i elementær tilstand på harpiksen og at eluere det 3Q enten i elementær tilstand eller i bundet form i metal salt-tilstand.The applicant has provided a method which allows the resin to be bonded to elemental, non-bound iodine from gaseous mixtures or aqueous solutions without retention of acids or anions present in these mixtures or solutions to maintain it in elemental state. on the resin and to elute it 3Q either in elemental state or in bonded form in metal salt state.

Fastbindingen af elementært iod ved fremgangsmåden ifølge 151213 3The bonding of elemental iodine by the method of 151213 3

Opfindelsen er selektiv og kan udføres i nærvær af stærk syre, såsom svovlsyre, salpetersyre, saltsyre og hydro-geniodid, i nærvær af salte, såsom natriumsulfat, natriumnitrat, natriumchlorid, natriumbromid og kaliumiodid.The invention is selective and can be carried out in the presence of strong acid such as sulfuric acid, nitric acid, hydrochloric acid and hydrogen iodide, in the presence of salts such as sodium sulfate, sodium nitrate, sodium chloride, sodium bromide and potassium iodide.

5 De øvrige halogener kan ligeledes extraheres med den har piks, der er i stand til at binde iod, men brom, chlor og fluor omsætter sig med denne harpiks og ødelægger den delvis.The other halogens can also be extracted with it having peaks capable of binding iodine, but bromine, chlorine and fluorine react with this resin and partially destroy it.

Fremgangsmåden ifølge opfindelsen består i at binde io-10 det på en harpiks af den i krav l's kendetegnende del anførte type. Denne harpiks indeholder ikke grupper med kation eller anionkarakter, men den indeholder ethergrup-per med ikk ” -(OCH2CH2)nO- 15 hvori n har en værdi fra 0 til 100.The method of the invention consists in bonding the iodine to a resin of the type specified in claim 1. This resin does not contain groups of cation or anion character, but it does not contain ether groups with non- (OCH2CH2) nO-15 wherein n has a value from 0 to 100.

Disse ethoxy-grupper er bundet til -hydrogen eller til grupper fra en forbindelse, der indeholder et labilt hydrogenatom, såsom monoalkoholer, polyoler, phenol, substituerede phenoler og carboxylsyrer.These ethoxy groups are linked to hydrogen or to groups from a compound containing a labile hydrogen atom such as monoalcohols, polyols, phenol, substituted phenols and carboxylic acids.

20 Ethoxy-grupperne kan være de eneste alkoxy-grupper, eller de kan være bundet til andre alkoxy-grupper, såsom propo-xy- og butoxy-grupper.The ethoxy groups may be the only alkoxy groups or they may be attached to other alkoxy groups such as propoxy-xy and butoxy groups.

I det særlige tilfælde, hvor n = 0, indeholder harpiksen én enkelt ethergruppe, som ligeledes besidder egenskaben 25 a.t binde iod.In the particular case where n = 0, the resin contains a single ether group which also possesses the property of 25 a. To bind iodine.

Ethoxy-grupper er til rådighed i et stort antal kondensationsprodukter, der er velkendte som opløsningsmidler, som overfladeaktive midler, som basismaterialer ved fremstillingen af polyurethanskum og polyurethanharpikser, 30 såvel som til fremstillingen af smøremidler og hydraulis- 151213 4 ke væsker, og som er beskrevet f.eks. i bogen "Nonionic Surfactants" af MARTIN J. SCHICK (Surfactant Science Series).Ethoxy groups are available in a large number of condensation products which are well known as solvents, as surfactants, as basic materials in the production of polyurethane foam and polyurethane resins, as well as in the manufacture of lubricants and hydraulic fluids, and are described. eg. in the book "Nonionic Surfactants" by MARTIN J. SCHICK (Surfactant Science Series).

Ved fremgangsmåden ifølge opfindelsen kan disse kondensa-5 tionsprodukter være adsorberede enten i en makro-tværbun-den harpiks uden iondannende grupper eller på en kation-bytterharpiks indeholdende carboxylgrupper,eller de kan være bundet ved kemisk binding på den polymere, der danner harpiksskelettet.In the process of the invention, these condensation products can be adsorbed either in a macro-crosslinked resin without ion-forming groups or on a cation exchange resin containing carboxyl groups, or they can be bound by chemical bonding on the polymer forming the resin backbone.

10 Evnen til adsorption af kondensationsprodukter af alky-lenoxider og alkoholer, alkylphenoler samt syrer på ma-kro-tværbundne harpikser uden iondannende grupper og på kationbytterharpikser indeholdende carboxylsyregrupper er velkendt. Adsorptionen af kondensationsprodukterne 15 sker ved at bringe deres vandige opløsning i kontakt med harpiksen ved kendt teknik for anvendelsen af ionbytter-harpikser og fortrinsvis ved at lade den vandige opløsning, passere gennem en søjle indeholdende harpiksen.The ability to adsorb condensation products of alkylene oxides and alcohols, alkyl phenols, and acids on macro-crosslinked resins without ion-forming groups and on cation exchange resins containing carboxylic acid groups is well known. The adsorption of the condensation products 15 occurs by contacting their aqueous solution with the resin of the prior art for the use of ion exchange resins and preferably by passing the aqueous solution through a column containing the resin.

Bindingen af kondensationsprodukter af alkylenoxider og 20 alkoholer, alkylphenoler og syrer gennem en kemisk binding på den polymere, der danner harpiksskelettet, udføres ved, at man omsætter deres alkalimetalalkoholat med en harpiks, der indeholder chlormethylgrupper.The bonding of condensation products of alkylene oxides and 20 alcohols, alkyl phenols and acids through a chemical bond on the polymer forming the resin backbone is accomplished by reacting their alkali metal alcoholate with a resin containing chloromethyl groups.

Chlormethylerede harpikser er velkendte og tjener sædvan-25 ligvis til fremstilling af aminogruppeholdige anionbyt-terharpikser. Adsorptionen af kondensationsprodukter på makro-tværbundne harpikser uden iondannende grupper eller på kationbytterharpikser indeholdende carboxylgrupper er så meget lettere at gennemføre, som deres hydrofobe basis 30 og deres molekylvægt er betydelig, mens fastbindingen af kondensationsprodukter ved omsætning af deres alkalimetalalkoholat er på chlormethylerede harpikser lettest sker 151213 5 med lavmolekylære kondensationsprodukter grundet den lettere tilgængelighed af de reaktionsdygtige grupper.Chloromethylated resins are well known and usually serve to prepare amino group-containing anion exchange resins. The adsorption of condensation products on macro-crosslinked resins without ion-forming groups or on cation exchange resins containing carboxyl groups is so much easier to carry out, as their hydrophobic base 30 and their molecular weight are considerable, while the bonding of condensation products by reaction of their alkali metal alcoholate is on chloromethyl ester 12 5 with low molecular weight condensation products due to the easier availability of the reactive groups.

Bindingen af iod på ethoxy-gruppeholdig harpiks ved fremgangsmåden ifølge opfindelsen sker ved, at man bringer 5 harpiksen i kontakt med den vandige opløsning, der indeholder opløst iod, eller med gasblandingen, der indeholder ioddampe.The bonding of iodine to ethoxy group-containing resin by the process of the invention occurs by contacting the resin with the aqueous solution containing dissolved iodine or with the gas mixture containing iodine vapors.

Kontakten mellem en vandig opløsning indeholdende iod og harpiksen indeholdende ethoxy-grupper udføres ved kendt 10 teknik til anvendelse af ionbytterharpikser. Den foretrukne teknik er den, der består i, at man lader den vandige opløsning passere igennem en søjle indeholdende harpiksen. Det er fordelagtigt at lade den vandige iodopløsning passere igennem i opadstigende retning for at tilvejebrin-15 ge en fordeling af harpiksen efter sin vægtfylde og således efter sit iod-indhold.The contact between an aqueous solution containing iodine and the resin containing ethoxy groups is carried out by known techniques for the use of ion exchange resins. The preferred technique is that of passing the aqueous solution through a column containing the resin. It is advantageous to allow the aqueous iodine solution to pass upwards in order to provide a distribution of the resin by its density and thus by its iodine content.

Kontakten mellem en gasformig blanding indeholdende iod og harpiksen indeholdende ethoxy-grupper udføres ved kendt teknik anvendt til adsorption af gasarter ved hjælp af 20 aktivkul.The contact between a gaseous mixture containing iodine and the resin containing ethoxy groups is carried out by known techniques used for adsorption of gases by means of 20 activated charcoal.

Det på harpikserne indeholdende ethoxy-grupper bundne iod kan fortrænges ved kendte opløsningsmidler for: .iod, hvoraf de. vigtigste er: ethanol, benzen, ether, dioxan, glycerin, svovlkulstof, cyclohexan, dodecan, chloroform og kul-25 stoftetrachlorid. Glycolethere er særligt udvalgte: me- thylglycol, ethylglycol, butylglycol, methyldiethylengly-col, ethyldiethylenglycol, butyldiethylenglycol, methyl-triethylenglycol, ethyltriethylenglycol og butyltriethylen-glycol.The iodine bound to the resins containing ethoxy groups can be displaced by known solvents for: iodine, of which they. most important are: ethanol, benzene, ether, dioxane, glycerine, sulfur carbon, cyclohexane, dodecane, chloroform and carbon tetrachloride. Glycol ethers are especially selected: methyl glycol, ethyl glycol, butyl glycol, methyl diethylene glycol, ethyl diethylene glycol, butyldiethylene glycol, methyl triethylene glycol, ethyl triethylene glycol and butyl triethylene glycol.

30 Ved elueringen med opløsningsmiddel af iod bundet på har pikser, hvis ethoxy-grupper stammer fra kondensationsprodukter af ethylenoxid adsorberet på makro-tværbundne har- 151213 6 pikser uden iondannende grupper eller på kationbytterhar-pikser med carboxylgrupper, medrives med iodet en del af disse*kondensationsprodukter, hvorved bindingsevnen over for iod nedsættes for de efterfølgende anvendelses-5 perioder. Denne kapacitetsforringelse er imidlertid lille.30 In the elution with iodine-bound solvent, the ethoxy groups derived from ethylene oxide condensation products adsorbed on macro-crosslinked resins without ion-forming groups or on cation exchange resins with carboxyl groups are part of the iodine * condensation products, thereby reducing the binding ability to iodine for subsequent periods of use. However, this capacity deterioration is small.

Iodet genvindes ud fra opløsningsmidlet ved kendt teknik, såsom fordampning eller udfældning af uopløseligt iodid. Opløsningsmidlet kan tilbageføres direkte til en efter-10 følgende eluering, eller det kan destilleres før tilbage førslen. Destillation af opløsningsmidlet efterlader som inddampningsrest de medrevne kondensationsprodukter. Disse kan påny bindes til harpikserne, således at disse genvinder deres oprindelige bindingsevne over- for iod.The iodine is recovered from the solvent by prior art, such as evaporation or precipitation of insoluble iodide. The solvent may be returned directly to a subsequent elution or it may be distilled prior to return. Distillation of the solvent leaves as evaporation residue the included condensation products. These can be re-bound to the resins so that they regain their original binding ability to iodine.

15 Eluering med opløsningsmiddel af iod tilbageholdt på har pikser, hvis ethoxy-grupper er bundet ved kemisk binding på den polymere, der udgør harpiksskelettet, medbringer kun iod, og som følge, heraf sker der ikke nogen forringelse af bindingsevnen over for iod af harpiksen fra en 20 anvendelsesperiode til den næste. Iodet genvindes ud fra opløsningsmidlet ved kendt teknik, såsom fordampning eller bundfældning af uopløseligt iodid, og opløsningsmidlet tilbageføres.Elution with iodine-retained solvent has peaks whose ethoxy groups are bound by chemical bonding on the polymer constituting the resin backbone, bringing only iodine and, consequently, no deterioration of the bonding ability to iodine of the resin from a 20 application period for the next one. The iodine is recovered from the solvent by prior art, such as evaporation or precipitation of insoluble iodide, and the solvent is returned.

Fremgangsmåden ifølge den foreliggende opfindelse, som 25 tillader at opkoncentrere iod, der befinder sig i meget fortyndet tilstand i vandige opløsninger eller i luft, kan integreres med forskellige fremgangsmåder til industriel fremstilling af iod. Det tillader extraktion af iod fra forurenede spildstrømme med henblik på genvin-30 ding af iodet eller på rensning af spildstrømmene.The process of the present invention, which allows to concentrate iodine which is in a very dilute state in aqueous solutions or in air, can be integrated with various methods of industrial production of iodine. It allows extraction of iodine from contaminated waste streams for recovery of the iodine or for purification of the waste streams.

Harpikserne indeholdende ethoxy-grupper kan binde radioaktivt iod, særligt isotoperne 129 og 131 af iod, der er frigjort ved behandling af nukleær-brændsel. Denne bin- 151213 7 ding kan gennemføres under de mest krævende betingelser, som forefindes ved behandling af bestrålet brændsel, dvs. ud fra opløsninger af salpetersyre fortyndet med vand eller ud fra gasblandinger indeholdende nitrogenoxiddampe.The resins containing ethoxy groups can bind radioactive iodine, especially the isotopes 129 and 131 of iodine released by nuclear fuel processing. This binding can be carried out under the most demanding conditions which exist in the treatment of irradiated fuel, ie. from solutions of nitric acid diluted with water or from gas mixtures containing nitric oxide vapors.

5 De efterfølgende eksempler belyser opfindelsen nærmere: EKSEMPEL 1 TIL 9The following examples further illustrate the invention: EXAMPLES 1 TO 9

Disse eksempler belyser bindingen af iod på harpikser indeholdende ethoxy-grupper stammende fra kondensationsprodukter af ethylenoxid adsorberet på en harpiks af typen makro-tværbunden uden iondannende grupper.These examples illustrate the bonding of iodine to resins containing ethoxy groups derived from ethylene oxide condensation products adsorbed on a macro-crosslinked resin type without ion-forming groups.

10 Til fremstilling af harpiksen lader man passere med en hastighed på 600 ml i timen to liter af en vandig opløsning indeholdende 40 g ethoxyleret nonylphenol med 10 molekyler ethylenoxid gennem en søjle fyldt med 100 ml makro-tværbunden harpiks uden iondannende grupper (AMBER-15 LITE XAD-4, indregistreret mærke tilhørende ROHM & HAAS), hvorpå man lader passere med samme hastighed 1 liter vand til fortrængning af det overskydende, ikke bundne ethoxy-lerede nonylphenol.To produce the resin, at a rate of 600 ml per hour, two liters of an aqueous solution containing 40 g of ethoxylated nonylphenol with 10 molecules of ethylene oxide are passed through a column filled with 100 ml of macro-crosslinked resin without ion-forming groups (AMBER-15 LITE XAD-4, registered mark of ROHM & HAAS), which allows one liter of water to pass through at the same rate to displace the excess, non-bound ethoxylated nonylphenol.

Analyse af ethoxyleret nonylphenol i opløsningen og i 20 vaskevandet, som har passeret harpiksen, viser, at 24 g af dette produkt er blevet bundet.Analysis of ethoxylated nonylphenol in the solution and in the wash water which has passed the resin shows that 24 g of this product has been bound.

Idet man går frem på lignende måde fremstiller man harpikser, hvis ethoxy-grupper stammer fra andre kondensationsprodukter .By proceeding in a similar manner, resins whose ethoxy groups are derived from other condensation products are prepared.

25 Man gennemhælder derpå med en hastighed på 400 ml i timen en vandig opløsning indeholdende 40 g iod og 80 g kaliumiodid pr. liter gennem en søjle fyldt med 100 ml harpiks indeholdende ethoxy-grupper, og som forinden er 151213 8 fremstillet ved den ovenfor anførte metode.An aqueous solution containing 40 g of iodine and 80 g of potassium iodide is then poured at a rate of 400 ml per hour. liters through a column filled with 100 ml of resin containing ethoxy groups and previously prepared by the above method.

Man opsamler en opløsning indeholdende den samlede mængde kaliumiodid, der er tilsat, og en lille mængde iod, hvilket tillader beregning af den mængde iod, som er 5 blevet bundet på harpiksen.A solution containing the total amount of potassium iodide added and a small amount of iodine is collected, allowing calculation of the amount of iodine which has been bound to the resin.

Under disse reaktionsbetingelser blev opnået følgende resultater: 151213 9 Vægt i g af lod i opløs- lod (g) % iod til-Under these reaction conditions, the following results were obtained: Weight in g of solder in solder (g)% iodine added.

Ethoxy-grup- ethoxyleret ning å 40 bundet bageholdt pernes oprin- produkt bun- g/1 passeret pr. lidelse det på 1 li- pr. liter ter fugter harpiks fugtig har- tig harpiks piksEthoxy group ethoxylated yeast 40 bound retained pears original product bun / l passed per suffering it at 1 li-. liters of moisture moist resin moist hard resin pix

Nonylphenol ethoxyleret med 10 mol 240 6(X) S 542 90,5Nonylphenol ethoxylated with 10 moles 240 6 (X) S 542 90.5

EOEO

Octylphenol ethoxyleret med 30 mol 280 600 g 553 92,2Octylphenol ethoxylated with 30 moles 280 600 g 553 92.2

EOEO

C13"C15 al“ kohol ethoxyleret med 190 600 g 512 85,8C13 C15 al alcohol alcohol ethoxylated with 190 600 g 512 85.8

7 mol EO7 mol EO

Nonylphenol ethoxyleret 220 400 g 380 95Nonylphenol ethoxylated 220 400 g 380 95

med 6 mol EOwith 6 moles of EO

Hexanol ethoxyleret med 170 400 g 352 88Hexanol ethoxylated with 170 400 g 352 88

3 mol EO3 mol EO

Butyltrie- thylengly- 190 400 g 277 69,5 colButyl triethylene glycol 190 400 g 277 69.5 col

Ethyltrie- thylengly- 180 400 g 270 67,5 colEthyl triethylene glycol 180 400 g 270 67.5 col

Methyldi- ethylen- 180 370 g 273 73,8 glycolMethyl diethylene 180 370 g 273 73.8 glycol

Methyl- glycol 180 400 g 208 67 ίο 151213 EKSEMPEL 10 TIL 18Methylglycol 180 400 g 208 67 or 151213 EXAMPLES 10 TO 18

Disse eksempler belyser bindingen af iod på harpikser indeholdende ethoxy-grupper stammende fra ethylenoxid-kon-densationsprodukter adsorberet på en kationbytterharpiks indeholdende carboxyl-grupper.These examples illustrate the bonding of iodine to resins containing ethoxy groups derived from ethylene oxide condensation products adsorbed on a cation exchange resin containing carboxyl groups.

5 Man lader passere med en hastighed på 6θΟ ml i timen 1 liter af en vandig opløsning indeholdende 20 g ethoxyleret nonylphenol med 6 molekyler ethylenoxid gennem en søjle fyldt med 100 ml kationbytterharpiks med carboxylsyre-grup-per (AMBERLITE IRC 84, varemærke tilhørende ROHM & HAAS), 10 derefter lader man passere med samme hastighed 1 liter vand til fortrængning af ethoxyleret nonylphenol, der ikke er blevet bundet på harpiksen.5 liters at a rate of 6θΟ ml per hour 1 liter of an aqueous solution containing 20 g of ethoxylated nonylphenol with 6 molecules of ethylene oxide through a column filled with 100 ml of cation exchange resin with carboxylic acid groups (AMBERLITE IRC 84, trademark of ROHM & HAAS), then 1 liter of water is passed at the same rate to displace ethoxylated nonylphenol which has not been bound to the resin.

Analyse af ethoxyleret nonylphenol i opløsningen og i det vaskevand, der har passeret igennem harpiksen, viser, at 15 13 g af dette produkt er blevet bundet.Analysis of ethoxylated nonylphenol in the solution and in the wash water that has passed through the resin shows that 13 g of this product has been bound.

Ved en identisk fremgangsmåde fremstiller man harpikser, hvis ethoxy-grupper stammer fra andre kondensationsprodukter.An identical process produces resins whose ethoxy groups are derived from other condensation products.

Derpå lader man passere med en hastighed på 400 ml i timen 20 en vandig opløsning indeholdende 40 g/1 iod og 80 g/1 ka-liumiodid gennem en kolonne fyldt med 100 ml af den ved den ovenfor beskrevne teknik fremstillede harpiks.Then, at a rate of 400 ml per hour, an aqueous solution containing 40 g / l iodine and 80 g / l potassium iodide is passed through a column filled with 100 ml of the resin prepared by the technique described above.

Man opsamler en opløsning indeholdende den samlede mængde kaliumiodid, der er tilsat, og en vis mængde iod, som til-25 lader beregning af den mængde iod, der er bundet til harpiksen.A solution containing the total amount of potassium iodide added and a certain amount of iodine is collected which allows calculation of the amount of iodine bound to the resin.

Under disse reaktionsbetingelser blev opnået følgende resultater : n 151213 Vægt i g af lod i opløs- lod (g) % iod til-Under these reaction conditions, the following results were obtained: n 151213 Weight in g of solder in solder (g)% iodine added.

Ethoxy-grup- ethoxyleret ning å 40 bundet bageholdt pernes oprin- produkt bun- g/1 passeret pr. lidelse det på 1 li- pr. liter ter fug ter harpiks fugtig har- tig harpiks piksEthoxy group ethoxylated yeast 40 bound retained pears original product bun / l passed per suffering it at 1 li-. liters of moisture to resin moist hard resin pix

Nonylphenol ethoxyleret med 10 mol 130 400 g 2^0 65Nonylphenol ethoxylated with 10 moles of 130 400 g of 2 65

EOEO

Octylphenol ethoxyleret med 30 mol 180 400 g 282 70,5Octylphenol ethoxylated with 30 moles of 180 400 g of 282 70.5

EOEO

C-, ^-C-, c-alko-13 15 hol ethoxyleret med 7 mol 180 480 g 350 73C-, C-C, c-alko-13 well ethoxylated with 7 mol 180 480 g 350 73

EOEO

Nonylphenol ethoxyleret 130 500 g 3^0 72,2Nonylphenol ethoxylated 130,500 g 3 ^ 0 72.2

med 6 mol EOwith 6 moles of EO

Hexanol ethoxy·*·· leret med 3 190 400 g 300 75Hexanol Ethoxy · * ·· clay with 3 190 400 g 300 75

mol EOmol EO

Butyltriethy- lenglycol 190 400 g 218 54,5Butyl triethylene glycol 190 400 g 218 54.5

Ethyltriethy- lenglycol 190 400 g 146 3^,5Ethyltriethylene glycol 190 400 g 146 3 5

Methyldiethy- lenglycol 190 400 g 14& 3^,5Methyldiethylene glycol 190 400 g 14 & 3 ^, 5

Methylglycol 190 400 g 80 20 151213 12 EKSEMPEL 19 TIL 22Methylglycol 190 400 g 80 20 EXAMPLES 19 TO 22

Man fremstiller en harpiks med ethoxy-grupper stammende fra ethylenoxid-kondensationsprodukter bundet ved kemisk binding til den polymere, som udgør harpiksskelettet.A resin having ethoxy groups derived from ethylene oxide condensation products bonded by chemical bonding to the polymer constituting the resin backbone is prepared.

I en kolbe på 500 ml forsynet med en køleanordning, med 5 en temperaturmåler, med tilledning af nitrogen og med omrøring fremstilles 0,33 mol natriumalkoholat af methyltri-ethylenglycol fortyndet i 150 g diethylenglycoldimethyl-ether, derpå tilsættes 50 g harpiks dannet som et skelet af styren og divinylbenzencopolymer, hvorpå er fæstnet 10 chlormethylgrupper (0,275 grupper pr. 50 g harpiks).In a 500 ml flask equipped with a cooling device, with a temperature gauge, with the addition of nitrogen and with stirring, 0.33 mole of sodium alcoholate of methyl triethylene glycol diluted in 150 g of diethylene glycol dimethyl ether is then added to 50 g of resin formed as a skeleton. of styrene and divinylbenzene copolymer to which are attached 10 chloromethyl groups (0.275 groups per 50 g of resin).

Blandingen opvarmes til 140°C i 12 timer, derpå filtreres efter nedkøling harpiksen og vaskes med vand. 0,24 grupper 0Η^(00Η20Η2)^0- er bundet, og rumfanget i vand af den således syntetiserede harpiks er 190 ml.The mixture is heated to 140 ° C for 12 hours, then filtered after cooling the resin and washed with water. 0.24 groups 0Η ^ (00Η20Η2) ^ 0- are bound and the volume in water of the resin thus synthesized is 190 ml.

15 En anden fremstillingsmåde for harpiks indeholdende ethoxy-grupper stammende fra ethylenoxid-kondensationsproduk-ter, som er fæstnet ved kemisk binding på den polymere, der udgør harpiksskelettet, kan anvendes.Another method of preparation for resin containing ethoxy groups derived from ethylene oxide condensation products, which is attached by chemical bonding to the polymer constituting the resin backbone, can be used.

I en kolbe på 500 ml forsynet med en køleanordning, en 20 temperaturmåler, tilledning af nitrogen og omrøring fremstilles 0,275 mol natriumalkoholat af ethoxyleret nonyl-phenol med 6 molekyler ethylenoxid fortyndet i 170 g xy-len, derpå tilsættes 50 g af en harpiks, som udgør et ske-.let af styren og divenylbenzencopolymer, hvortil er fæst-25 net chlormethylgrupper (0,275 grupper per 50 g harpiks).In a 500 ml flask equipped with a cooling device, a 20 temperature gauge, nitrogen inlet and stirring, 0.275 moles of sodium alcoholate of ethoxylated nonylphenol with 6 molecules of ethylene oxide diluted in 170 g of xylene are prepared, then 50 g of a resin is added. represents a sphere of styrene and divenylbenzene copolymer to which are attached chlorine methyl groups (0.275 groups per 50 g of resin).

Blandingen opvarmes til 130°C i 8 timer, hvorpå harpiksen efter afkøling frafiltreres og vaskes med vand. 0,17 grupperThe mixture is heated to 130 ° C for 8 hours, after which the resin after cooling is filtered off and washed with water. 0.17 groups

CgHig—^ —(0CH2CH2)g0- er blevet bundet til harpik sen, hvis rumfang i vand nu er 260 ml.CgHig - ^ - (OCH2CH2) g0- has been bound to the resin, whose volume in water is now 260 ml.

151213 13131213 13

Med en af de ovenfor beskrevne metoder blev fremstillet harpikser, som indeholdt følgende grupper:By one of the methods described above, resins were prepared containing the following groups:

Antal grupper Rumfang af bundet pr. 50 fugtig har- g chlormethy- piks (ml) leret harpiks__^ (0CH2CH2)6°- 0,17 260 C13-C15-alkyl-(0CH2CH2)?0- 0,21 270 C4Hg (0CH2CH2)30- 0,21 270 C8HrrC!V (°CH2CH2^30°“ 0,10 190 CH^ (0CH2CH2)30- 0,24 190 CH3 (0CH2CH2)20- 0,24 190 CH3 0CH2CH20- 0,24 190 CH30- 0,25 190Number of groups Volume of bound per 50 Moist Resin Chloromethics (ml) Clay Resin __ ^ (OCH2CH2) 6 ° - 0.17 260 C13-C15 alkyl- (OCH2CH2)? 0.21 270 C4Hg (OCH2CH2) 30-0.21 270 C8HrrC1V (° CH2CH2 ^ 30 ° 0.10 190 CH2 (OCH2CH2) 30- 0.24 190 CH3 (OCH2CH2) 20- 0.24 190 CH3 OCH2CH20- 0.24 190 CH

Med en hastighed på 100 ml pr. time lader man en vandig opløsning indeholdende 40 g/1 iod og 80 g/1 kaliumiodid 5 passere igennem en søjle fyldt med 30 ml af en harpiks, der er fremstillet ved en af de forud beskrevne fremgangsmåder, hvor ethylenoxid-kondensationsprodukterne er bundet til den polymere, der udgør harpiksskelettet, gennem en kemisk binding.At a rate of 100 ml per an hourly solution is passed through an aqueous solution containing 40 g / l iodine and 80 g / l potassium iodide 5 through a column filled with 30 ml of a resin prepared by one of the aforementioned methods in which the ethylene oxide condensation products are bonded to it. polymers constituting the resin backbone through a chemical bond.

10 Man opsamler en opløsning indeholdende den samlede mængde tilsat kaliumiodid samt en mængde iod, som tillader beregningen af den mængde iod, der er bundet til harpiksen.10 A solution containing the total amount of potassium iodide added as well as an amount of iodine is obtained which allows the calculation of the amount of iodine bound to the resin.

Under disse reaktionsbetingelser opnåede man følgende resultater: 151213 14 lod i opløs- lod (g) % iod ning å 40 bundet bundetUnder these reaction conditions the following results were obtained: solder in solder (g)% iodine of 40 bonded bound

Ethoxy-gruppernes art g/1 passeret pr·, lipr. liter ter fug- harp iks tig har piks C13-C15-alkyl (00Η20Η2)?0- 330 g 300 91 c4h9- (0CH2CH2)30- 400 g 250 62,5The species g / 1 of the ethoxy groups passed per · lipr. liters of moisture resin have peak C13-C15 alkyl (00Η20Η2)? 0- 330 g 300 91 c4h9- (OCH₂CH₂) 30-400 g 250 62.5

CgHig-^^-(0CH2CH2)60- 330 g 260 79 C8H1 '/“Cy* (°CH2CH2^0°“ 330 δ 300 91 EKSEMPEL 23 TIL 28CgHig - ^^ - (OCH2CH2) 60- 330 g 260 79 C8H1 '/ "Cy * (° CH2CH2 ^ 0 °" 330 δ 300 91 EXAMPLE 23 TO 28

Man lader passere med en hastighed på 200 ml pr. time en vandig opløsning indeholdende 250 mg/1 iod og 0,5 g/1 ka-liumiodid gennem en kolonne fyldt med 20 ml af en harpiks fremstillet ved en af de i eksemplerne 19 til 22 beskrev-5 ne metoder. Man opsamler den samlede mængde tilsat kalium-iodid og en vis mængde iod, som tillader beregningen af den mængde iod, der er bundet af harpiksen.It is allowed to pass at a rate of 200 ml. An hourly aqueous solution containing 250 mg / l iodine and 0.5 g / l potassium iodide through a column filled with 20 ml of a resin prepared by one of the methods described in Examples 19 to 22. The total amount of potassium iodide added and a certain amount of iodine are collected which allow the calculation of the amount of iodine bound by the resin.

Under disse reaktionsbetingelser blev opnået følgende resultater : 151213 15 lod i^opløs- lod (g) % iod ning å 40 "bundet bundetUnder these reaction conditions, the following results were obtained: 15 solvents in solvents (g)% iodine of 40 "bound bound

Ethoxy-gruppernes art g/1 passeret pr.· lipr. liter ter fug- harpiks tig har piks cl3-cl5-a1ky1-(0CH2CH2.)70- 210 g 190 90,5 C4H9 - (0CH2CH2)30- 275 g 220 80 C9HirO^(0CH2CH2)6°- 280 S 240 86 CH5-(0CH2CH2)30- 250 g 230 92 CH3-(0CH2CH2)20- 190 g 177 93,2 CH3-0CH2CH20- 125 g 76 60,5 EKSEMPEL 29 TIL 33The species g / l of the ethoxy groups passed per · lipr. liters of grit resin have a peak Cl3-Cl5-a1ky1- (OCH2CH2) 70-210 g 190 90.5 C4H9 - (OCH2CH2) 30-275 g 220 80 C9HirO2 (OCH2CH2) 6 ° - 280 S 240 86 CH5 - (OCH2CH2) 30-250 g 230 92 CH3- (OCH2CH2) 20-190 g 177 93.2 CH3-0CH2CH20 125 g 76 60.5 EXAMPLES 29 TO 33

Man lader passere med en hastighed på 250 ml pr. time en vandig opløsning indeholdende 2,5 g/1 iod og 5 g/1 kalium-iodid igennem en søjle fyldt med 30 ml harpiks, der er fremstillet analogt med en af metoderne beskrevet i eksempler-5 ne 19 til 22. Man opsamler den samlede mængde tilsat kali-umiodid og en vis mængde iod, som tillader beregning af den mængde iod, der er bundet til harpiksen.You are allowed to pass at a rate of 250 ml per minute. an hourly aqueous solution containing 2.5 g / l iodine and 5 g / l potassium iodide through a column filled with 30 ml of resin prepared by analogy with one of the methods described in Examples 19 to 22. It is collected total amount of potassium iodide added and a certain amount of iodine which allows calculation of the amount of iodine bound to the resin.

Under disse reaktionsbetingelser blev :opnået følgende resultater: 151213 l6 lod i opløs- lod (g) % iod ning å 40 bundet bundetUnder these reaction conditions, the following results were obtained: 151213 I6 solute in solution (g)% iodine of 40 bound bound

Ethoxy-gruppernes art g/1 passeret pr. lipr. liter ter fug- harpiks tig har piks C9H19~^3 ^0C’H2C'H2^60- 330 g 240 72,8 C8E17~(^y~ (°CH2CH2)3o°- 375 g 240 64 C13"C15“alkyl"^0CH2CH2^7°" 375 g 270 72 C4Hg-(0CH2CH2)30- 500 g 280 56 CH^O- 500 g 110 22The species g / 1 of the ethoxy groups passed per LipR. liters of grit resin have peaks C9H19 ~ 3 3 O C'H2C'H2 ^ 60- 330 g 240 72.8 C8E17 ~ (^ y ~ (° CH2 CH2) 30 ° - 375 g 240 64 C13 "C15" alkyl " 375 g 270 72 C4Hg- (OCH2CH2) 30-500 g 280 56 CH2 O- 500 g 110 22

Forsøget udført med harpiks, hvortil er tilsat ethoxyle-ret nonylphenol, er i øvrigt blevet gentaget, idet man hver gang eluerer harpiksen med forskellige opløsningsmidler for at afprøve disses effektivitet.The test carried out with resin to which ethoxylated nonylphenol has been added has been repeated, each time eluting the resin with different solvents to test their effectiveness.

5 I dette eksempel er 7 til 7,5 g iod i hvert enkelt forsøg blevet bundet til harpiksen. Gennemskylning med 50 ml opløsningsmiddel på de 30 ml harpiks tillod eluering afiIn this example, 7 to 7.5 g of iodine have been bound to the resin in each test. Rinsing with 50 ml of solvent on the 30 ml resin allowed elution

Benzen 2,2 g iodBenzene 2.2 g of iodine

Methanol 2,8 g iodMethanol 2.8 g iodine

Svovlkulstof 0,3 g iodSulfur carbon 0.3 g iodine

Chloroform 1,2 g iodChloroform 1.2 g iodine

Cyclohexan 0,7 g iodCyclohexane 0.7 g iodine

Dodecan 0,9 g iodDodecan 0.9 g iodine

Methylglycol 7,1 g iodMethylglycol 7.1 g of iodine

Methyldiethylen- glycol 7,3 g iodMethyl diethylene glycol 7.3 g of iodine

Ethyldiethylen- glycol 6,4 g iodEthyl diethylene glycol 6.4 g of iodine

Butyltriethylen- glycol 7,2 g iodButyl triethylene glycol 7.2 g of iodine

Dette viser glycoletherenes effektivitet til eluering af iod, 151213 17 der er bundet på harpikserne, og til regenering af disse.This shows the efficiency of the glycol ethers for eluting iodine bound to the resins and for regenerating them.

EKSEMPEL 34EXAMPLE 34

Man lader passere med en hastighed på 200 ml pr. time 37 liter af en vandig opløsning indeholdende 1,48 g iod 5 (40 mg/l) gennem en søjle fyldt med 20 ml harpiks inde holdende grupperne CqH^^——= (0CH2CH2)^q0- bundet til harpiksen. Man opsamler en opløsning indeholdende 0,26 g iod. Mængden af bundet iod er således 1,22 g svarende til 6i g pr. liter harpiks og 82% af den tilsatte iod-10 mængde.It is allowed to pass at a rate of 200 ml. per hour 37 liters of an aqueous solution containing 1.48 g of iodine 5 (40 mg / l) through a column filled with 20 ml of resin containing the groups Cq H 2 O = (OCH 2 CH 2 A solution containing 0.26 g of iodine is collected. The amount of bound iodine is thus 1.22 g corresponding to 6 i g per liter. liter of resin and 82% of the added iodine-10 amount.

EKSEMPEL 35EXAMPLE 35

Med en hastighed på 200 ml pr. time lader man passere 86 liter syntetisk havvand indeholdende pr. liter:At a rate of 200 ml. 86 liters of synthetic seawater containing per hour are allowed to pass. l:

NaCl 26,70 gNaCl 26.70 g

MgCl2, 6 H20 7,00 gMgCl2, 6 H2 O 7.00 g

MgS04, 7 H20 4,30 gMgSO 4, 7 H2 O 4.30 g

CaS04, 2 H20 1,75 g KC1 0,72 g hvortil man tilsætter lod 40 mg gennem en kolonne fyldt med 20 ml harpiks med grupper-15 ne C^-C^-alkyl-COCH^H^yO- bundet til harpiksen. Man opsamler en opløsning indeholdende 250 mg iod. Den bundne mængde iod er således 3,19 g svarende til 159 g pr·’ liter harpiks og 92,5% af den tilsatte iodmængde.CaSO 4, 2H 2 O 1.75 g KCl 0.72 g to which is added solder 40 mg through a column filled with 20 ml of resin with groups 15 C 1 -C 4 alkyl-COCH 3 H 2 yO- bound to the resin. A solution containing 250 mg of iodine is collected. Thus, the bound amount of iodine is 3.19 g corresponding to 159 g per liter of resin and 92.5% of the added iodine amount.

151213 18 EKSEMPEL 36EXAMPLE 36

Med en hastighed på 200 ml pr. time lader man passere 108 liter syntetisk havvand af den i eksempel 35 angivne sammensætning, hvortil man har tilsat 10 mg iod pr. liter, gennem en søjle fyldt med 20 ml harpiks med grup-5 perne C^-C^-alkyl- (OCE^C^)7O- bundet til harpiksen.At a rate of 200 ml. 108 liters of synthetic sea water of the composition of Example 35 is allowed to pass, to which is added 10 mg of iodine per hour. per liter, through a column filled with 20 ml of resin with the groups C 1 -C 2 -alkyl- (OCE 2 C 2) 7O- bound to the resin.

Man opsamler en opløsning indeholdende 35 mg iod. Mængden af bundet iod er således 1055 mg svarende til 52 g pr. liter harpiks og 97,5% af iodmængden.A solution containing 35 mg of iodine is collected. Thus, the amount of bound iodine is 1055 mg corresponding to 52 g per liter. liter of resin and 97.5% of the iodine amount.

EKSEMPEL 37 og 58EXAMPLES 37 and 58

Med en hastighed på 200 ml pr. time lader man passere 28 10 liter af en vandig ropløsning indeholdende 7 g iod (250 mg/l) og 14 g kaliumiodid gennem en søjle med 20 ml harpiks med ethoxy-grupper stammende fra polypropylenglycol med molekylvægten 1800, der er ethoxyleret med 5 molekyler ethylenoxid, og som er adsorberet på en makro-tvær-15 bunden harpiks uden iondannende grupper (AMBERLITE XADAt a rate of 200 ml. 28 liters of an aqueous crude solution containing 7 g of iodine (250 mg / l) and 14 g of potassium iodide are passed through a column of 20 ml resin with ethoxy groups derived from polypropylene glycol of molecular weight 1800 which is ethoxylated with 5 molecules of ethylene oxide and adsorbed on a macro-cross-linked resin without ion-forming groups (AMBERLITE XAD

4, varemærke tilhørende ROHM & HAAS), som er fremstillet ifølge den i eksemplerne 1 til 9 anførte metode.4, the trademark of ROHM & HAAS) prepared according to the method of Examples 1 to 9.

Man opsamler en opløsning indeholdende 0,6 g iod og 14 g kaliumiodid. Mængden af bundet iod er således 6,4 g 20 svarende til 320 g pr. liter harpiks og 91,5% af den tilsatte iodmængde.A solution containing 0.6 g of iodine and 14 g of potassium iodide is collected. Thus, the amount of bound iodine is 6.4 g / 20, corresponding to 320 g / ml. liter of resin and 91.5% of the added iodine amount.

Under dette eksempels reaktionsbetingelser, og idet man absorberer på harpiksen forud for iodet en C^-C^-alko-hol, der er ethoxyleret med 7 molekyler ethylenoxid, i 25 stedet for propylenglycol med molekylvægten 1800 ethoxyleret med 5 molekyler ethylenoxid, blev bundet pr. liter harpiks 366 g iod ud af 400 g, som blev sendt igennem harpiksen, svarende til 91»5% af den tilsatte iodmængde.Under the reaction conditions of this example, absorbing on the resin prior to the iodine a C ^-C ^ alcohol ethoxylated with 7 molecules of ethylene oxide instead of propylene glycol of molecular weight 1800 ethoxylated with 5 molecules of ethylene oxide was bound per . per liter of resin 366 g of iodine out of 400 g sent through the resin, corresponding to 91 »5% of the added iodine amount.

19 151213 ' i EKSEMPEL 59EXAMPLE 59

Med en hastighed på ΐ6θ ml pe. time lader man passere 10 liter af en opløsning af 2,5 g iod (250 mg/1) i 3 N salpetersyre gennem en søjle fyldt med 20 ml harpiks indeholdende ethoxy-grupper stammende fra C^ til C-^-al-5 kohol, der er ethoxyleret med 7 molekyler ethylenoxid, og som er absorberet på en makro-tværbunden harpiks uden iondannende grupper (AMBERLITE XAD 4, varemærke tilhørende ROHM & HAAS).At a rate of ΐ6θ ml pe. 10 h of a solution of 2.5 g of iodine (250 mg / l) in 3 N nitric acid is passed through a column filled with 20 ml of resin containing ethoxy groups derived from C , which is ethoxylated with 7 molecules of ethylene oxide and absorbed on a macro-crosslinked resin without ion-forming groups (AMBERLITE XAD 4, trademark of ROHM & HAAS).

Man opsamler en opløsning af 3 normal salpetersyre inde-10 holdende 0,75 g iod. Mængden af bundet iod er således 1,75 g svarende til 87 g pr. liter harpiks og 70% af den .tilsatte iodmængde.A solution of 3 normal nitric acid containing 0.75 g of iodine is collected. The amount of bound iodine is thus 1.75 g corresponding to 87 g per liter. liters of resin and 70% of the iodine added.

EKSEMPEL 40EXAMPLE 40

Med en hastighed på 120 ml pr. time lader man passere 8 liter af en opløsning af 2,0 g iod (250 mg/l) i 3 N 15 salpetersyre igennem en kolonne fyldt med 20 ml harpiks med grupperne CH^OC^CHgQ- bundet til harpiksen.At a rate of 120 ml per 8 hours of a solution of 2.0 g of iodine (250 mg / l) in 3 N 15 nitric acid is allowed to pass through a column filled with 20 ml of resin with the groups CH

Man opsamler en opløsning af 3 N salpetersyre indeholdende 0,65 g iod. Mængden af bundet iod er således 1,35 g svarende til 67 g per liter harpiks og 67>5% af 20 den tilsatte iodmængde.A solution of 3 N nitric acid containing 0.65 g of iodine is collected. Thus, the amount of bound iodine is 1.35 g corresponding to 67 g per liter of resin and 67> 5% of the added iodine amount.

EKSEMPEL 41 OG 42EXAMPLES 41 AND 42

Man lader passere luft belastet med ca. 1 mg iod pr. liter og med en hastighed af 100 liter pr. time igennem 50 timer gennem en søjle fyldt med 20 ml harpiks med grupperne (OCH^CHg)300— bundet til harpiksen.Passing air loaded with approx. 1 mg of iodine per day. liter and at a rate of 100 liters per liter. hour through 50 hours through a column filled with 20 ml of resin with the groups (OCH ^ CHg) 300 bonded to the resin.

25 Efter standsningen af luftstrømmen fortrænger man det til 151213 20 harpiksen bundne iod med 50 ml methylglycol. Mængden af iod, der elueres med methylglycol, er 4,5 g, hvilket svarer til 225 g iod bundet pr. liter harpiks og 90% af den tilsatte iodmængde.After the air flow is stopped, the iodine bound to the resin is displaced with 50 ml of methyl glycol. The amount of iodine eluted with methyl glycol is 4.5 g, which corresponds to 225 g of iodine bound per liter. liter of resin and 90% of the added iodine amount.

5 Ved anvendelse af reaktionsbetingelserne for dette eksempel og med en harpiks, til hvilken er bundet grupperne C9H19“^^“" (0GH2CH2^6°" » blev bundet 190 S pr. liter harpiks.Using the reaction conditions of this example and with a resin to which are attached the groups C9H19 "" "" (0GH2CH2 ^ 6 ° "" were bonded 190 S per liter of resin.

EKSEMPEL 45EXAMPLE 45

Man lader passere luft, der er belastet med ca. 0,2 mg 10 iod pr.· liter, med en hastighed på 500 liter pr.· time i-gennem 50 timer gennem en søjle fyldt med 20 ml harpiks med grupperne C^Hg-(oci^ci^)^0- bundet til harpiksen.Passing air loaded with approx. 0.2 mg 10 iodine per liter, at a rate of 500 liters per · hour for 50 hours through a column filled with 20 ml of resin with the groups C ^ Hg- (oci ^ ci ^) to the resin.

Efter standsning af luftstrømmen fortrænger man det til harpiksen bundne iod med 50 ml methylglycol. Mængden af 15 iod, der er elueret med methylglycol, er 4,3 g, hvilket svarer til 215 g iod bundet pr. liter harpiks og 86% af den tilsatte iodmængde.After stopping the flow of air, the iodine bound to the resin is displaced with 50 ml of methyl glycol. The amount of 15 iodine eluted with methyl glycol is 4.3 g, which is equivalent to 215 g of iodine bound per liter. liter of resin and 86% of the added iodine amount.

En påfølgende gennemskylning med luft belastet med iod under de samme reaktionsbetingelser på disse 20 ml harpiks 20 tillader binding af 240 g iod pr. liter harpiks.A subsequent flushing with air loaded with iodine under the same reaction conditions on these 20 ml of resin 20 allows binding of 240 g of iodine per liter. liter of resin.

EKSEMPEL 44EXAMPLE 44

Man lader passere luft, der er belastet med ca. 25 mg iod og ca. 500 mg nitrogenperoxid pr. liter, med en hastighed på 50 liter pr. time i en time gennem en søjle fyldt med 50 ml harpiks med ethoxy-grupper stammende fra ethoxyle-25 ret nonylphenol med 10 molekyler ethylenoxid, som er ad-sorberet på en makro-tværbunden harpiks uden iondannende grupper (AMBERLITE XAD 4, varemærke tilhørende ROHM & HAAS).Passing air loaded with approx. 25 mg of iodine and approx. 500 mg of nitrogen peroxide per liter, at a rate of 50 liters per liter. hour by hour through a column filled with 50 ml of resin with ethoxy groups derived from ethoxylated nonylphenol with 10 molecules of ethylene oxide adsorbed on a macro-crosslinked resin without ion-forming groups (AMBERLITE XAD 4, trademark of ROHM & HAAS).

151213 21151213 21

Derpå lader man passere luft, der er belastet med ca. 25 mg iod per liter, men uden nitrogenperoxid, med samme hastighed i 7 timer. Trods tilstedeværelsen af det på harpiksen adsorberede nitrogenperoxid bindes iodet på denne har-5 piks.Then you let air that is loaded with approx. 25 mg of iodine per liter, but without nitrogen peroxide, at the same rate for 7 hours. Despite the presence of the nitrogen peroxide adsorbed on the resin, the iodine of this resin binds.

Efter afbrydelse af luftstrømmen fortrænger man det bundne iod med 100 ml methylglycol. Mængden af iod, der er elu-eret med methylglycol, er 9,4 g, hvilket svarer til 188 g iod bundet pr. liter harpiks og 94% af den tilsatte iod-10 mængde.After interrupting the flow of air, the bound iodine is replaced by 100 ml of methyl glycol. The amount of iodine eluted with methyl glycol is 9.4 g, which is equivalent to 188 g of iodine bound per liter. liter of resin and 94% of the added iodine-10 amount.

Claims (2)

1512131 P_a_t_e_n_t_k_r_a_v_£1512131 P_a_t_e_n_t_k_r_a_v_ £ 1. Fremgangsmåde til binding af i en gasformig blanding eller vandig opløsning indeholdt iod, kendetegnet ved, at man lader den iodholdige, gas-formige blanding eller vandige opløsning passere over 5 en harpiks indeholdende ethergrupper med ikke-ionisk karakter af typen -(OCH2CH2)nO-, hvori n har en værdi fra 0 til 100, hvilken harpiks er valgt blandt harpikser opnået ved adsorption af et ethoxyleret kondensationsprodukt på en makro-tværbundet harpiks uden ion-10 funktion, harpikser opnået ved adsorption af et ethoxyleret kondensationsprodukt på en kationbytterharpiks indeholdende carboxylgrupper, og harpikser opnået ved fiksering af et ethoxyleret kondensationsprodukt, gennem en kemisk binding, på en polymer, som danner et 15 harpiksskelet.A process for bonding in a gaseous mixture or aqueous solution containing iodine, characterized in that the iodine-containing, gaseous mixture or aqueous solution is passed over a resin containing ether groups of the nonionic nature - (OCH2CH2) nO- wherein n has a value from 0 to 100, which resin is selected from resins obtained by adsorption of an ethoxylated condensation product on a macro-crosslinked resin without ion function, resins obtained by adsorption of an ethoxylated condensation product on a cation exchange resin containing carboxyl groups, and resins obtained by fixing an ethoxylated condensation product, through a chemical bond, on a polymer forming a resin backbone. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den gasformige blanding eller vandige opløsning, som behandles, har et indhold af radioaktivt iod, som stammer fra nukleært brændsel eller dampe eller opløs- 20 ninger, dannet ved behandling af nukleært brændsel med salpetersyreholdige væsker, især væskeopløsninger indeholdende salpetersyre, nitrogenoxider og iod.Process according to claim 1, characterized in that the gaseous mixture or aqueous solution being treated has a radioactive iodine content which is derived from nuclear fuel or vapors or solutions formed by the treatment of nuclear fuel with nitric acid containing liquids. , especially liquid solutions containing nitric acid, nitric oxides and iodine.
DK558778A 1977-12-14 1978-12-13 PROCEDURE FOR GAS-OR OR DISSOLVED IOD BONDING DK151213C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7737613 1977-12-14
FR7737613A FR2411801A1 (en) 1977-12-14 1977-12-14 IODINE EXTRACTION PROCESS

Publications (3)

Publication Number Publication Date
DK558778A DK558778A (en) 1979-06-15
DK151213B true DK151213B (en) 1987-11-16
DK151213C DK151213C (en) 1988-05-16

Family

ID=9198820

Family Applications (1)

Application Number Title Priority Date Filing Date
DK558778A DK151213C (en) 1977-12-14 1978-12-13 PROCEDURE FOR GAS-OR OR DISSOLVED IOD BONDING

Country Status (11)

Country Link
EP (1) EP0002636B1 (en)
JP (1) JPS5492592A (en)
AU (1) AU525086B2 (en)
BR (1) BR7808185A (en)
CA (1) CA1164358A (en)
DE (1) DE2861144D1 (en)
DK (1) DK151213C (en)
ES (1) ES475904A1 (en)
FR (1) FR2411801A1 (en)
IT (1) IT1101730B (en)
ZA (1) ZA786986B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2452465A1 (en) * 1979-03-30 1980-10-24 Ugine Kuhlmann PROCESS FOR EXTRACTING IODINE
DE3904167C1 (en) * 1989-02-11 1990-04-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
DE4238915A1 (en) * 1992-11-19 1994-05-26 Solvay Fluor & Derivate Process for the recovery of iodine
KR102035867B1 (en) 2012-11-23 2019-10-24 서강대학교산학협력단 Iodine or bromine encapsulating zeolites and use thereof
US11040903B2 (en) 2015-10-05 2021-06-22 The Chemours Company Fc, Llc Purification of NaCl brine containing iodine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219409A (en) * 1962-02-05 1965-11-23 Dow Chemical Co Recovery of iodine from aqueous solutions
JPS5926605B2 (en) * 1975-08-08 1984-06-29 アルフレツド オロフヨハンソン ヨハン Manufacturing method of iodine-containing disinfectant

Also Published As

Publication number Publication date
DE2861144D1 (en) 1981-12-17
EP0002636B1 (en) 1981-10-07
FR2411801A1 (en) 1979-07-13
ZA786986B (en) 1979-11-28
CA1164358A (en) 1984-03-27
ES475904A1 (en) 1980-06-16
AU525086B2 (en) 1982-10-21
DK558778A (en) 1979-06-15
DK151213C (en) 1988-05-16
JPS6348804B2 (en) 1988-09-30
IT1101730B (en) 1985-10-07
FR2411801B1 (en) 1980-08-22
BR7808185A (en) 1979-08-07
IT7830785A0 (en) 1978-12-13
EP0002636A1 (en) 1979-06-27
AU4228578A (en) 1979-06-21
JPS5492592A (en) 1979-07-21

Similar Documents

Publication Publication Date Title
KR900006072B1 (en) Removal of iodide compounds from non-aqueous organic media
Recepoḡlu A preliminary study on boron removal from Kizildere/Turkey geothermal waste water
US3932494A (en) Thiohumic acid, a process for preparing same, and its use for absorbing heavy metal ions
Anderson et al. Phenol sorption on ion exchange resins
EA013441B1 (en) Process for removal in continuous of hydrogen sulfide from gaseous streams
Helfferich Ligand Exchange. II. 1 Separation of Ligands Having Different Coördinative Valences
DK151213B (en) PROCEDURE FOR GAS-OR OR DISSOLVED IOD BONDING
AU2001247912B2 (en) Glycol purification
US2789036A (en) Purification of concentrated alkali metal hydroxide by ion exchange
US3852407A (en) Method for removing alkyl iodides from air by mercuric nitrate solution
US4828712A (en) Extraction of pollutants by inorganic chelation
US4388231A (en) Process for extraction of iodine
US6156207A (en) Process for the removal of metal compounds from an aqueous acid solution
US3099529A (en) Separation of nitric acid from its salts
US3629144A (en) Heavy metal acid salt recovery using anion exchange resin
US3101250A (en) Process for sorption of bromide ion on anion exchange resins
JPH07155607A (en) Recovery and reutilization of phosphoric acid
Tanaka et al. Technology for removing potassium ion from concentrated seawater by electrodialysis and solar salt dissolved in brine
US2246646A (en) Recovery of halogens
US2246645A (en) Recovery of halogens
Sharma et al. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins
JPH06144805A (en) Recovery of hydrogen fluoride
JPS6319234B2 (en)
JPS6355117A (en) Fractional recovery of gallium and indium
SU929214A1 (en) Method of cleaning cobalt or nickel salt solutions from alkaline-earth metal impurities

Legal Events

Date Code Title Description
PBP Patent lapsed