DK147602B - PROCEDURE FOR PREPARING COENZYM Q - Google Patents

PROCEDURE FOR PREPARING COENZYM Q Download PDF

Info

Publication number
DK147602B
DK147602B DK389078AA DK389078A DK147602B DK 147602 B DK147602 B DK 147602B DK 389078A A DK389078A A DK 389078AA DK 389078 A DK389078 A DK 389078A DK 147602 B DK147602 B DK 147602B
Authority
DK
Denmark
Prior art keywords
coenzyme
acetate
pseudomonas
cells
atcc
Prior art date
Application number
DK389078AA
Other languages
Danish (da)
Other versions
DK389078A (en
DK147602C (en
Inventor
Ko Aida
Kinya Uchida
Izumi Kawada
Hideichi Ito
Original Assignee
Ko Aida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10593977A external-priority patent/JPS5455787A/en
Application filed by Ko Aida filed Critical Ko Aida
Publication of DK389078A publication Critical patent/DK389078A/en
Publication of DK147602B publication Critical patent/DK147602B/en
Application granted granted Critical
Publication of DK147602C publication Critical patent/DK147602C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/66Preparation of oxygen-containing organic compounds containing the quinoid structure

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

147602147602

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af Coenzym Q, hvor man dyrker en mikroorganisme, der hører til slægten Pseudomonas, og som er i stand til at producere Coenzym Q, i et dyrkningssubstrat og isolerer det producerede Coenzym Q.The present invention relates to a process for producing Coenzyme Q, in which a microorganism belonging to the genus Pseudomonas, which is capable of producing Coenzyme Q, is grown in a culture substrate and isolates the Coenzyme Q produced.

Ved udtrykket "Coenzym Q", anvendt i den foreliggende beskrivelse med krav, skal alment forstås 2,3-dimethoxy-5-methyl-l,4-benzoquinoner indeholdende en isopren-sidekæde i quinonkernens 6-stilling repræsenteret ved den almene formel 147602 2The term "Coenzyme Q", used in the present specification with claims, is generally understood to mean 2,3-dimethoxy-5-methyl-1,4-benzoquinones containing an isoprene side chain at the 6-position of the quinone nucleus represented by the general formula.

OISLAND

H3COV/^V\/CH3 H,CO''A''Vw^NcH -CH=C -CH~·)- H 3 2 | 2 n O CH3 hvori n = 8, 9 og 10, dvs. Coenzym Qg, Coenzym Qg og Coenzym Q^q-H3COV / ^ V \ / CH3 H, CO''A''Vw ^ NcH -CH = C -CH ~ ·) - H 3 2 | 2 n O CH 3 wherein n = 8, 9 and 10, i.e. Coenzyme Qg, Coenzyme Qg and Coenzyme Q

Coenzym Q findes vidt udbredt i dyr, planter og mikroorganismer osv. og spiller en vigtig rolle som et væsentligt element i det endestillede elektronoverførselssystem.Coenzyme Q is widely used in animals, plants and microorganisms, etc. and plays an important role as an essential element of the end-of-life electron transfer system.

For nylig er det blevet klarlagt, at Coenzym Q udøver udmærket medicinsk og fysiologisk virkning over for forskellige sygdomme. Specielt betragtes Coenzym Q1Q som i høj grad værdifuldt som lægemiddel, da Coenzym Q hos mennesker er CoenzymRecently, it has been established that Coenzyme Q exerts excellent medical and physiological effects on various diseases. In particular, Coenzyme Q1Q is considered highly valuable as a drug, as Coenzyme Q in humans is Coenzyme.

Man kan opnå Coenzym Q ved at ekstrahere det fra dyre-eller planteceller eller mikroorganismer eller ved at syntetisere det kemisk. Det er imidlertid vanskeligt at fremstille Coenzym Q ved at ekstrahere dyre- eller planteceller i stor målestok. Det er også vanskeligt at fremstille Coenzym Q ved organisk syntese, da man har en ulemper i form af dårlige udbytter. Således er disse fremgangsmåder ikke tilfredsstillende til industrielle formål. At ekstrahere Coenzym Q fra mikroorganismer er således mest attraktivt set fra et økonomisk synspunkt.Coenzyme Q can be obtained by extracting it from animal or plant cells or microorganisms or by chemically synthesizing it. However, it is difficult to produce Coenzyme Q by extracting large-scale animal or plant cells. It is also difficult to prepare Coenzyme Q by organic synthesis, since one has a disadvantage in the form of poor yields. Thus, these processes are not satisfactory for industrial purposes. Extracting Coenzyme Q from microorganisms is thus most attractive from an economic point of view.

Det er velkendt, at mikroorganismer, der hører til slægten Pseudomonas, producerer Coenzym Qg, Qg og Q^q, og at p-hydroxy-benzoesyre og eddikesyre og saltene heraf er i stand til at forøge indholdet af Coenzym Q pr. celleenhed, dersom de sættes til dyrkningssubstratet (japansk patentbeskrivelse nr. 20396/1972). Det er velkendt, at isoprensidekæden i Coenzym Q fremstilles gennem geranyl- og farnesylpyrophosphat ved biosynteser, i hvilke kondensationen af isopentenyl- og dimethylallylpyrophosphat gentages.It is well known that microorganisms belonging to the genus Pseudomonas produce Coenzyme Qg, Qg and Q ^ q, and that p-hydroxybenzoic acid and acetic acid and its salts are capable of increasing the content of Coenzyme Q cell unit if added to the culture substrate (Japanese Patent Specification No. 20396/1972). It is well known that the isoprene side chain in Coenzyme Q is prepared through geranyl and farnesyl pyrophosphate by biosynthesis in which the condensation of isopentenyl and dimethylallyl pyrophosphate is repeated.

Da disse precursorer imidlertid er vanskelige at få til at trænge gennem cellemembranen, har man ikke berettet om forsøg på at forøge indholdet af Coenzym Q ved at tilsætte sådanne precursorer til dyrkningssubstratet.However, since these precursors are difficult to penetrate through the cell membrane, no attempt has been made to increase the content of Coenzyme Q by adding such precursors to the culture substrate.

3 1476023 147602

Det har nu vist sig, at isopentenylalkohol, dimethylallylal-kohol, geraniol, isopentenylacetat, dimethylallylacetat, geranylace-tat og β-methylcrotonsyre let kan bruges af mikroorganismer hørende til slægten Pseudomonas, dersom de sættes til dyrkningssubstratet, og at de er i stand til væsentligt at forøge indholdet af Coenzym Q pr. celleenhed.It has now been found that isopentenyl alcohol, dimethylallyl alcohol, geraniol, isopentenyl acetate, dimethylallyl acetate, geranyl acetate and β-methylcrotonic acid can be readily used by microorganisms belonging to the genus Pseudomonas if they are added to the culture substrate and are substantially capable of to increase the content of Coenzyme Q per cell unit.

Fremgangsmåden ifølge opfindelsen til fremstilling af Coenzym Q er i overensstemmelse hermed ejendommelig ved, at der er sat mindst én forbindelse valgt fra gruppen bestående af isopentenylalkohol, dimethylallylalkohol, geraniol, isopentenylacetat, dimethylallylacetat, geranylacetat og Ø-methylcrotonsyre til dyrkningssubstratet .The process of the invention for the preparation of Coenzyme Q is accordingly characterized in that at least one compound selected from the group consisting of isopentenyl alcohol, dimethylallyl alcohol, geraniol, isopentenyl acetate, dimethylallyl acetate, geranyl acetate and o-methylcrotonic acid is added to the culture substrate.

En vilkårlig af mikroorganismerne hørende til slægten Pseudomonas og i stand til at producere Coenzym Q kan anvendes ved fremgangsmåden ifølge den foreliggende opfindelse. Eksempler på mikroorganismer, der er i stand til at producere Coenzym Q^q» er Pseudomonas diminuta ATCC 11568 (IAM-1513), på dem, som er i stand til at producere Coenzym Qg, Pseudomonas schuylkilliensis ATCC 31419 (IAM-1126), Pseudomonas denitrificans ATCC 13867 (IAM-12023), Pseudomonas olevorans ATCC 8062 (IAM-1508) og Pseudomonas putre-faciens ATCC 8071 (IAM-1509), og på dem, som er i stand til at producere Coenzym Qg, Pseudomonas rubescens ATCC 12099 (IAM-1510), Pseudomonas fulva ATCC 31418 (IAM-1529) og Pseudomonas putida ATCC 4359 (IAM-1506).Any of the microorganisms belonging to the genus Pseudomonas and capable of producing Coenzyme Q can be used in the method of the present invention. Examples of microorganisms capable of producing Coenzyme Q Q q are Pseudomonas diminuta ATCC 11568 (IAM-1513), of those capable of producing Coenzyme Qg, Pseudomonas schuylkilliensis ATCC 31419 (IAM-1126), Pseudomonas denitrificans ATCC 13867 (IAM-12023), Pseudomonas olevorans ATCC 8062 (IAM-1508) and Pseudomonas putre-faciens ATCC 8071 (IAM-1509), and on those capable of producing Coenzym Qg, Pseudomonas rubescens ATCC 12099 (IAM-1510), Pseudomonas fulva ATCC 31418 (IAM-1529) and Pseudomonas putida ATCC 4359 (IAM-1506).

I dyrkningssubstratet, der anvendes ved udførelsen af fremgangsmåden ifølge opfindelsen, kan sukkerarter som glucose, melasse osv., og vilkårlige andre carbonkilder, som disse mikroorganismer er i stand til at udnytte., anvendes som carbonkilder. Uorganiske nitrogenforbindelser, som f. eks. ammoniumsulfat, ammoniumchlorid og lignende, organiske nitrogenforbindelser som majsstøbevæske, ekstrakter af fiskekød, pepton, gærekstrakt og lignende kan anvendes som nitrogenkilder. Yderligere kan tilsættes uorganiske salte som kaliumsalte, natriumsalte, magnesiumsalte, salte af phosphorsyre og svovlsyre og lignende.In the culture substrate used in carrying out the process of the invention, sugars such as glucose, molasses, etc., and any other carbon sources which these microorganisms are capable of utilizing, can be used as carbon sources. Inorganic nitrogen compounds such as, for example, ammonium sulfate, ammonium chloride and the like, organic nitrogen compounds such as corn molding liquid, fish meat extracts, peptone, yeast extract and the like can be used as nitrogen sources. In addition, inorganic salts such as potassium salts, sodium salts, magnesium salts, phosphoric and sulfuric acid salts and the like may be added.

Dyrkningen udføres sædvanligvis under omrøring med luft ved pH 4-8, ved en tanperatur på 25-35°C og i løbet af 10-50 timer.Cultivation is usually carried out with stirring with air at pH 4-8, at a temperature of 25-35 ° C and within 10-50 hours.

Tilsætningen af isopentenylalkohol, dimethylallylalkohol, geraniol, isopentenylacetat, dimethylallylacetat, geranylacetat og 4 147602 (3-methylcrotonsyre ved fremgangsmåden ifølge den foreliggende opfindelse kan udføres ved enhver ønsket fremgangsmåde og til enhver ønsket tid. F. eks. kan hele mængden af tilsætningsstof sættes til ved begyndelsen eller ved et bestemt vækststadie under dyrkningen, eller man kan tilsætte lidt efter lidt afhængig af forgæringens fremadskriden. Yderligere kan tilsætningsstoffet anvendes alene eller sammen med andre tilsætningsstoffer. Mængden af tilsætningsstof, -5 —3 der tilsættes, er sædvanligvis 1x10 til 5x10 mol/liter (som slut- -5 -4 koncentration), fortrinsvis 5x10 til 5x10 mol/liter.The addition of isopentenyl alcohol, dimethyl allyl alcohol, geraniol, isopentenyl acetate, dimethyl allyl acetate, geranyl acetate and 4-147602 (3-methylcrotonic acid in the process of the present invention can be carried out by any desired process and at any desired time. For example, the entire amount of additive can be added the additive can be used alone or with other additives The amount of additive, -5 - 3 added, is usually 1x10 to 5x10 mol / s. per liter (as final -5 -4 concentration), preferably 5x10 to 5x10 mol / liter.

Efter dyrkningen ekstraheres det dannede Coenzym Q fra cellerne og skilles fra det andet materiale. F. eks. ekstraheres de ved centrifugering opnåede våde celler med et hydrofilt opløsningsmiddel som f. eks. acetone og lignende; herefter overføres den Coenzym Q-holdige fraktion til et opløsningsmiddel, som f. eks. petro-, leumsether og lignende; den Coenzym Q-holdige fraktion underkastes fraktioneret rensning ved hjælp af aluminiumoxidsøjle osv., hvorved Coenzym Q kan isoleres.After culture, the Coenzyme Q formed is extracted from the cells and separated from the other material. For example, the wet cells obtained by centrifugation are extracted with a hydrophilic solvent such as, for example, acetone and the like; then the Coenzyme Q-containing fraction is transferred to a solvent such as, for example, petro, leum ether and the like; the Coenzyme Q-containing fraction is subjected to fractional purification by alumina column, etc., whereby Coenzym Q can be isolated.

Ved den foreliggende opfindelse udføres identificeringen af Coenzym Q ved at sammenligne det omhandlede produkt med en standardprøve ved hjælp af UV-spektrum, måling af smeltepunkt og omvendt fase-tyndtlagschromatografi, i hvilket en blanding af acetone:vand (95:5) anvendes som opløsningsmiddel·In the present invention, the identification of Coenzyme Q is performed by comparing the subject product to a standard sample by UV spectrum, melting point measurement and reverse phase thin layer chromatography, in which a mixture of acetone: water (95: 5) is used as solvent. ·

De følgende eksempler er givet for nærmere at forklare fremgangsmåden ifølge opfindelsen.The following examples are given to further explain the method of the invention.

Eksempel 1 i en 30-liters fermentor anbragtes 15 liter af et dyrkningssubstrat (pH 7,0) indeholdende 0,05% KH2P04, 0,15% NA2HP04, 0,05% MgS04,7H20, 1% glucose, 1% pepton og 0,2% gsrekstrakt. Efter steril-lisering med damp tilsattes 645 mg isopentenylalkohol opløst i 10 ml ethanol. Pseudomonas schuylkilliensis ATCC 31419 (IAM-1126), der først var dyrket i 500 ml af dyrkningssubstratet, der havde den samme sammensætning som beskrevet ovenfor, i 24 timer, podedes i det ovenfor nævnte dyrkningssubstrat og dyrkedes i 24 timer med gennem-luftning på 15 liter/minut ved 27°C.Example 1 in a 30-liter fermentor was placed 15 liters of a culture substrate (pH 7.0) containing 0.05% KH2PO4, 0.15% NA2HPO4, 0.05% MgSO4.7H20, 1% glucose, 1% peptone and 0 , 2% yeast extract. After steam sterilization, 645 mg of isopentenyl alcohol dissolved in 10 ml of ethanol was added. Pseudomonas schuylkilliensis ATCC 31419 (IAM-1126) first grown in 500 ml of the culture substrate having the same composition as described above for 24 hours, seeded in the above culture substrate and grown for 24 hours with aeration of 15 liter / minute at 27 ° C.

Efter dyrkning centrifugeredes dyrkningsbouillonen, hvorved man opnåede 418 g våde celler (87 g i form af tørre celler).After culture, the culture broth was centrifuged to obtain 418 g of wet cells (87 g in the form of dry cells).

5 1476025 147602

De våde celler sattes til 2 liter acetone, og man ekstraherede under omrøring. Cellerne fraskiltes ved centrifugering. Denne fremgangsmåde gentoges to gange endnu. Acetoneekstrakterne sloges sammen, hvorefter man inddampede under reduceret tryk for at fjerne acetonen. Herefter ekstraheredes den tilbageblevne opløsning tre gange med 1 liter petroleumsether pr. gang, og de herved fremkomne petroleumsetherlag sloges sammen. De forenede petroleumsetherlag vaskedes med vand, tørredes og kondenseredes under reduceret tryk.The wet cells were added to 2 liters of acetone and extracted with stirring. The cells were separated by centrifugation. This procedure was repeated twice more. The acetone extracts were combined, then evaporated under reduced pressure to remove the acetone. Thereafter, the residual solution was extracted three times with 1 liter of petroleum ether per ml. time, and the resulting petroleum ether layers were combined. The combined petroleum ether layers were washed with water, dried and condensed under reduced pressure.

Den tilbageblevne olie opløstes i en ringe mængde petroleumsether, hvorefter man chromatograferede på en aluminiumoxidsøjle ved elue-ring med en blanding af petroleumsether og ethylether. Man afdestillerede opløsningsmidlet fra det ovenfor opnåede eluat indeholdende Coenzym Q. Den tilbageblevne olie opløstes i en ringe mængde ethanol, hvorefter man lod den henstå i køleskab, hvorved der udkrystalliseredes krystaller af Coenzym Qg. Disse krystaller omkrystalliseredes med ethanol tre gange, hvorved man opnåede 142,6 mg krystaller af Coenzym Qg.The residual oil was dissolved in a small amount of petroleum ether and then chromatographed on an alumina column by elution with a mixture of petroleum ether and ethyl ether. The solvent was distilled off from the above obtained eluate containing Coenzyme Q. The residual oil was dissolved in a small amount of ethanol and then left to refrigerate to crystallize crystals of Coenzyme Qg. These crystals were recrystallized with ethanol three times to give 142.6 mg of Coenzyme Qg crystals.

På den anden side udførtes den samme dyrkning som ovenfor under anvendelse af 15 liter af et dyrkningssubstrat, til hvilke der ikke var sat isopentenylalkohol. På samme måde som ovenfor fik man 359 g våde celler (69 g i form af tørre celler). Yderligere anvendte man den samme fremgangsmåde som ovenfor, hvorved man fik 81,42 mg krystaller af Coenzym Qg.On the other hand, the same culture as above was performed using 15 liters of a culture substrate to which no isopentenyl alcohol was added. As above, 359 g of wet cells were obtained (69 g of dry cells). Further, the same procedure was used as above to obtain 81.42 mg of Coenzyme Qg crystals.

Ud fra de ovenfor anførte data beregnedes virkningen af isopentenylalkohol på fremstillingen af Coenzym Qg. Tilsætning af isopentenylalkohol til dyrkningssubstratet forøgede udbyttet af Coenzym Qg pr. liter bouillon med 75%, og med 39% pr. g tørre celler.From the above data, the effect of isopentenyl alcohol on the preparation of Coenzyme Qg was calculated. Addition of isopentenyl alcohol to the culture substrate increased the yield of Coenzyme Qg per ml. liter of broth with 75% and 39% per liter. g dry cells.

Det blev således klart bekræftet, at tilsætningen af isopentenylalkohol var virksom til forøgelse af udbyttet af Coenzym Qg.Thus, it was clearly confirmed that the addition of isopentenyl alcohol was effective in increasing the yield of Coenzyme Qg.

Eksempel 2Example 2

Man fulgte fremgangsmåden fra eksempel 1 bortset fra, at 1,16 g geraniol anvendtes i stedet for isopentenylalkohol, og herved opnåede man 390 mg våde celler (68 g i form af tørre celler).The procedure of Example 1 was followed except that 1.16 g of geraniol was used instead of isopentenyl alcohol to give 390 mg of wet cells (68 g in the form of dry cells).

De våde celler underkastedes samme procedure som beskrevet i eksempel 1, og man opnåede 104,7 mg krystaller af Coenzjty Qg.The wet cells were subjected to the same procedure as described in Example 1 and 104.7 mg of Coenzjty Qg crystals were obtained.

På den anden side dyrkedes den samme mikroorganisme under anvendelse af et dyrkningssubstrat, til hvilket der ikke var sat 147602 6 geraniol. Man opnåede 327 g våde celler (63 g i form af tørre celler). Fra cellerne opnåedes 74,3 mg krystaller af Coenzym .On the other hand, the same microorganism was grown using a culture substrate to which no geraniol was added. 327 g of wet cells (63 g in the form of dry cells) were obtained. From the cells, 74.3 mg of crystals of Coenzyme were obtained.

Ud fra de ovenfor givne data undersøgtes virkningen af geraniol på fremstillingen af Coenzym Qg. Tilsætning af geraniol til dyrkningssubstratet forøgede udbyttet af Coenzym Q_ med 41% pr. li- y ler dyrkningsbouillon og med 30% pr. g. tørre celler.From the data given above, the effect of geraniol on the preparation of Coenzyme Qg was investigated. Addition of geraniol to the culture substrate increased the yield of Coenzyme Q lil cultivation broth and with 30% per. g. dry cells.

Eksempel 3Example 3

Pseudomonas rubescens ATCC 12099 (IAM-1510) dyrkedes i det samme dyrkningssubstrat og på samme måde som beskrevet i eksempel 2, hvorved man opnåede 410 g våde celler (73 gi form af tørre celler). Disse behandledes på samme måde som beskrevet i eksempel l, og man opnåede 58,4 mg Coenzym Qg.Pseudomonas rubescens ATCC 12099 (IAM-1510) was grown in the same culture medium and in the same manner as described in Example 2 to give 410 g of wet cells (73 g in the form of dry cells). These were treated in the same manner as described in Example 1 and 58.4 mg of Coenzyme Qg were obtained.

På den anden side dyrkedes mikroorganismer i det samme dyrkningssubstrat som ovenfor, bortset fra at intet geraniol var tilsat. Man opnåede 390 g våde celler (74 g i form af tørre celler). Ud fra cellerne opnåedes 44,4 mg Coenzym Qg.On the other hand, microorganisms were grown in the same culture substrate as above, except that no geraniol was added. 390 g of wet cells were obtained (74 g in the form of dry cells). From the cells 44.4 mg of Coenzyme Qg were obtained.

Ud fra de ovenfor nævnte data foretog man samme sammenligning som i eksempel 1. Tilsætning af geraniol til et dyrkningssubstrat forøgede udbyttet af Coenzym Qg med 32% pr. liter dyrkningsbouillon og 33% pr. g tørre celler.From the above mentioned data, the same comparison was made as in Example 1. Addition of geraniol to a culture medium increased the yield of Coenzyme Qg by 32% per ml. liters of culture broth and 33% per liter. g dry cells.

Eksempel 4Example 4

Pseudomonas diminuta ATCC 11568 (IAM-1513) dyrkedes ved samme fremgangsmåde som i eksempel 1 bortset fra at natriumacetat anvendtes i stedet for glucose ved sammensætningen af substratet, og man tilsatte for sig tre 300 mg fraktioner isopentenylalkohol (totalmængde på 900 mg). På denne måde opnåede man 380 g våde celler (69 g i form af tørre celler), som herefter underkastedes samme behandling som i eksempel 1, hvorved man opnåede 30,5 mg krystaller af Coenzym .Pseudomonas diminuta ATCC 11568 (IAM-1513) was grown by the same procedure as in Example 1 except that sodium acetate was used instead of glucose in the composition of the substrate, and three 300 mg fractions of isopentenyl alcohol (900 mg total) were added separately. In this way, 380 g of wet cells (69 g in the form of dry cells) were obtained, which were then subjected to the same treatment as in Example 1 to give 30.5 mg of crystals of Coenzyme.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, til hvilket intet isopentenylalkohol var tilsat.On the other hand, the same microorganism was grown in the culture substrate to which no isopentenyl alcohol was added.

Man opnåede 320 g våde celler (61 g i form af tørre celler), ud fra hvilke man opnåede 19,8 mg krystaller af Coenzym Q^q.320 g of wet cells (61 g in the form of dry cells) were obtained, from which 19.8 mg crystals of Coenzyme Q ^ q were obtained.

Ud fra de ovenfor angivne data foretoges samme sammenligning som i eksempel 1. Tilsætningen af isopentenylalkohol forøgede udbyttet af Coenzym med 54% pr. liter dyrkningsbouillon og med 38% pr. g tørre celler.From the above data, the same comparison was made as in Example 1. The addition of isopentenyl alcohol increased the yield of Coenzyme by 54% per liter. per liter of culture broth and at 38% per liter. g dry cells.

7 1476027 147602

Eksempel 5Example 5

Man fulgte fremgangsmåden som beskrevet i eksempel 1 bortset fra, at pseudomonas denitrificans ATCC 13867 (IAM-12023) anvendtes som mikroorganisme, og at to 1 g's portioner geraniol for sig tilsattes dyrkningssubstratet (ialt 2 g) på forskellige tidspunkter under dyrkningen. På denne måde opnåedes 395 g våde celler (76 g i form af tørre celler), som herefter underkastedes den samme behandling som beskrevet i eksempel 1, hvorved man opnåede 63,1 mg krystaller af Coenzym Qg.The procedure as described in Example 1 was followed except that pseudomonas denitrificans ATCC 13867 (IAM-12023) was used as a microorganism and two 1 g portions of geraniol were added separately to the culture substrate (2 g total) at different times during culture. In this way, 395 g of wet cells (76 g in the form of dry cells) were obtained, which were then subjected to the same treatment as described in Example 1 to obtain 63.1 mg crystals of Coenzyme Qg.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil intet geraniol var sat, og man opnåede 328 g våde celler (63 g i form af tørre celler), ud fra hvilke man opnåede 37,2 mg krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture medium to which no geraniol was added and 328 g of wet cells (63 g of dry cells) were obtained, from which 37.2 mg of crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor givne data foretoges samme sammenligning som i eksempel 1. Tilsætningen af geraniol forøgede udbyttet af Co- enzyra Q. med 69% pr. liter dyrkningsbouillon og 41% pr. g tørre y celler.From the data given above, the same comparison was made as in Example 1. The addition of geraniol increased the yield of Coenzyra Q. by 69% per liter. liters of culture broth and 41% per liter. g dry y cells.

Eksempel 6Example 6

Man anvendte samme fremgangsmåde som i eksempel 1 bortset fra, at Pseudomonas fulva ATCC 31418 (IAM-1529) anvendtes som mikroorganisme, og at tre portioner isopentenylalkohol (ialt 3 g) for sig tilsattes under dyrkningen til forskellige tidspunkter. På denne måde opnåede man 390 g våde celler (73 g i form af tørre celler), som herefter underkastedes samme behandling som i eksempel 1, hvorved man opnåede 86,4 mg krystaller af Coenzym Qg.The same procedure was used as in Example 1 except that Pseudomonas fulva ATCC 31418 (IAM-1529) was used as a microorganism and three portions of isopentenyl alcohol (total 3 g) were added separately during culture at different times. In this way, 390 g of wet cells (73 g in the form of dry cells) were obtained, which were then subjected to the same treatment as in Example 1 to obtain 86.4 mg crystals of Coenzyme Qg.

På den anden side dyrkede man den samme mikroorganisme i dyrkningssubstratet, til hvilket intet isopentenylalkohol var sat, og man opnåede 350 g våde celler (67 g i form af tørre celler), ud fra hvilke man opnåede 60,5 krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture substrate to which no isopentenyl alcohol was added and 350 g of wet cells (67 g of dry cells) were obtained, from which 60.5 crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor givne data foretoges samme sammenligning som i eksempel 1. Tilsætningen af isopentenylalkohol forøgede udbyttet af Coenzym Qg med 43% pr.liter dyrkningsbouillon og med 31% pr. g tørre celler.From the data given above, the same comparison was made as in Example 1. The addition of isopentenyl alcohol increased the yield of Coenzyme Qg by 43% per liter of culture broth and by 31% per liter. g dry cells.

147602 8.147602 8.

Eksempel 7Example 7

Man anvendte samme fremgangsmåde som i eksempel 1 bortset fra, at Pseudomonas rubescens ATCC 12099 (IAM-1510) anvendtes som mikroorganisme, og at man tilsatte 645 mg dimethylallylalkohol. På denne måde opnåede man 430 g våde celler (80 g i form af tørre celler) , som underkastedes samme behandling som i eksempel 1, hvorved man opnåede 86 mg krystaller af Coenzym Qg.The same procedure as in Example 1 was used except that Pseudomonas rubescens ATCC 12099 (IAM-1510) was used as a microorganism and 645 mg of dimethylallyl alcohol was added. In this way, 430 g of wet cells (80 g in the form of dry cells) were obtained, which were subjected to the same treatment as in Example 1 to give 86 mg crystals of Coenzyme Qg.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil man ikke havde sat noget dimethylallylalkohol. Herved opnåede man 390 g våde celler (77 g i form af tørre celler) , ud fra hvilke man opnåede 68 mg krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture substrate to which no dimethyl allyl alcohol had been added. There were thus obtained 390 g of wet cells (77 g in the form of dry cells) from which 68 mg crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor givne data foretoges samme sammenligning som i eksempel 1. Ved tilsætning af dimethylallylalkohol forøgedes udbyttet af Coenzym Qg med 26% pr. liter dyrkningsbouillon og med 20% pr. g tørre celler.From the data given above, the same comparison was made as in Example 1. By adding dimethyl allyl alcohol, the yield of Coenzyme Qg was increased by 26% per day. per liter of culture broth and at 20% per liter. g dry cells.

Eksempel 8Example 8

Man anvendte samme fremgangsmåde som i eksempel 1 bortset fra, at Pseudomonas fulva ATCC 31418 (IAM-1529) anvendtes som mikroorganisme, og at man tilsatte 750 mg Ø-methylcrotonsyre. På denne måde opnåedes 540 g våde celler (105 g i form af tørre celler), som underkastedes samme behandling som i eksempel 1, hvorved man opnåede 102 mg krystaller af Coenzym Qg.The same procedure was used as in Example 1 except that Pseudomonas fulva ATCC 31418 (IAM-1529) was used as a microorganism and 750 mg of o-methylcrotonic acid was added. In this way, 540 g of wet cells (105 g in the form of dry cells) were obtained, which were subjected to the same treatment as in Example 1 to obtain 102 mg crystals of Coenzyme Qg.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil man ikke havde sat noget Ø-methylcrotonsyre. Man opnåede 525 g våde celler (103 g i form af tørre celler), ud fra hvilke man opnåede 79 mg krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture substrate to which no β-methylcrotonic acid had been added. 525 g of wet cells (103 g in the form of dry cells) were obtained, from which 79 mg crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor givne data foretoges samme sammenligning som i eksempel 1. Tilsætningen af Ø-methylcrotonsyre forøgede udbyttet af Coenzym Qg med 28% pr.· liter dyrkningsbouillon og med 26% pr. g tørre celler.From the data given above, the same comparison was made as in Example 1. The addition of β-methylcrotonic acid increased the yield of Coenzyme Qg by 28% per liter of culture broth and by 26% per liter. g dry cells.

Eksempel 9Example 9

Man anvendte fremgangsmåden fra eksempel 1 bortset fra, at Pseudomonas olevorans ATCC 8062 (IAM-1508) anvendtes som mikroorganisme, og at 960 mg dimethylallylacetat tilsattes. På denne måde opnåede man 490 g våde celler (94 g i form af tørre celler), der her- 147602 9 efter underkastedes samme behandling som i eksempel 1, hvorved man opnåede 96 mg krystaller af Coenzym Qg.The procedure of Example 1 was used except that Pseudomonas olevorans ATCC 8062 (IAM-1508) was used as a microorganism and 960 mg of dimethyl allyl acetate was added. In this way, 490 g of wet cells (94 g in the form of dry cells) were obtained, which were then subjected to the same treatment as in Example 1 to obtain 96 mg crystals of Coenzyme Qg.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil man ikke havde sat noget dimethylallylace-tat, og herved opnåede man 470 g våde celler (90 g i form af tørre celler), ud fra hvilke man opnåede 68 mg krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture substrate to which no dimethyl allylate tate was added, thereby obtaining 470 g of wet cells (90 g in the form of dry cells) from which 68 mg crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor nævnte data foretog man samme sammenligning som i eksempel 1. Tilsætningen af dimethylallylacetat forøgede udbyttet af Coenzym Qg med 42% pr. liter dyrkningsbouillon og med 34% pr. g. tørre celler.From the above mentioned data, the same comparison was made as in Example 1. The addition of dimethyl allyl acetate increased the yield of Coenzyme Qg by 42% per ml. per liter of culture broth and at 34% per liter. g. dry cells.

Eksempel 10Example 10

Fremgangsmåden fra eksempel 1 fulgtes bortset fra, at Pseudo-monas schuylkilliensis ATCC 31419 (IAM-1126) anvendtes som mikroorganisme, og at 1,47 g geranylacetat tilsattes. På denne måde opnåedes 530 g våde celler (93 g i form af tørre celler), som underkastedes samme behandling som i eksempel 1, hvorved man opnåede 120 mg krystaller af Coenzym Qg.The procedure of Example 1 was followed except that Pseudomonas schuylkilliensis ATCC 31419 (IAM-1126) was used as a microorganism and 1.47 g of geranyl acetate was added. In this way, 530 g of wet cells (93 g in the form of dry cells) were obtained, which were subjected to the same treatment as in Example 1 to obtain 120 mg crystals of Coenzyme Qg.

På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil man ikke havde sat noget geranylacetat. Herved opnåede man 525 g våde celler (90 g i form af tørre celler), ud fra hvilke man opnåede 98 mg krystaller af Coenzym Qg.On the other hand, the same microorganism was grown in the culture substrate to which no geranyl acetate had been added. This yielded 525 g of wet cells (90 g in the form of dry cells) from which 98 mg of crystals of Coenzyme Qg were obtained.

Ud fra de ovenfor nævnte data foretoges samme sammenligning som i eksempel 1. Tilsætningen af geranylacetat forøgede udbyttet af Coenzym Qg med 23% pr. liter dyrkningsbouillon og med 19% pr. g tørre celler.From the above mentioned data, the same comparison was made as in Example 1. The addition of geranyl acetate increased the yield of Coenzyme Qg by 23% per ml. per liter of culture broth and at 19% per liter. g dry cells.

Eksempel 11Example 11

Man fulgte fremgangsmåden som i eksempel 1 bortset fra, at Pseudomonas denitrificans ATCC 13867 (IAM-12023) anvendtes som mikroorganisme, og at blandingen af 960 mg isopentenylacetat og 1,47 g geranylacetat tilsattes. På denne måde opnåede man 480 g våde celler (96 g i forrå af tørre celler) , der underkastedes samme behandling som i eksempel 1, hvorved man opnåede 115 mg krystaller af CoenzymThe procedure was followed as in Example 1 except that Pseudomonas denitrificans ATCC 13867 (IAM-12023) was used as a microorganism and the mixture of 960 mg of isopentenyl acetate and 1.47 g of geranyl acetate was added. In this way, 480 g of wet cells (96 g of dry cells) were subjected to the same treatment as in Example 1 to obtain 115 mg of Coenzyme crystals

VV

På den anden side dyrkede man den samme mikroorganisme i dyrkningssubstratet, til hvilken blandingen ikke var sat. Herved fik man 490 g våde celler (98 g i form af tørre celler), ud fra hvilkeOn the other hand, the same microorganism was grown in the culture medium to which the mixture was not added. There were thus obtained 490 g of wet cells (98 g of dry cells) from which

Claims (4)

147*02 man opnåede 76 mg krystaller af Coenzym Q g· Ud fra de ovenfor nævnte data foretoges samme sammenligning som i eksempel 1. Tilsætningen af isopentenylacetat og geranylacetat forøgede udbyttet af Coenzym Og med 51% pr. liter dyrkningsbouillon og med 54% pr. g. tørre celler. Eksempel 12 Pseudomonas diminuta ATCC 11568 (IAM-1513) dyrkedes ved samme fremgangsmåde som i eksempel 4 bortset fra, at en blanding af 960 mg isopentenylacetat og 960 mg dimethylallylacetat tilsattes. På denne måde opnåede man 495 g våde celler (98 g i form af tørre celler), som underkastedes samme behandling som i eksempel 1, hvorved man opnåede 53 mg krystaller af Coenzym Q1Q. På den anden side dyrkedes den samme mikroorganisme i dyrkningssubstratet, hvortil blandingen ikke var sat. På denne måde fik man 480 g våde celler (94 g i form af tørre celler), ud fra hvilke man opnåede 39 mg krystaller af Coenzym Q^q· Ud fra de ovenfor givne data foretoges samme sammenligning som i eksempel 1. Tilsætningen af isopentenylacetat og dimethylallylacetat forøgede udbyttet af Coenzym Q1Q med 36% pr. liter dyrkningsbouillon og med 32% pr. g tørre celler.147 mg of 76 mg crystals of Coenzyme were obtained Q g · From the above data the same comparison was made as in Example 1. The addition of isopentenyl acetate and geranyl acetate increased the yield of Coenzyme and by 51% per ml. per liter of culture broth and at 54% per liter. g. dry cells. Example 12 Pseudomonas diminuta ATCC 11568 (IAM-1513) was grown by the same procedure as in Example 4 except that a mixture of 960 mg of isopentenyl acetate and 960 mg of dimethylallyl acetate was added. In this way, 495 g of wet cells (98 g in the form of dry cells) were obtained, which were subjected to the same treatment as in Example 1 to obtain 53 mg crystals of Coenzyme Q1Q. On the other hand, the same microorganism was grown in the culture substrate to which the mixture was not added. In this way 480 g of wet cells (94 g in the form of dry cells) were obtained, from which 39 mg crystals of Coenzyme Q ^ q were obtained. dimethyl allyl acetate increased the yield of Coenzyme Q1Q by 36% per liter of culture broth and at 32% per liter. g dry cells. 1. Fremgangsmåde til fremstilling af Coenzym Q, hvor man dyrker en mikroorganisme, der hører til slægten Pseudomonas, og som er i stand til at producere Coenzym Q, i et dyrkningssubstrat og isolerer det producerede Coenzym Q, kendetegnet ved, at der er sat mindst én forbindelse valgt fra gruppen bestående af isopentenylalkohol, dimethylallylalkohol, geraniol, isopentenylacetat, dimethylallylacetat, geranylacetat og β-methylcrotonsyre til dyrkningssubstratet.A process for producing Coenzyme Q, in which a microorganism belonging to the genus Pseudomonas, capable of producing Coenzyme Q, is grown in a culture substrate and isolates the produced Coenzyme Q, characterized in that at least one compound selected from the group consisting of isopentenyl alcohol, dimethylallyl alcohol, geraniol, isopentenyl acetate, dimethylallyl acetate, geranyl acetate and β-methylcrotonic acid for the culture substrate. 2. Fremgangsmåde ifølge krav 1 til fremstilling af Coenzym Q1Q, kendetegnet ved, at mikroorganismen er Pseudomonas diminuta ATCC 11568.Process according to claim 1 for the preparation of Coenzyme Q1Q, characterized in that the microorganism is Pseudomonas diminuta ATCC 11568. 3. Fremgangsmåde ifølge krav 1 til fremstilling af Coenzym Qg, kendetegnet ved, at mikroorganismen er Pseudomonas schuylkilliensis ATCC 31419, Pseudomonas denitrificans ATCC 13867 eller Pseudomonas olevorans ATCC 8062.Method according to claim 1 for the preparation of Coenzyme Qg, characterized in that the microorganism is Pseudomonas schuylkilliensis ATCC 31419, Pseudomonas denitrificans ATCC 13867 or Pseudomonas olevorans ATCC 8062. 4. Fremgangsmåde ifølge krav 1 til fremstilling af CoenzymA process according to claim 1 for the preparation of Coenzyme
DK389078A 1977-09-05 1978-09-04 PROCEDURE FOR PREPARING COENZYM Q DK147602C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10593977A JPS5455787A (en) 1977-09-05 1977-09-05 Production of coenzyme q
JP10593977 1977-09-05
JP4081278 1978-04-08
JP4081278 1978-04-08

Publications (3)

Publication Number Publication Date
DK389078A DK389078A (en) 1979-03-06
DK147602B true DK147602B (en) 1984-10-15
DK147602C DK147602C (en) 1985-04-22

Family

ID=26380323

Family Applications (1)

Application Number Title Priority Date Filing Date
DK389078A DK147602C (en) 1977-09-05 1978-09-04 PROCEDURE FOR PREPARING COENZYM Q

Country Status (9)

Country Link
CA (1) CA1105860A (en)
CH (1) CH645607A5 (en)
DE (1) DE2838252C3 (en)
DK (1) DK147602C (en)
ES (1) ES473041A1 (en)
FR (1) FR2401993A1 (en)
GB (1) GB2005662B (en)
IT (1) IT1157168B (en)
NL (1) NL7808778A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1223794B (en) * 1958-12-29 1966-09-01 Merck & Co Inc Process for obtaining coenzyme Q-10 from microorganisms

Also Published As

Publication number Publication date
GB2005662A (en) 1979-04-25
DK389078A (en) 1979-03-06
FR2401993B1 (en) 1981-09-04
GB2005662B (en) 1982-03-17
IT1157168B (en) 1987-02-11
CA1105860A (en) 1981-07-28
DE2838252B2 (en) 1980-07-17
FR2401993A1 (en) 1979-03-30
ES473041A1 (en) 1979-04-01
DE2838252C3 (en) 1981-09-24
DK147602C (en) 1985-04-22
NL7808778A (en) 1979-03-07
CH645607A5 (en) 1984-10-15
IT7850934A0 (en) 1978-09-01
DE2838252A1 (en) 1979-03-15

Similar Documents

Publication Publication Date Title
US3983140A (en) Physiologically active substances
US4049495A (en) Physiologically active substances and fermentative process for producing the same
KR830002801B1 (en) Process for preparing antihypercholesteramic agent monacolink and its preparation
JPH02288889A (en) Ab-021 antibiotic and preparation thereof
US4205125A (en) Process for the production of coenzyme Q
US4220719A (en) Process for the production of Coenzyme Q10
Kubota et al. Piericidins C5 and C6: new 4-pyridinol compounds produced by Streptomyces sp. and Nocardioides sp.
DK147602B (en) PROCEDURE FOR PREPARING COENZYM Q
US4104282A (en) Novel 3-(oxygenated alkyl)-1,9-dihydroxy and 1-hydroxy-9-keto dibenzo[b,d]py
US3968122A (en) 1-Acetyl-3-N-octanoyl-5-ethylidene tetraminic acids and metal salts thereof
KR900004939A (en) Method of preparation by microorganisms of agrochemically useful active ingredients
JPH03141290A (en) Antitumor antibiotic bmy-41339
US4249008A (en) 3,4-Dihydro-4-hydroxy-5-(3-hydroxy-2-pyridinyl)-4-methyl-2H-pyrrole-2-carboxamide
KR20160086479A (en) Novel cyclic depsipeptide-based compound, separation method thereof, and antibacterial pharmaceutical composition containing the same as an active ingredient
US3701787A (en) Preparation of 5,6-dihydro-5-hydroxy-6-propenyl-2-pyrone by fermentation and derivatives thereof
KR820000295B1 (en) Process for the production of coenzymc q
US3839558A (en) Antibiotics a28695a and a28695b and a process for production thereof
US4239690A (en) Antibiotics produced by Cytospora sp. W.F.P.L. 13A
US3093549A (en) Preparation of methoxynovobiocin
US4385065A (en) Novel substances and process for their production
JPS6040837B2 (en) Production method of antibiotic thiostrepton
KR0163660B1 (en) Preparation process of producing saph derivatives having anti-bacterial and anti-tumoral activity from actinomycetes micromonospora sp. sa-246 strain
JPH01299268A (en) Antifungal fermentation product, its derivative and composition thereof
US3647631A (en) Method for producing triostin
US4206129A (en) Antibiotic SM-173B

Legal Events

Date Code Title Description
PBP Patent lapsed