DK149245B - HF RESONATOR WITH ADJUSTABLE RESONANCE FREQUENCY - Google Patents
HF RESONATOR WITH ADJUSTABLE RESONANCE FREQUENCY Download PDFInfo
- Publication number
- DK149245B DK149245B DK123978AA DK123978A DK149245B DK 149245 B DK149245 B DK 149245B DK 123978A A DK123978A A DK 123978AA DK 123978 A DK123978 A DK 123978A DK 149245 B DK149245 B DK 149245B
- Authority
- DK
- Denmark
- Prior art keywords
- resonator
- frequency
- resonant frequency
- sealing
- coils
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/215—Frequency-selective devices, e.g. filters using ferromagnetic material
- H01P1/217—Frequency-selective devices, e.g. filters using ferromagnetic material the ferromagnetic material acting as a tuning element in resonators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/04—Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/23—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
- B29C66/232—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/723—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8141—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
- B29C66/81431—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8145—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8322—Joining or pressing tools reciprocating along one axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0008—Magnetic or paramagnetic
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Package Closures (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Inorganic Insulating Materials (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Description
JJ
149245149245
Opfindelsen angår en HF-resonator med indstilbar resonansfrekvens til forsegling eller svejsning af tynde, især termoplastiske materialer såsom emballagefolier, og hvor der i et resonatorhulrum findes ^ ferromagnetiske legemer, der er medbestemmende for resonansfrekvensen, og hvis magnetiske permeabilitet kan ændres af magnetfeltet fra en uden for resona-toren anbragt elektrisk spole.The invention relates to an adjustable resonant frequency HF resonator for sealing or welding thin, especially thermoplastic materials such as packaging foils, and in which a resonator cavity contains ferromagnetic bodies that determine the resonant frequency and whose magnetic permeability can be altered by the magnetic field. for the resonator located electrical coil.
HF-resonatorer med indstilbar resonansfrekvens ^0 kendes allerede, eksempelvis fra DE-AS 11 86 119 og DE-PS 937 475.HF resonators with adjustable resonant frequency 0 0 are already known, for example from DE-AS 11 86 119 and DE-PS 937 475.
En resonatorkreds omfatter altid en induktans og en kapacitans, hvilken induktans og hvilken kapa-citans ved en given for den aktuelle værdi af induk-15 tansen og kapacitansen karakteristisk frekvens bringes i resonans, hvilket for eksempelvis en parallelresonanskreds indebærer, at kredsens impedans har et maksimum .ved resonansfrekvensen, medens impedansen i en serieresonanskreds har et minimum ved denne reso-20 nansfrekvens.A resonator circuit always includes an inductance and a capacitance, which inductance resonates at a given characteristic value for the current value of the inductor and capacitance, which means, for example, a parallel resonant circuit, that the impedance of the circuit has a maximum at the resonant frequency while the impedance in a series resonant circuit has a minimum at this resonant frequency.
Hulrums- og koaksiallinieresonatorer har også en induktans og en kapacitans, hvis størrelse afhænger af resonatorens dimensioner. En sådan resonator kan afstemmes til en vis frekvens ved ændring af re-25 sonatorens volumen eller af dens højde. Det er imidlertid mekanisk indviklet at udforme en resonator, som kan justeres på den måde, at dens volumen eller dens højde kan ændres med henblik på afstemning af resonansfrekvensen.Cavity and coaxial line resonators also have an inductance and a capacitance, the size of which depends on the dimensions of the resonator. Such a resonator can be tuned to a certain frequency by changing the resonator's volume or its height. However, it is mechanically complicated to design a resonator which can be adjusted in such a way that its volume or height can be changed to adjust the resonant frequency.
30 Det er kendt at anvende resonatorer af den ovennævnte art i forbindelse med apparater til forsegling af tyndt emballagemateriale i emballeringsmaskiner, og i SE-PS 396 033 beskrives en forseglingsanordning, hvori der indgår en resonator. Det er 35 kendt, at man ved anvendelse af resonatorer kan opnå en stærkt koncentreret varmeafgivelse i i og for sig 2 149245 isolerende materialer, ved i disse materialer at tilvejebringe dielektriske tab, når materialet udsættes for et højfrekvent elektrisk felt.30 It is known to use resonators of the above-mentioned type in connection with apparatus for sealing thin packaging material in packaging machines, and SE-PS 396 033 discloses a sealing device incorporating a resonator. It is known that by using resonators, a highly concentrated heat release in insulating materials can be obtained by providing dielectric losses in these materials when the material is exposed to a high frequency electric field.
Ved de kendte resonatoranordninger, og specielt 5 de resonatorer, der indgår i forseglingsapparater, hvor emballagelaminatet forsegles ved hjælp af varme, som tilvejebringes i laminatet ved hjælp af resonato-ren, har det hidtil været en ulempe, at emballagelaminatets karakteristiske egenskaber, f.eks. godstykkel-10 se, fugtighed, plastkvalitet osv. varierer, hvilket indvirker på forseglingsapparatets resonansfrekvens, som derfor ikke holder sig konstant til trods for, at resonatorens geometriske parametre ikke ændrer sig. Da den generator, som føder resonatoren, sædvan-15 ligvis arbejder med en fastindstillet frekvens for fødestrømmen, indebærer dette, at resonatoren bringes ud åf resonans, hvis resonatorfrekvensen ændrer sig, hvilket igen indebærer, at den tilvejebragte energi i det til forsegling anvendte materiale ikke 20 bliver maksimal. Hvis resonatorfrekvensen ændrer sig alt for meget, kan energien blive utilstrækkelig til at frembringe en acceptabel forsegling.In the known resonator devices, and in particular the resonators included in sealing devices where the packaging laminate is sealed by heat provided in the laminate by the resonator, it has heretofore been a disadvantage that the characteristic properties of the packaging laminate, e.g. . material thickness, humidity, plastic quality, etc. vary, which affects the resonant frequency of the sealing apparatus, which therefore does not remain constant despite the fact that the geometric parameters of the resonator do not change. Since the generator supplying the resonator usually operates at a fixed frequency for the feed current, this means that the resonator is output at resonance if the resonator frequency changes, which in turn implies that the energy provided in the material used for sealing does not. 20 becomes a maximum. If the resonator frequency changes too much, the energy may become insufficient to produce an acceptable seal.
Et andet aspekt er, at en ændring af resonatorens resonansfrekvens f.eks. på grund af anvendelsen 25 af et emballagemateriale med større godstykkelse også kan indvirke på generatorens frekvens, og da generatorfrekvensen som almindeligvis ligger i området fra 400-500 MHz, f.eks. 433,43 MHz, i henhold til de gældende bestemmelser må holdes inden for ±0,2%, er 30 det vigtigt at sørge for, at forseglingsapparatets resonator ikke påvirker generatorfrekvensen på en sådan måde, at denne frekvens kommer til at ligge uden for de tilladte tolerancer.Another aspect is that changing the resonant frequency of the resonator e.g. due to the use of a greater material thickness packaging material can also affect the frequency of the generator, and since the generator frequency, which is generally in the range of 400-500 MHz, e.g. 433.43 MHz, according to the applicable regulations must be kept within ± 0.2%, it is important to ensure that the resonator of the sealing device does not affect the generator frequency in such a way that this frequency will be outside the frequency range. permissible tolerances.
Der foreligger således et behov for at kunne 35 justere fødefrekvensen fra generatoren eller resona- 149245 3 torens frekvens på en sådan måde, at resonatoren altid arbejder ved sin resonansfrekvens, og da generatoren almindeligvis arbejder med en fast indstillet frekvens, er det ønskeligt at kunne afstemme resonatoren 5 på en sådan måde, at den altid arbejder på sin resonansfrekvens .Thus, there is a need to be able to adjust the feed rate of the generator or resonator frequency in such a way that the resonator always operates at its resonant frequency, and since the generator generally operates at a preset frequency, it is desirable to be able to tune the resonator 5 in such a way that it always operates at its resonant frequency.
Den foreliggende opfindelse giver en løsning på dette problem, og en HF-resonator ifølge opfindelsen er ejendommelig ved, at resonatoren ved hjælp af 10 en midtervæg er delt op i to hulrum, at der i disse hulrum og i det område af disse, der befinder sig ved resonatorens endevæg, er indlagt ferromagnetiske legemer, og at en række elektriske spoler strækker sig over hele længden af resonatoren.The present invention provides a solution to this problem, and an HF resonator according to the invention is characterized in that the resonator is divided into two cavities by means of a middle wall, that in these cavities and in the region of them which are located. perpendicular to the end wall of the resonator, ferromagnetic bodies are inserted and a series of electrical coils extend over the entire length of the resonator.
15 Ved en således udformet resonator vil de mag netfelter, der tjener til at styre resonansfrekvensen, ikke alene koncentreres i de ferromagnetiske legemer, hvilket i sig selv er kendt, men de bringes også til at udøve deres hovedvirkning i den del af resona-20 toren, der befinder sig længst bort fra det egentlige forseglingsområde, dvs. den "åbne" ende af hulrummet.In such a resonator, the magnetic fields which serve to control the resonant frequency not only concentrate in the ferromagnetic bodies, which is known per se, but are also caused to exert their main effect in that part of the resonator. which is furthest away from the actual sealing area, ie. the "open" end of the cavity.
Der opstår faktisk en vis adskillelse mellem det optimale magnetiske felt og det optimale elektriske felt og opdelingen i to kamre eller hulrum begunstiger 25 denne virkning. Desuden behøver foliematerialet ikke længere at blive svejst over et bredt område, og sammensvejsningen kan faktisk begrænses til to praktisk taget parallelle, smalle zoner. Dette indvirker hensigtsmæssigt på varigheden af svejseoperatio-30 nen, bidrager til opnåelse af en forøget opvarmning og skåner foliematerialet.Indeed, some separation occurs between the optimum magnetic field and the optimum electric field and the division into two chambers or cavities favors this effect. In addition, the foil material no longer needs to be welded over a wide area, and the welding can actually be limited to two virtually parallel, narrow zones. This conveniently affects the duration of the welding operation, contributes to increased heating and protects the foil material.
Det forhold, at spolerne og de ferromagnetiske legemer forøger induktansen bevirker også, at resonatorens volumen kan gøres mindre, hvilket kan være 35 en fordel, når resonatoren skal indbygges i et svejseapparat, hvor der til svejsning er en begrænset plads til rådighed.The fact that the coils and ferromagnetic bodies increase the inductance also causes the volume of the resonator to be reduced, which can be an advantage when the resonator is to be built into a welding apparatus, where welding space is limited.
4 1492454 149245
Opfindelsen forklares nærmere i det følgende under henvisning til den skematiske tegning, hvor fig. 1 viser et snit gennem en kendt resonator til forsegling af plastlaminat, 5 fig. 2 et snit gennem en resonator udstyret med et indlagt legeme af ferromagnetisk materiale, fig. 3 manetiseringskurven for et ferromagnetisk materiale, og fig. 4-9 tre forskellige udførelsesformer for 10 en resonator, der er udstyret med magnetiseringsspoler til formagnetisering af det i resonatoren indlagte ferromagnetiske materiale.The invention is explained in more detail below with reference to the schematic drawing, in which fig. 1 shows a section through a known plastic laminate resonator; FIG. 2 is a section through a resonator equipped with an inlay body of ferromagnetic material; FIG. 3 shows the synthetic curve of a ferromagnetic material; and FIG. 4-9 three different embodiments of a resonator equipped with magnet coils for pre-magnetizing the ferromagnetic material embedded in the resonator.
Som tidligere nævnt har det ved en resonator af den i fig. 1 viste, kendte art vist sig at være 15 vanskeligt præcist at afstemme resonatorens resonansfrekvens til fødegeneratorens frekvens, og da det til forsegling anvendte materiale til en vis grad påvirker resonansfrekvensen, kommer en sådan resonator ikke altid til at arbejde med maksimalt energiudbytte, 20 dvs. ved sin resonansfrekvens, hvilket kan medføre, at energiafgivelsen bliver for svag og forseglingsresultatet utilfredsstillende. Desuden har den i fig. 1 viste udførelsesform den ulempe, at resonatorhuset har en relativt stor højde, der i det viste udførel-25 seseksempel betegnes h. Den foreliggende opfindelse kan finde anvendelse på forskellige typer resonatorer, men for overskuelighedens skyld koncentrerer den følgende beskrivelse sig om den såkaldte koaksialli-nieresonator, som er den type resonator, som hyppigst 30 anvendes til forsegling i emballeringsmaskiner.As previously mentioned, at a resonator of the embodiment shown in FIG. 1, it is found that it is difficult to precisely match the resonant frequency of the resonator to the frequency of the food generator, and since the material used for sealing has a certain influence on the resonant frequency, such a resonator does not always work with maximum energy yield, 20 ie. at its resonant frequency, which can cause the energy release to become too weak and the sealing result unsatisfactory. In addition, in FIG. 1 shows the disadvantage that the resonator housing has a relatively high height, which in the illustrated embodiment is denoted h. The present invention may apply to different types of resonators, but for the sake of clarity, the following description concentrates on the so-called coaxial kidney resonator, which is the type of resonator most commonly used for sealing in packaging machines.
Som det fremgår af fig. 1, består resonatoren 1 af to parallelle sidevægge 4 af metal, der er forbundet med hinanden ved hjælp af en væg 5 af metal, på hvis centrale del der er anbragt en mellem-35 liggende metalplade 3. Mellemrummene 2 mellem si- 5 U9245 devæggene 4 og den centrale plade 3 danner reso-natorens hulrum, og udformningen af dette hulrum og sidevæggenes og den centrale plades højde og indbyrdes afstand er afgørende for resonatorens resonansfre-5 kvens, som bør afpasses således, at den falder sammen med fødegeneratorens arbejdsfrekvens. Strømmen og energien fra den her ikke viste højfrekvensgenerator kan overføres til resonatoren ved kapacitiv eller induktiv kobling eller som vist på tegningen ved, at 10 midterlederen 8 i et til generatoren koblet koaksi-alkabel 6 direkte er forbundet med resonatoren 1's centrale plade 3, medens yderskærmen 7 på koaksi-alkablet er forbundet med en af sidevæggene 4. Som omtalt i indledningen kan en resonator betragtes som 15 en parallelresonanskreds, og ved resonansfrekvensen kan resonatorens induktans og dermed det magnetiske felt anses for at være koncentreret i området 11 i nærheden af resonatorens væg 5, medens resonatorens kapacitans og dens maksimale elektriske felt kan anses 20 for at være koncentreret ved resonatorens åbne del 12. Når emballagematerialet 9 bestående af et laminat, der omfatter et materiale med passende tabsfaktor, placeres ved resonatoren 1's åbne del og fortrinsvis presses mod denne del ved hjælp af en iso-25 lerende kontraplade 10, frembringes der varme i et eller flere af emballagematerialets laminatlag, når dele af emballagematerialet udsættes for et stærkt koncentreret, højfrekvent, elektrisk felt, som opstår mellem den nedre ende 13 af sidevæggene 4 og den 30 nedre del 14 af midterpladen 3. Dette stærke og koncentrerede elektriske felt fremkalder så store dielektriske tab i et eller flere af laminatmaterialet 9's lag, at de i laminatmaterialet indgående termo-plastiske lag kan bringes til at smelte og smelter 35 sammen til dannelse af koncentrerede forseglingszoner U9245 6 16, hvor laminatmaterialets lag får fast forbindelse med hinanden i en mekanisk solid sammenføjning.As shown in FIG. 1, the resonator 1 consists of two parallel metal side walls 4 connected to each other by means of a metal wall 5, on the central part of which is placed an intermediate metal plate 3. The spaces 2 between the side walls 4 and the central plate 3 form the resonator cavity, and the design of this cavity and the height and spacing of the side walls and the central plate are critical to the resonant frequency of the resonator, which should be adjusted to coincide with the frequency of operation of the food generator. The current and energy of the high frequency generator not shown here can be transmitted to the resonator by capacitive or inductive coupling or as shown in the drawing in that the center conductor 8 of a coaxial cable 6 connected to the generator is directly connected to the central plate 3 of the resonator 1, while the outer shield 7 of the coaxial cable is connected to one of the sidewalls 4. As mentioned in the preamble, a resonator can be considered a parallel resonant circuit, and at the resonant frequency, the inductor of the resonator and thus the magnetic field can be considered to be concentrated in the region 11 near the wall of the resonator. 5, while the capacitance of the resonator and its maximum electric field 20 can be considered to be concentrated at the open part of the resonator 12. When the packaging material 9 consisting of a laminate comprising a material with a suitable loss factor is placed at the open part of the resonator 1 and preferably pressed against it. part by means of an insulating counterplate 10, heat is generated in one or more of the laminate layer of the packaging material when portions of the packaging material are exposed to a highly concentrated, high frequency electric field which arises between the lower end 13 of the sidewalls 4 and the lower part 14 of the center plate 3. This strong and concentrated electric field produces such a large dielectric losses in one or more of the laminate material 9 layers, that the thermoplastic layers contained in the laminate material can be melted and fused together to form concentrated sealing zones U9245 6 16, where the layers of the laminate material are firmly connected to one another in a mechanical solid. joining.
For at kunne tilvejebringe en tilstrækkelig stor varmeafgivelse i laminatmaterialet på kort tid 5 kræves der et elektrisk felt med høj frekvens. Trods dette bliver resonatorens højde h i mange tilfælde alt for stor, hvilket er en ulempe bl.a. ved indbygning af anordningen i automatiske emballeringsmaskiner .In order to provide a sufficiently large heat release in the laminate material in a short time 5, a high frequency electric field is required. Despite this, the resonator height h in many cases becomes too large, which is a disadvantage ia. by incorporating the device into automatic packaging machines.
10 Den store højde af resonatoren ifølge fig. 1 kan reduceres væsentligt, hvis resonatoren i henhold til fig. 2 udstyres med et indlagt legeme 15 af ferromagnetisk materiale, fortrinsvis ferrit. Et sådant legeme 15 af ferromagnetisk materiale kan øge 15 induktansen i resonatoren, og hvis legemet 15 placeres på det sted, hvor magnetfeltet, dvs. H-feltet er størst, kommer det ferromagnetiske legemes bidrag til induktansen til at ændre resonatorens resonansfrekvens på en sådan måde, at resonatorens højde h 20 må reduceres for at resonatorens resonansfrekvens igen kan stemme overens med fødegeneratorens frekvens.10 The high altitude of the resonator of FIG. 1 can be substantially reduced if the resonator of FIG. 2 is provided with an inlay body 15 of ferromagnetic material, preferably ferrite. Such a body 15 of ferromagnetic material can increase the inductance of the resonator and if the body 15 is placed at the location where the magnetic field, i.e. The H field is greatest, the contribution of the ferromagnetic body to the inductance changes the resonant frequency of the resonator in such a way that the height h of the resonator must be reduced so that the resonant frequency of the resonator can again correspond to the frequency of the food generator.
Man opnår således den fordel, at resonatorens højde h kan begrænses, hvilket som tidligere nævnt er en fordel med hensyn til maskinekonstruktionen.Thus, the advantage is obtained that the height h of the resonator can be limited, which, as previously mentioned, is an advantage with regard to the machine construction.
25 En videre fordel som tidligere blev nævnt, og som udgør det egentlige mål ved den foreliggende opfindelse er, at man ved at ændre formagnetiseringen i det ferromagnetiske legeme 15 kan ændre induktansen og dermed også ændre resonatorens resonansfrekvens på en 30 sådan måde, at den altid er afpasset efter fødegeneratorens frekvens uafhængigt af, om det til forsegling anvendte materiales karakteristik eller dimensioner påvirker resonatoren på en sådan måde, at dens resonansfrekvens har tendens til at ændre sig. Formagne-35 tiseringen af legemet 15 kan f.eks. ske ved hjælp 149245 7 af en i legemet indført spole, som fødes fra en regulerbar jævnstrømskilde.A further advantage, as previously mentioned, which constitutes the real object of the present invention is that by altering the pre-magnetization in the ferromagnetic body 15 it is possible to change the inductance and thus also change the resonant frequency of the resonator in such a way that it always is adapted to the frequency of the food generator regardless of whether the characteristics or dimensions of the materials used for sealing affect the resonator in such a way that its resonant frequency tends to change. The shaping of the body 15 may e.g. is done by means of a coil introduced into the body which is fed from an adjustable direct current source.
For at kunne formagnetisere det ferromagnetiske legeme 15 bør resonatoren bestå af ikke-magnetisk 5 materiale såsom aluminium, messing eller rustfrist stål, og for yderligere at mindske resonatorens dimensioner kan det i visse tilfælde være hensigtsmæssigt at fylde hulrummene 2 med f.eks. olie, og i så fald må resonatorens åbne del tætlukkes med 10 et materiale, som har en så lav tabsfaktor, at det ved resonatorens åbne del optrædende elektriske felt ikke udvikler varme i dette materiale. En yderligere fordel ved at anvende en oliefyldt resonator er, at man undgår kondensdannelse eller dampdannelse inden 15 i resonatoren, hvilket er en fordel, eftersom kondenseller dampdannelse på resonatorens indre flader ændrer resonatorens elektriske egenskaber.In order to pre-magnetize the ferromagnetic body 15, the resonator should consist of non-magnetic material such as aluminum, brass or stainless steel, and in order to further reduce the dimensions of the resonator, it may be appropriate in some cases to fill the cavities 2 with e.g. oil, in which case the open part of the resonator must be sealed with a material which has such a low loss factor that the electric field occurring at the open part of the resonator does not generate heat in this material. A further advantage of using an oil-filled resonator is that condensation or vapor formation within the resonator is avoided, which is an advantage, since condensor vapor formation on the inner surfaces of the resonator alters the electrical properties of the resonator.
Som ovenfor nævnt kan det være fordelagtigt at anvende ferrit til legemet 15, som kan bestå af stave 20 med rektangulært eller cirkulært tværsnit, hvilke stave igen kan være sammensat af kortere stykker. For at holde ferritlegemet 15 på plads i resonatoren kan det hensigtsmæssigt fastgøres ved hjælp af et passende bindemiddel. Ferritmaterialerne har den 25 egenskab, at deres permeabilitet eller μ-værdi er en funktion af den magnetiske induktion B og den magnetiske feltstyrke H. Permeabiliteten er forskellig for forskellige materialer, og fig. 3 viser en karakteristisk hysteresekurve, som angiver relationen mel-30 lem den magnetiske induktion B, som er afsat på ordinataksen og den magnetiske felstyrke H, som er afsat på abscisseaksen.As mentioned above, it may be advantageous to use ferrite for the body 15, which may consist of rods 20 of rectangular or circular cross-section, which rods may again be composed of shorter pieces. To hold the ferrite body 15 in place in the resonator, it may conveniently be secured by a suitable binder. The ferrite materials have the property that their permeability or μ value is a function of the magnetic induction B and the magnetic field strength H. The permeability is different for different materials and Figs. 3 shows a characteristic hysteresis curve indicating the relationship between the magnetic induction B deposited on the ordinate axis and the magnetic field strength H deposited on the abscissa axis.
Ved den her beskrevne anordning magnetiseres det eller de ferromagnetiske legemer dels af en jævn-35 strømskomposant, som hidrører fra nævnte spoler eller 8 149245 elektromagneter, som fødes fra en regulerbar jævnstrømskilde, dels af en vekselstrømskomposant, som hidrører fra det højfrekvente magnetfelt. Ved at ændre jævnstrømskomposanten, dvs. formagnetiseringen ved 5 hjælp af spoler som er indlagt i ferriten eller ved hjælp af ydre elektromagneter, kan der vælges forskellige arbejdspunkter I, II, III på magnetiseringskurven, jvf. fig. 3. På hvert arbejdspunkt er der en såkaldt sidesløjfe 26, der grafisk repræsen-10 terer den vekselstrømsmagnetisering som overlejres på jævnstrømsmagnetiseringen og hældningen hos disse sidesløjfer 26 er et mål for permeabiliteten som er μ = tg ti.By the device described herein, the ferromagnetic body or bodies are magnetized either by a direct current component emanating from said coils or electromagnets fed from an adjustable direct current source and partly by an alternating current component emanating from the high frequency magnet. By changing the DC component, ie. the pre-magnetization by means of coils embedded in the ferrite or by external electromagnets, different working points I, II, III can be selected on the magnetization curve, cf. 3. At each work point there is a so-called side loop 26 which graphically represents the AC magnetization superimposed on the DC magnetization and the slope of these side loops 26 is a measure of the permeability which is µ = tg ti.
I punktet I er permeabiliteten μχ, som er 15 større end permeabiliteten Mjj* som igen er større end permeabiliteten Pjjj·At point I, the permeability is μχ, which is greater than the permeability Mjj * which in turn is greater than the permeability Pjjj ·
Eftersom induktansen øges med den magnetiske induktion i en kreds, kan man således ved ændring af den magnetiske induktion B i de indlagte ferritstave 20 også ændre induktanstilskuddet hos den med ferritstave udstyrede resonator. Dette kan man som vist gøre ved at formagnetisere ferritstavene ved hjælp af spoler eller jævnstrømsfødede elektromagneter, der i forhold til resonatoren og ferritstavene placeres som 25 vist i fig. 4-9. Ved formagnetisering af ferritstavene på den ovenfor angivne måde kan permeabiliteten hos materialet ændres. Med andre ord kan permeabiliteten hos materialet ændres ved hjælp af formagnetiseringen, som vælges på en sådan måde, at der på magne-30 tiseringskurven opnås et passende arbejdspunkt. Det er således muligt med en ydre påvirkning fra jævnstrøms fødede elektromagneter at ændre den magnetiske induktion i de indlagte ferritstave på en sådan måde, at induktansen ændrer sig, og det er derfor muligt i 35 de enkelte tilfælde at afstemme induktansværdien i 149245 9 resonatoren på en sådan måde, at dens resonansfrekvens stemmer overens med fødegeneratorens frekvens, selv om andre ydre faktorer, f.eks. det ved resonatorens åbne del anbragte, til forsegling bestemte laminatma-5 teriale, påvirker og ændrer resonatorens resonansfrekvens .Thus, since the inductance is increased by the magnetic induction in a circuit, by changing the magnetic induction B of the inlaid ferrite rods 20, the inductance addition of the resonator equipped with ferrite rods can also be changed. This can be done as shown by pre-magnetizing the ferrite rods by means of coils or DC-fed electromagnets placed relative to the resonator and ferrite rods as shown in FIG. 4-9. By pre-magnetizing the ferrite rods in the above manner, the permeability of the material may be altered. In other words, the permeability of the material can be altered by means of the pre-magnetization chosen in such a way that an appropriate working point is obtained on the magnetization curve. Thus, with an external influence from DC-fed electromagnets, it is possible to change the magnetic induction in the inserted ferrite rods in such a way that the inductance changes, and it is therefore possible in each case to adjust the inductance value of the resonator to a such that its resonant frequency matches the frequency of the food generator, although other external factors, e.g. the laminate material determined for sealing at the open portion of the resonator affects and changes the resonant frequency of the resonator.
Som tidligere nævnt viser fig. 4-9 tre i praksis anvendelige udførelsesformer for en afstemmelig resonator ifølge opfindelsen, og for overskuelighedens 10 skyld er der i fig. 4-9 anvendt de samme henvisningsbetegnelser som i fig. 1 og 2. Den i fig. 4 viste resonator er som de øvrige udførelsesformer forsynet med indlagte stave 15 af ferritmateriale i det indre af resonatoren på det sted, hvor den magnetiske 15 feltstyrke er maksimal. På resonatorens ydre sider er der som vist i fig. 4 anbragt elektromagneter 17 med form som hestesko, hvilke elektromagneter har magnetiseringsviklinger 18. Fig. 5, som er et snit langs snitlinien A-A i fig. 4, viser, hvorledes magne-20 terne er anbragt langs resonatorens sider, og magnetiseringsspolerne 18 kan være seriekoblede eller parallelkoblede, men skal i hvert fald være tilsluttet en jævnstrømskilde, der gennem en resonansfrekvensen affølende regulator kan afstemme resonatorens induk-25 tans på en sådan måde, at resonatorens resonansfrekvens altid stemmer overens med fødegeneratorens frekvens.As previously mentioned, FIG. 4-9 three practical embodiments of a tunable resonator according to the invention, and for the sake of clarity 10, FIG. 4-9 used the same reference numerals as in FIG. 1 and 2. The embodiment of FIG. 4, like the other embodiments, is provided with inlaid rods 15 of ferrite material in the interior of the resonator at the point where the magnetic field strength is maximal. On the outer sides of the resonator, as shown in FIG. 4, electromagnets 17 are arranged as horseshoes, which electromagnets have magnetizing windings 18. FIG. 5, which is a section along section line A-A of FIG. 4, shows how the magnets 20 are arranged along the sides of the resonator, and the magnet coils 18 can be connected in series or in parallel, but must at least be connected to a direct current source which, through a resonant frequency regulator, can tune the inductor of the resonator to such way that the resonant frequency of the resonator always matches the frequency of the food generator.
Fig. 6, som er et snit langs snitlinien B-B i fig. 7, viser en anden udførelsesform for resona-30 toren, hvor de indlagte ferritstave 15 har et cirkulært tværsnit, og hvor elektromagneten er placeret centralt på resonatorens væg 5 ved hjælp af et antal ben 21 af magnetisk materiale, der er fikseret til og fortrinsvis boret ind i væggen 5.FIG. 6, which is a section along section line B-B of FIG. 7 shows another embodiment of the resonator, wherein the inserted ferrite rods 15 have a circular cross section and the electromagnet is located centrally on the resonator wall 5 by means of a plurality of pins 21 of magnetic material which are fixed to and preferably drilled. into the wall 5.
35 Nævnte ben 21 bærer et fælles åg 19, på hvilket 14 9 2 A 5 10 er anbragt et antal magnetiseringsspoler 20, der gennem en regulator kan tilsluttes en jaevnstrømskilde.Said leg 21 carries a common yoke 19 on which 14 9 2 A 5 10 is arranged a plurality of magnet coils 20 which can be connected through a regulator to a DC power source.
Den i fig. 8 viste udførelsesform kan nærmest karakteriseres som en U-formet magnetkrop, som er så 5 lang, at dens ben 22 omslutter resonatoren 1, som desuden er udstyret med indlagte ferritstave 15. Elektromagnetens åg 23 bærer et antal magnetiseringsspoler 24, der på samme måde som i de foregående tilfælde kan være seriekoblede eller parallelkoblede 10 og er forbundet med en regulator, som tjener til regulering af strømmen gennem magnetiseringsspolerne på en sådan måde, at de i resonatoren indlagte ferritstave 15 kan formagnetiseres med henblik på regulering af resonatorens induktans og dermed tilpasning 15 af dens resonansfrekvens til fødegeneratorens frekvens .The FIG. 8 can almost be characterized as a U-shaped magnetic body which is so long that its leg 22 encloses the resonator 1, which is furthermore equipped with inlaid ferrite rods 15. The yoke 23 of the electromagnet carries a number of magnetizing coils 24 which, in the same way as in the foregoing cases, they may be connected in series or in parallel 10 and are connected to a regulator which serves to regulate the current through the magnet coils in such a way that the ferrite rods 15 inserted in the resonator can be pre-magnetized to control the inductance of the resonator and thus adaptation 15 of its resonant frequency to the frequency of the food generator.
Det har ved forsøg vist sig, at resonatoren ifølge opfindelsen fungerer tilfredsstillende, og at det er muligt med stor nøjagtighed at afstemme reso-20 natorens frekvens på en sådan måde, at der opnås et maksimalt energiudbytte og dermed et tilfredsstillende forseglingsresultat.It has been found in experiments that the resonator according to the invention functions satisfactorily and that it is possible to adjust with great accuracy the frequency of the resonator in such a way as to obtain a maximum energy yield and thus a satisfactory sealing result.
I de her beskrevne udførelseseksempler har man kun behandlet sådanne resonatorer, som anvendes i 25 . forbindelse med forseglingsapparater ved emballeringsmaskiner og kun resonatorer af typen koaksialli-nieresonator. Opfindelsens idé kan imidlertid finde anvendelse på andre typer resonatorer, f.eks. hulrums-resonatorer, eftersom placeringen af ferritelementerne 30 kan tilpasses resonatorens fysiske egenskaber og lokaliseres til de dele af resonatoren, hvor den magnetiske feltstyrke og dermed induktansen er maksimal. Opfindelsen kan også tænkes anvendt i forbindelse med resonatorer, som ikke anvendes til forsegling af em-35 balleringsmateriale eller til frembringelse af varme i tynde laminatlag, men til andre formål. Den idé,In the embodiments described herein, only such resonators have been treated as used in 25. connection with sealing devices by packaging machines and only coaxial resonator type resonators. However, the idea of the invention may apply to other types of resonators, e.g. cavity resonators, since the location of the ferrite elements 30 can be adapted to the physical properties of the resonator and localized to those parts of the resonator where the magnetic field strength and hence the inductance are maximal. The invention may also be used in conjunction with resonators which are not used for sealing the packaging material or for generating heat in thin laminate layers, but for other purposes. That idea,
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7703172 | 1977-03-21 | ||
SE7703172A SE403414B (en) | 1977-03-21 | 1977-03-21 | RESONATOR EQUIPPED WITH DEVICE FOR ADJUSTING THE RESONANCE FREQUENCY AND DEVICE FOR CREATING DIELECTRIC HEATING IN THIN FOILS |
Publications (3)
Publication Number | Publication Date |
---|---|
DK123978A DK123978A (en) | 1978-09-22 |
DK149245B true DK149245B (en) | 1986-04-01 |
DK149245C DK149245C (en) | 1986-11-03 |
Family
ID=20330779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK123978A DK149245C (en) | 1977-03-21 | 1978-03-20 | HF RESONATOR WITH ADJUSTABLE RESONANCE FREQUENCY |
Country Status (16)
Country | Link |
---|---|
JP (1) | JPS53116758A (en) |
AT (1) | AT378448B (en) |
AU (1) | AU515562B2 (en) |
BE (1) | BE865157A (en) |
BR (1) | BR7801708A (en) |
CH (1) | CH625086A5 (en) |
DE (1) | DE2811319C3 (en) |
DK (1) | DK149245C (en) |
ES (2) | ES468059A1 (en) |
FI (1) | FI780865A (en) |
FR (1) | FR2385231A1 (en) |
GB (1) | GB1597873A (en) |
IT (1) | IT1093368B (en) |
NL (1) | NL7802774A (en) |
NO (1) | NO148578C (en) |
SE (1) | SE403414B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2934673A1 (en) * | 1979-08-28 | 1981-03-12 | Brdr. Schur International A/S, Horsens | BAG PACK FOR AROMATIZED FILLING GOODS AND METHOD FOR PRODUCING THE PACK. |
DE3834984A1 (en) * | 1988-10-14 | 1990-04-19 | Leybold Ag | DEVICE FOR GENERATING ELECTRICALLY CHARGED AND / OR UNCHARGED PARTICLES |
DE102014003868A1 (en) * | 2013-05-24 | 2014-11-27 | Kiefel Gmbh | High-frequency oscillator, high-frequency welding system and method for frequency control with such a high-frequency oscillator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH489145A (en) * | 1968-03-25 | 1970-04-15 | Siemens Ag | Electrical circuit arrangement with controllable components |
US3653054A (en) * | 1970-10-28 | 1972-03-28 | Rca Corp | Symmetrical trough waveguide antenna array |
US3646486A (en) * | 1970-10-28 | 1972-02-29 | Rca Corp | Gyromagnetic isolator wherein even mode components are converted to odd mode components by biased ferrite |
-
1977
- 1977-03-21 SE SE7703172A patent/SE403414B/en not_active IP Right Cessation
-
1978
- 1978-03-14 NL NL7802774A patent/NL7802774A/en not_active Application Discontinuation
- 1978-03-15 GB GB10313/78A patent/GB1597873A/en not_active Expired
- 1978-03-16 DE DE2811319A patent/DE2811319C3/en not_active Expired
- 1978-03-16 IT IT21290/78A patent/IT1093368B/en active
- 1978-03-16 AT AT0186878A patent/AT378448B/en not_active IP Right Cessation
- 1978-03-17 AU AU34251/78A patent/AU515562B2/en not_active Expired
- 1978-03-20 JP JP3227478A patent/JPS53116758A/en active Granted
- 1978-03-20 CH CH302978A patent/CH625086A5/en not_active IP Right Cessation
- 1978-03-20 DK DK123978A patent/DK149245C/en not_active IP Right Cessation
- 1978-03-20 ES ES468059A patent/ES468059A1/en not_active Expired
- 1978-03-20 FI FI780865A patent/FI780865A/en not_active Application Discontinuation
- 1978-03-20 BR BR7801708A patent/BR7801708A/en unknown
- 1978-03-20 NO NO781000A patent/NO148578C/en unknown
- 1978-03-20 FR FR7807939A patent/FR2385231A1/en active Granted
- 1978-03-21 BE BE186154A patent/BE865157A/en not_active IP Right Cessation
- 1978-05-18 ES ES469981A patent/ES469981A1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
BR7801708A (en) | 1979-01-02 |
DE2811319B2 (en) | 1980-04-30 |
NO781000L (en) | 1978-09-22 |
FI780865A (en) | 1978-09-22 |
AU3425178A (en) | 1979-09-20 |
DE2811319C3 (en) | 1980-12-18 |
ES468059A1 (en) | 1978-12-01 |
FR2385231B1 (en) | 1983-06-10 |
DK149245C (en) | 1986-11-03 |
ES469981A1 (en) | 1979-04-01 |
JPS53116758A (en) | 1978-10-12 |
CH625086A5 (en) | 1981-08-31 |
IT1093368B (en) | 1985-07-19 |
GB1597873A (en) | 1981-09-16 |
DK123978A (en) | 1978-09-22 |
FR2385231A1 (en) | 1978-10-20 |
SE403414B (en) | 1978-08-14 |
IT7821290A0 (en) | 1978-03-16 |
NO148578B (en) | 1983-07-25 |
ATA186878A (en) | 1984-12-15 |
JPS6131599B2 (en) | 1986-07-21 |
DE2811319A1 (en) | 1978-10-12 |
BE865157A (en) | 1978-07-17 |
AU515562B2 (en) | 1981-04-09 |
NO148578C (en) | 1983-11-02 |
AT378448B (en) | 1985-08-12 |
NL7802774A (en) | 1978-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2419945C2 (en) | Device and method of wireless transfer of energy and/or data between device-source and target device | |
EP1741113B1 (en) | A device and method of non-contact energy transmission | |
KR101971753B1 (en) | A transmitter for an inductive power transfer system | |
US5025489A (en) | Transformer having shielding wall for driving a magnetron | |
KR960015614A (en) | Electron Tuning Matching Network Using Adjustable Inductance Elements | |
US20050258926A1 (en) | Coil arrangement and method for its manufacture | |
US20040119577A1 (en) | Coil arrangement with variable inductance | |
KR101003933B1 (en) | Transformer core comprising magnetic shielding | |
GB2062427A (en) | Electromagnetic sealing device | |
EP3198620A1 (en) | Transmitter for inductive power transfer system | |
DK149245B (en) | HF RESONATOR WITH ADJUSTABLE RESONANCE FREQUENCY | |
US2158613A (en) | High frequency inductance coil | |
EP0979521B1 (en) | Planar magnetic component with transverse winding pattern | |
US20200234867A1 (en) | Integrated Magnetic Component | |
US4740663A (en) | Transverse flux induction heating unit | |
NO134972B (en) | ||
US2599086A (en) | Induction heating | |
US3334267A (en) | Ferrite tuned cavity stabilized magnetron | |
US3124726A (en) | Howland | |
US2505104A (en) | Method of making electrical coils | |
US3259861A (en) | Adjustable inductors | |
US3806690A (en) | Case hardening arrangement utilizing high q tuned circuit | |
US3093803A (en) | Filter having lumped resonance elements spaced along length of shielding enclosure, with adjustable magnetic coupling between elements | |
US2100162A (en) | Magnetron discharge tube apparatus | |
US2433004A (en) | Radio-frequency transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |