DK146263B - PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE - Google Patents

PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE Download PDF

Info

Publication number
DK146263B
DK146263B DK385875A DK385875A DK146263B DK 146263 B DK146263 B DK 146263B DK 385875 A DK385875 A DK 385875A DK 385875 A DK385875 A DK 385875A DK 146263 B DK146263 B DK 146263B
Authority
DK
Denmark
Prior art keywords
glucose
iron
fructose
isomerase
glucose isomerase
Prior art date
Application number
DK385875A
Other languages
Danish (da)
Other versions
DK146263C (en
DK385875A (en
Inventor
Yoshimasa Fujita
Akiyoshi Matsumoto
Hachiro Ishikawa
Tadashi Hishida
Hideo Kato
Hiroshi Takamisawa
Original Assignee
Mitsubishi Chem Ind
Seikagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chem Ind, Seikagaku Kogyo Co Ltd filed Critical Mitsubishi Chem Ind
Priority to DK385875A priority Critical patent/DK146263C/en
Publication of DK385875A publication Critical patent/DK385875A/en
Publication of DK146263B publication Critical patent/DK146263B/en
Application granted granted Critical
Publication of DK146263C publication Critical patent/DK146263C/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

(19) DANMARK (S')(19) DENMARK (S ')

(12) FREMLÆGGELSESSKRIFT <n, 146263 B(12) PUBLICATION <n, 146263 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Patentansøgning nr.: 3858/75 (51) InLCI.3: C12P 19/24 (22) Indleveringsdag: 27 aug 1975 (41) Aim. tilgængelig: 28 fob 1977 (44) Fremlagt: 15 aug 1983 (86) International ansøgning nr.: -(30) Prioritet:- (71) Ansøger: ‘MITSUBISHI CHEMICAL INDUSTRIES LIMITED; Tokyo, JP, ‘SEIKAGAKU KOGYO CO. LTD;(21) Patent Application No: 3858/75 (51) InLCI.3: C12P 19/24 (22) Filing Date: Aug 27, 1975 (41) Aim. available: 28 fob 1977 (44) Submitted: 15 Aug 1983 (86) International Application No: - (30) Priority: - (71) Applicant: 'MITSUBISHI CHEMICAL INDUSTRIES LIMITED; Tokyo, JP, 'SEIKAGAKU KOGYO CO. LTD;

Tokyo, JP.Tokyo, JP.

(72) Opfinder: Yoshtmasa ‘Fujita; JP, Akiyoshi ‘Matsumoto; JP, Hachlro ‘lehlkawa; JP, Tadashi ‘Hishlda; JP, Hideo *Kato; JP, Hiroshi *Takamisawa; JP.(72) Inventor: Yoshtmasa 'Fujita; JP, Akiyoshi 'Matsumoto; JP, Hachlro 'lehlkawa; JP, Tadashi 'Hishlda; JP, Hideo * Kato; JP, Hiroshi * Takamisawa; JP.

(74) Fuldmægtig: Internationalt Patent-Bureau (54) Fremgangsmåde til isomerisering af glucose til fructose(74) Plenipotentiary: International Patent Office (54) Process for Isomerization of Glucose to Fructose

Opfindelsen angår en fremgangsmåde til isomerisering af glucose til fructose med immobiliseret glucoseisomerase.The invention relates to a method for isomerizing glucose to fructose with immobilized glucose isomerase.

Det er kendt, at glucoseisomerase er et enzym, som er i stand til at omdanne glucose til fructose og vice versa, og det anvendes ® til fremstilling af fructose ud fra glucose.It is known that glucose isomerase is an enzyme capable of converting glucose into fructose and vice versa, and it is used ® to produce fructose from glucose.

Sådan glucoseisomerase er fundet i forskellige mikroorganis-^ mer, som f.eks. bakterier, såsom sådanne tilhørende slægterne Pseudo- monas, Bacillus og Lactobacillus, actinomyceter, såsom Streptomyces ^ phaeochromogenus, Streptomyces fradie, Streptomyces roseochromogenus, O Streptomyces olivaceus, Streptomyces californicus, Streptomyces vi- naceus og Streptomyces albus samt gær.Such glucose isomerase has been found in various microorganisms, such as e.g. bacteria such as those belonging to the genera Pseudomonas, Bacillus and Lactobacillus, actinomycets such as Streptomyces ^ phaeochromogenus, Streptomyces fradie, Streptomyces roseochromogenus, O Streptomyces olivaceus, Streptomyces californicus, Streptomyces viaceus

Til praktiske formål foretrækkes det at anvende glucoseisome- 2 146263 rase isoleret fra Streptomyees i en uopløseliggjort form, som opnås enten ved at underkaste mikroorganismeceller indeholdende glucoseiso-merase en varmebehandling til opnåelse af en intracellulær fiksering eller ved at knytte glucoseisomerase isoleret fra cellerne til en bærer ved adsorption, ionbytning, dannelse af en covalent binding eller inclusion. I denne forbindelse henvises til Chemical Abstracts Vol. 69, 64824 d (1968) Tsumura et al.; USP 3.788.945; Applied Microbiology, april 1971, p. 588 - 593, G.W.Strandberg et al.; og Biotechnology and Bioengineering Vol. XIV, p. 509-513 (1972), G.W. Strand-berg et al.For practical purposes, it is preferred to use glucose isomerase isolated from Streptomyees in an insoluble form which is obtained either by subjecting microorganism cells containing glucose isomerase to a heat treatment to obtain an intracellular fixation or by associating glucose isomerase isolated from the cells with a carrier. by adsorption, ion exchange, covalent bond formation or inclusion. In this connection, reference is made to Chemical Abstracts Vol. 69, 64824 d (1968) Tsumura et al .; USP 3,788,945; Applied Microbiology, April 1971, pp. 588-593, G.W.Strandberg et al .; and Biotechnology and Bioengineering Vol. XIV, pp. 509-513 (1972), G.W. Strand-berg et al.

Næsten al den glucoseisomerase, der findes i mikroorganismeceller, kræver metalioner, der kan være forskellige afhængigt af isome-rasens oprindelse. Det er kendt, at glucoseisomerase fra Streptomyees kræver magnesiumioner, og at aktiviteten og modstandsdygtigheden mod varme forøges under yderligere tilstedeværelse af cobaltoioner (jvf.Almost all of the glucose isomerase found in microorganism cells requires metal ions that may differ depending on the origin of the isomerase. It is known that glucose isomerase from Streptomyees requires magnesium ions and that the activity and resistance to heat are increased in the presence of cobalt ions (cf.

N. Tsumura et al. Agr. Biol. Chem. Vol. 29, 1126 (1965) og T. Takasa-ki, Agr. Biol. Chem. Vol. 30, p. 1249 (1966)).N. Tsumura et al. Agr. Biol. Chem. Vol. 29, 1126 (1965) and T. Takasa-ki, Agr. Biol. Chem. Vol. 30, p. 1249 (1966)).

Ved kommerciel fremstilling af fructose ud fra glucose har magnesium- og cobaltoioner været til stede i reaktionsblandingen. I-midlertid er dette ikke ønskeligt, da forskellige tungmetalioner omfattende cobaltoioner ikke er tilladte som additiver til næringsmidler i mange lande, hvorfor anvendelse af cobaltoioner ved fremstilling af fructose bør undgås.In commercial production of fructose from glucose, magnesium and cobalt ions have been present in the reaction mixture. In the meantime this is not desirable as various heavy metals ions comprising cobalt ions are not allowed as food additives in many countries, so the use of cobalt ions in fructose production should be avoided.

Det har nu vist sig, at aktiviteten af immobiliseret glucoseisomerase kan opretholdes i lang tid, uden at der anvendes cobaltio-ner, når der anvendes en tilsætning af bestemte mængder vandopløseligt jernsalt sammen med magnesiumsalt til glucoseisoraerisations-blandingen.It has now been found that the activity of immobilized glucose isomerase can be maintained for a long time without the use of cobaltions when adding certain amounts of water-soluble iron salt with magnesium salt to the glucose isomerization mixture.

Ved fremgangsmåden ifølge opfindelsen fås der derfor en effektiv udnyttelse af imrobiliseret glucoseisomerase ved omdannelse af glucose til fructose, og fremgangsmåden er ejendommelig ved, at der er 0,005 - 5 mmol/liter 'jernioner til stede sammen med 2 - 20 mmol/ liter magnesiumioner i reaktionsblandingen.Therefore, the process of the invention provides an efficient utilization of imrobilized glucose isomerase in converting glucose into fructose, and the process is characterized in that 0.005 - 5 mmol / liter iron ions are present together with 2 - 20 mmol / liter magnesium ions in the reaction mixture. .

Nedenfor forklares opfindelsen mere detailleret.The invention is explained in more detail below.

Eksempler på kilder for jernioner, som kan anvendes ved fremgangsmåden omfatter vandopløselige jernsalte, som f.eks. uorganiske jernsalte, såsom ferrosulfat, ferrisulfat, ferrochlorid, ferrichlor-id, ammoniumferrisulfat, ammoniumferrosulfat og jernnitrat, og organiske jernsalte, såsom jerntartrat og blandinger deraf. Opmærksomheden må imidlertid henledes på, at visse organiske jernsalte, som er 3 146263 vandopløselige, giver en formindsket dannelse af jernioner, hvis ba-seanionen danner kraftige coordinationsbindinger til jern, hvorved der fremkommer en såkaldt "masking effect".Examples of sources of iron ions which can be used in the process include water-soluble iron salts, such as e.g. inorganic iron salts such as ferrous sulfate, ferric sulfate, ferrochloride, ferric chloride, ammonium ferric sulfate, ammonium ferrous sulfate and iron nitrate, and organic iron salts such as iron tartrate and mixtures thereof. It should be noted, however, that certain organic iron salts, which are water-soluble, produce a diminished formation of iron ions if the base anion forms strong coordination bonds to iron, resulting in a so-called "masking effect".

Endvidere er blandt de uorganiske salte jernphosphater ubekvemme, da de har ringe opløselighed i vand og giver et uopløseligt bundfald. Ferrichlorid, ferrosulfat, jernlactater, jerncitrater og ammonium- jerncitrater , som er tilladte som additiver til næringsmidler ifølge den japanske levnedsmiddellovgivning, er eksempler på vandopløselige jernsalte, der kan anvendes ifølge opfindelsen. Som det fremgår af nedenstående eksempler, kan det vandopløselige jernsalt være enten divalent eller trivalent.Furthermore, among the inorganic saline iron phosphates are inconvenient, as they have poor solubility in water and provide an insoluble precipitate. Ferric chloride, ferrous sulfate, iron lactates, iron citrates and ammonium iron citrates, which are permitted as food additives according to Japanese food law, are examples of water-soluble iron salts which can be used according to the invention. As can be seen from the examples below, the water-soluble iron salt can be either divalent or trivalent.

Selv om virkningsmekanismen for jernioner ved fremgangsmåden ifølge opfindelsen endnu ikke er klarlagt, antages det, uden at opfindelsen dog begrænses af nogen teori, at hvis jernioner er til stede sammen med magnesiumioner i reaktionsblandingen, vil jernionerne knytte sig til enzymet til dannelse af visse komplekser, der modstår den deaktivering af enzymet, som skyldes kemiske påvirkninger og/eller indvirkning af varme. Således er det teoretisk muligt at underkaste glucoseisomerase en forbehandling med en vandig jernsaltopløsning og herved opnå den tilsigtede virkning uden tilsætning af jernsalt som følge af, at jernion er til stede nær isomerasen, men i praksis må der i sådanne tilfælde tilsættes jernsalt til reaktionsblandingen, for herved at opretholde et konstant niveau med hensyn til koncentration af jernion i reaktionsblandingen, som følge af at de jernioner, der er knyttet til glucoseisomerasen til dannelse af komplekser, vil dissocieres senere og fjernes fra reaktionsblandingen sammen med produktet, specielt ved en kontinuerlig fremgangsmåde.Although the mechanism of action of iron ions in the process of the invention has not yet been elucidated, it is believed, without limiting the invention by any theory, that if iron ions are present with magnesium ions in the reaction mixture, the iron ions will attach to the enzyme to form certain complexes. that resists the deactivation of the enzyme due to chemical effects and / or heat effects. Thus, it is theoretically possible to subject glucose isomerase to pretreatment with an aqueous iron salt solution and thereby achieve the intended effect without the addition of iron salt due to the presence of iron ion near the isomerase, but in practice in such cases iron salt must be added to the reaction mixture. thereby maintaining a constant level of concentration of iron ion in the reaction mixture, as the iron ions attached to the glucose isomerase to form complexes will later dissociate and be removed from the reaction mixture with the product, especially by a continuous process.

Koncentrationen af jernioner i reaktionsblandingen holdes fortrinsvis fra 0,02 til 0,5 m mol/liter.The concentration of iron ions in the reaction mixture is preferably maintained from 0.02 to 0.5 m mole / liter.

Eksempler på vandopløselige magnesiumsalte, der kan anvendes sammen med jernsaltet ved den omhandlede fremgangsmåde, omfatter magnesiumsulfat, magnesiumchlorid, magnesiumsulfit, magnesiumcarbo-nat og blandinger heraf.Examples of water-soluble magnesium salts which can be used with the iron salt of the present process include magnesium sulfate, magnesium chloride, magnesium sulfite, magnesium carbonate and mixtures thereof.

Isomeriseringen af glucose til fructose ved den omhandlede fremgangsmåde er egnet til kontinuerlig fabrikation, ved hvilken en vandig glucoseopløsning kontinuerligt bringes i kontakt med immobi- 4 146263 liseret glucoseisomerase til opnåelse af fructose. Fremgangsmåden er særligt egnet til en kontinuerlig fremgangsmåde, ved hvilken en vandig glucoseopløsning ledes gennem en søjle, hvori glucoseisomerase er pakket adsorberet på en bærer, til opnåelse af omdannelse af glucose til fructose.The isomerization of glucose to fructose by the present process is suitable for continuous fabrication, in which an aqueous glucose solution is continuously contacted with immobilized glucose isomerase to obtain fructose. The process is particularly suitable for a continuous process in which an aqueous glucose solution is passed through a column in which glucose isomerase is adsorbed on a carrier to achieve conversion of glucose to fructose.

Bærere, som er egnede til uopløseliggørelse af glucoseisomerase omfatter: (1) en macroporøs anionbytterharpiks, hvis matrix er styren-divinylcopolymer,og hvis anionbyttergruppe er af den kvaternære ammoniumtype. Et sådant materiale er nærmere beskrevet i USA-patent-skrift nr. 4.o78.97o.Carriers suitable for insolubilizing glucose isomerase include: (1) a macroporous anion exchange resin whose matrix is styrene-divinyl copolymer and whose anion exchange group is of the quaternary ammonium type. Such a material is further described in U.S. Patent No. 4,778,97o.

(2) et cyanogenhalogenidderivat af tværbundet agar i partikelform.(2) a cross-linked agar cyanogen halide derivative in particulate form.

Sidstnævnte materiale fremstilles ved at behandle agar med et tværbindingsmiddel, såsom epichlorhydrin under alkaliske betingelser til indførelse af tværbindinger, efterfulgt af opvarmning til høj temperatur og vaskning med varmt vand til fjernelse af materialer opløselige i varmt vand, og påfølgende behandling af den tværbundne agar med en vandig opløsning af cyanogenhalogenid, såsom cyanogenbromid under alkaliske betingelser.The latter material is prepared by treating agar with a crosslinking agent such as epichlorohydrin under alkaline conditions to introduce crosslinking, followed by high temperature heating and hot water washing to remove hot water soluble materials and subsequent treatment of the crosslinked agar with a aqueous solution of cyanogen halide, such as cyanogen bromide under alkaline conditions.

Det har vist sig, at ved udførelse af fremgangsmåden bevares aktiviteten af isomerase imraobiliseret på denne måde i lang tid, og isomerisationsreaktionen af glucose til fructose er derfor tilfredsstillende til anvendelse på kommerciel basis.It has been found that in carrying out the process, the activity of isomerase is maintained in this manner for a long time, and the isomerization reaction of glucose to fructose is therefore satisfactory for commercial use.

En vandig glucoseopløsning kan bekvemt underkastes en kontinuerlig behandling ifølge opfindelsen ved en pH-værdi andragende fra 5,5 til 9, en koncentration på 20-70 vægt% og en temperatur på 40-80°C, og en sådan opløsning ledes gennem en kolonne som beskrevet med en specifik volumetrisk fødehastighed på 0,1-20 pr. time.Conveniently, an aqueous glucose solution can be subjected to continuous treatment according to the invention at a pH of from 5.5 to 9, a concentration of 20-70 wt% and a temperature of 40-80 ° C, and such a solution is passed through a column as described with a specific volumetric feed rate of 0.1-20 per. hour.

Fremgangsmåden ifølge opfindelsen belyses nærmere ved hjælp af nedenstående eksempler.The process according to the invention is further illustrated by the following examples.

c 146263 5c 146263 5

Eksempel 1Example 1

Glucoseisomerase blev ekstraheret ved en konventionel ultralydbehandling ud fra "Glucose Isomerase NAGASE", som bestod af celler af en stamme hørende til Streptomyces phaeochromogenes, intracellulært fikseret ved varmebehandling og tilgængelig fra "Nagase Sangyo Kabu-shiki Kaisha, Osaka, Japan".Glucose isomerase was extracted by a conventional ultrasound treatment from "Glucose Isomerase NAGASE", which consisted of cells of a strain of Streptomyces phaeochromogenes, intracellularly fixed by heat treatment and available from "Nagase Sangyo Kabu-shiki Kaisha, Osaka, Japan".

Aktivitetstiteren, der defineres nedenfor, af en sådan ekstrakt var 200 enheder/ml.The activity titer defined below of such an extract was 200 units / ml.

Derpå blev fremstillet en uopløselig glucoseisomerase ved at blande 75 ml af en sådan ekstrakt med 15 ml af en våd macroporøs kraftigt basisk anionbytterharpiks ("Diaion PHA" fra Mitsubishi Chemical Industries, Limited, hvis matrix var styren-divinylbenzen-copo-lymer, og hvis ionbyttergruppe var en kvaternær ammoniumgruppe) ved stuetemperatur i 6 timer til opnåelse af adsorption af isomerasen på anionbytterharpiksen. Adsorptionsgraden blev målt til mere end 99%.An insoluble glucose isomerase was then prepared by mixing 75 ml of such extract with 15 ml of a wet macroporous strong basic anion exchange resin ("Diaion PHA" from Mitsubishi Chemical Industries, Limited, whose matrix was styrene-divinylbenzene copolymers and whose ion exchange group was a quaternary ammonium group) at room temperature for 6 hours to obtain adsorption of the isomerase on the anion exchange resin. The degree of adsorption was measured to more than 99%.

Den uopløseliggjorte glucoseisomerase, der var fremstillet på denne måde, blev pakket i en med kappe forsynet kolonne med en indre diameter på 8 mm.The insoluble glucose isomerase prepared in this way was packed in a sheathed column of 8 mm internal diameter.

En 3 molær vandig glucoseopløsning indeholdende 5 m Mol magnesiumsulfat og 1 m mol ferrosulfat (de anførte koncentrationer er ionkoncentrationer) blev ledt gennem en sådan kolonne, der blev holdt ved en temperatur på 67°C til opnåelse af kontinuerlig isomerisation, medens der blev ført varmt vand gennem kappen.A 3 molar aqueous glucose solution containing 5 m moles of magnesium sulfate and 1 m mole of ferrous sulfate (the concentrations indicated are ion concentrations) was passed through such a column maintained at a temperature of 67 ° C to obtain continuous isomerization while warming. water through the jacket.

Graden af aktivitetsbevarelse, som defineret nedenfor, efter 10 og 20 dages forløb, er anført i tabel 1.The degree of activity retention, as defined below, after 10 and 20 days, is given in Table 1.

Eksempler 2-6Examples 2-6

Der blev gået frem på lignende måde som i eksempel 1 med den afvigelse, at der i stedet for ferrosulfat blev anvendt forskellige metalsalte ved de i tabel 1 anførte koncentrationer. Graden af aktivitetsbevarelse for glucoseisomerasen efter 10 og 20 dages forløb er også angivet i tabel 1, hvoraf det fremgår, at der opnås bedre resultater ved tilsætning af jernsalte end andre salte, idet der opnås en forlænget isomeraseaktivitet.The procedure was similar to Example 1, with the exception that different metal salts were used instead of ferrous sulfate at the concentrations listed in Table 1. The degree of activity retention for the glucose isomerase after 10 and 20 days is also indicated in Table 1, which shows that better results are obtained by the addition of iron salts than other salts, with an extended isomerase activity being obtained.

6 1462636 146263

Tabel 1Table 1

Eksempel Forbindelse Ionkoncentration Grad af aktivitets- nr. (m mol/liter) bevarelse (%) 10 dage 20 dage 1 Ferrochlorid 1,0 70 45 2 Ferrichlorid 0,5 62 37 3 Jerntartrat 1,0 68 40 4 — 33 11 5 Cobaltochlorid 1,0 55 25 6 Calciumchlorid 1,0 30 13Example Compound Ion Concentration Degree of activity number (m mol / liter) conservation (%) 10 days 20 days 1 Ferrochloride 1.0 70 45 2 Ferric chloride 0.5 62 37 3 Iron tartrate 1.0 68 40 4 - 33 11 5 Cobalt chloride 1.0 55 25 6 Calcium Chloride 1.0 30 13

Eksempler 7-13 I disse eksempler blev der gået frem som i eksempel 1, idet dog isomerisationerne blev udført ved en temperatur på 72°C under anvendelse af ferrisulfat i forskellige koncentrationer som anført i tabel 2.Examples 7-13 In these examples, proceed as in Example 1, however, the isomerizations were performed at a temperature of 72 ° C using ferric sulfate at various concentrations as listed in Table 2.

Graden af aktivitetsbevarelse efter 7 og 13 dages forløb er også angivet i tabel 2.The degree of activity retention after 7 and 13 days is also given in Table 2.

De laveste værdier for aktivitetsformindskelsen iagttages ved en koncentration i området fra 0,02 til 0,5 m mol/liter jernion.The lowest values of activity decrease are observed at a concentration in the range of 0.02 to 0.5 m mole / liter of iron ion.

Tabel 2Table 2

Eksempel Koncentration af Grad af aktivitets- nr. jernion m mol/liter) bevarelse (%) 7 dage 13 dage I 7 0 13 5 i 8 0,02 40 22 9 0,05 52 35 10 0,1 62 49 I 11 0,25 50 33 12 0,5 38 11 13 3,0 26 9Example Concentration of Degree of activity number iron ion m mol / liter) preservation (%) 7 days 13 days I 7 0 13 5 i 8 0.02 40 22 9 0.05 52 35 10 0.1 62 49 I 11 0 , 25 50 33 12 0.5 38 11 13 3.0 26 9

Eksempler 14-16Examples 14-16

Den anvendte glucoseisomerase var ekstraheret fra et kulturmedium med inkuberet Streptomyces albus YT nr. 5, der er deponeret hos "The Fermentation Research Institute", Japan (deponeringsnummer: η 146263 FERM P-463). Isomerasen blev uopløseliggjort efter fremgangsmåden ifølge eksempel 1 og blev anvendt til kontinuerlige isomerisationer som i eksemplerne 1, 4 og 5. Graden af aktivitetsbevarelse efter henholdsvis 7 og 13 dage er anført i tabel 3.The glucose isomerase used was extracted from a culture medium with incubated Streptomyces albus YT No. 5, deposited with "The Fermentation Research Institute", Japan (deposit number: η 146263 FERM P-463). The isomerase was insolubilized by the procedure of Example 1 and was used for continuous isomerizations as in Examples 1, 4 and 5. The degree of activity retention after 7 and 13 days, respectively, is given in Table 3.

Tabel 3Table 3

Eksempel Forbindelse Ionkoncentration Grad af aktivitets- nr. (m mol/liter) bevarelse (%) 7 dage 13 dage 14 Ferrosulfat 1,0 75 60 15 -- — 40 25 16 Cobaltochlorid 1,0 62 49Example Compound Ion Concentration Degree of activity number (m mol / liter) preservation (%) 7 days 13 days 14 Ferrosulfate 1.0 75 60 15 - - 40 25 16 Cobaltochloride 1.0 62 49

Eksempler 17-19Examples 17-19

Fremstilling af tværbundne agarpartikler.Preparation of cross-linked agar particles.

1 liter 4% agarpartikler, "Sepharose 4B" fra Pharmacia Fine Chemicals, Sverige, blev omhyggeligt blandet med 1 liter vandig natriumhydroxidopløsning (1 mol/liter) ved stuetemperatur. 30 ml epi-chlorhydrin blev sat til ovenstående blanding, medens denne blev holdt ved 60°C på et vandbad og omhyggeligt rystet i 2 timer, hvorved der indtrådte en tværbindingsreaktion.1 liter of 4% agar particles, "Sepharose 4B" from Pharmacia Fine Chemicals, Sweden, was carefully mixed with 1 liter of aqueous sodium hydroxide solution (1 mol / liter) at room temperature. 30 ml of epichlorohydrin was added to the above mixture while kept at 60 ° C on a water bath and shaken gently for 2 hours, thereby causing a crosslinking reaction.

Derpå blev reaktionsmassen opvarmet i en autoklav til en temperatur på 120°C under et tryk på 2 atmosfærer i 2 timer. Den varme masse blev vasket med vand på 90°C til fjernelse af det i varmt vand opløselige materiale og henstillet til afkøling til opnåelse af tværbundne agarpartikler.Then, the reaction mass was heated in an autoclave to a temperature of 120 ° C under 2 atmospheric pressure for 2 hours. The hot mass was washed with water at 90 ° C to remove the hot water-soluble material and left to cool to obtain cross-linked agar particles.

Aktivering af tværbundne agarpartikler.Activation of cross-linked agar particles.

De tværbundne agarpartikler blev underkastet en vakuumfiltrering til fjernelse af overskydende vand og blev afkølet til 4°C. Til en blanding af 50 g af de således opnåede partikler og 80 ml af en 2%'s vandig cyanogenbromidopløsning blev dråbevis sat en 2 N vandig natriumhydroxidopløsning i en sådan mængde, at opløsningen blev holdt ved en pH-værdi på 11 + 0,5, hvorved den tværbundne agar blev aktiveret.The cross-linked agar particles were subjected to vacuum filtration to remove excess water and cooled to 4 ° C. To a mixture of 50 g of the particles thus obtained and 80 ml of a 2% aqueous cyanogen bromide solution was added dropwise a 2 N aqueous sodium hydroxide solution in such an amount that the solution was kept at a pH of 11 + 0.5 , thereby activating the cross-linked agar.

Efter at alkaliabsorptionen var ophørt (hvilket gav sig udslag i forøgelse af pH-værdien), blev alkalitilsætningen standset og reaktionsmassen underkastet en vakuumfiltrering og vasket med vand til 1Λ 8 2 6 3 δ opnåelse af aktiverede og tværbundne agarpartikler.After the alkali absorption had ceased (resulting in an increase in the pH), the alkali addition was stopped and the reaction mass subjected to vacuum filtration and washed with water to obtain activated and cross-linked agar particles.

Uopløseliggørelse af glucoseisomerase.Insoluble glucose isomerase.

En blanding af 50 g af de således opnåede aktiverede partikler og glucoseisomeraseekstrakten fra eksempel 1 med en aktivitetstiter på 25000 enheder blev holdt ved en temperatur på 4°C i 18 timer til opnåelse af adsorption af isomerasen på partiklerne under opnåelse af uopløseliggjort glucoseisomerase i partikelform.A mixture of 50 g of the thus obtained activated particles and the glucose isomerase extract of Example 1 with an activity titer of 25000 units was kept at a temperature of 4 ° C for 18 hours to obtain adsorption of the isomerase onto the particles to obtain insoluble glucose isomerase in particulate form.

Isomerisationsreaktion.Isomerization reaction.

Den ovennævnte uopløseliggjorte glucoseisomerase med en aktivi-tetstiter på 4000enheder, blev pakket i en med kappe forsynet kolonne (indre diameter 1,5 cm, længde 12 cm), hvorigennem en vandig glucose-opløsning med en koncentration på 3 mol/liter og indeholdende forskellige metalioner anført i tabel 4 blev ledt i nedadgående retning i en mængde på 8,5 ml pr. time ved en temperatur på 67°C til opnåelse af kontinuerlig isomerisering.The aforementioned insolubilized glucose isomerase with an activity titer of 4000 units was packed in a sheathed column (inner diameter 1.5 cm, length 12 cm) through which an aqueous glucose solution at a concentration of 3 moles / liter and containing various metal ions listed in Table 4 were directed downwards in an amount of 8.5 ml per ml. hour at a temperature of 67 ° C to obtain continuous isomerization.

I tabel 4 er anført arten og koncentrationen af metalioner, der førtes til glucoseopløsningen og variationen i mængden af fructose, der dannes i de anførte tidsrum.Table 4 lists the nature and concentration of metal ions that led to the glucose solution and the variation in the amount of fructose formed during the periods indicated.

146263 9146263 9

O HOO HO

I 00 OO LD OI 00 OO LD O

g LO Ί* 'Φg LO Ί * 'Φ

(0 HH(0 HH

+) ID O LD+) ID O LD

d) r- oo m Hd) r- oo m H

tø in >» "tfthaw in> »" tf

Η HΗ H

h —— (U O O "tf -p —.. ID oo m o m <D m "tf "tf Q) S H__H__ H ~” ~ +J +) in ro o d) \ in <n in o β Οι m "tf inh —— (U O O "tf -p - .. ID oo m o m <D m" tf "tf Q) S H__H__ H ~” ~ + J +) in ro o d) \ in <n in o β Οι m "tf in

qa -* Hqa - * H

ni — —--- T3 o m o Φ 'tf σ> m "tf d) t n in "tf mni - ——- T3 o m o Φ 'tf σ> m "tf d) t n in" tf m

ra ø H Hra ø H H

0 Ό +J o ni o0 Ό + J o ni o

O H ro o o CDO H ro o o CD

3 ifl io "tf ID3 ifl io „tf ID

}-) -Μ Η H} -) -Μ Η H

m d----- tu o o o tu cm o m ’tfm d ----- tu o o o tu cm o m 'tf

10 φ ID "tf H10 φ ID "tf H

&i.p H HH& i.p H HH

g H ---__g H ---__

ft) -®l O O Oft) -®l O O O

g IH Η H O Og IH Η H O O

ID in IDID in ID

_____ H__Η H_____ H__Η H

"f d o"f d o

rH *HrH * H

d) -P —.d) -P -.

A Hl·) os H o)A Hl ·) os H o)

Eh -P -PEh -P -P

d ηd η

d) Hd) H

o \ h in d h >· *· o o in o m o t n 0 g H ""o \ h in d h> · * · o o in o m o t n 0 g H ""

HH

cdCD

•P• P

<D<D

5 ip + + cd M + + + + + d) + + + + 4- -P d t n a) t n Q) t n u o g fe g Pn g5 ip ++ CD M + + + + + d) + + + + 4- -P d t n a) t n Q) t n u o g fe g Pn g

j< Hj <H

HH

d) a 6 · ΦΗ t" oo cnd) a 6 · ΦΗ t „oo cn

tO d Η Η HtO d Η Η H

XX

M il 10 146263M il 10 146263

Graden af aktivitetsbevarelse og aktivitetstiteren, der angives i ovenstående beskrivelse og i kravene, måles som følger.The degree of activity retention and the activity titer indicated in the above description and requirements are measured as follows.

Grad af aktivitetsbevarelse.Degree of activity retention.

En vandig substratopløsning indeholdende glucose, magnesiumsulfat, cobaltochlorid og phosphatstødpude (pH =7,2) i en koncentration på henholdsvis 0,1 mol/liter, 0,05 mol/liter, 0,001 mol/liter og 0,05 mol/liter fremstilles. En forudbestemt mængde, sædvanligvis mellem 1 og 10 ml, uopløseliggjort glucoseisomerase, der ikke tidligere har været anvendt til isomerisering,sættes til 100 ml af substratopløsningen, og der foretages isomerisation ved en temperatur på 70°C i 60 minutter under forsigtig omrøring. En tilsvarende isomerisering udføres med en uopløseliggjort isomerase som forud har været anvendt et bestemt antal dage.An aqueous substrate solution containing glucose, magnesium sulfate, cobaltochloride and phosphate buffer (pH = 7.2) at a concentration of 0.1 mol / liter, 0.05 mol / liter, 0.001 mol / liter and 0.05 mol / liter, respectively, is prepared. A predetermined amount, usually between 1 and 10 ml, of insoluble glucose isomerase not previously used for isomerization is added to 100 ml of the substrate solution and isomerization is carried out at a temperature of 70 ° C for 60 minutes with gentle stirring. A similar isomerization is carried out with an insolubilized isomerase which has been used a predetermined number of days.

Derpå fraskilles isomerasen ved filtrering, og mængden af fructose i filtratet bestemmes ved cystein-carbazol-metoden.The isomerase is then separated by filtration and the amount of fructose in the filtrate is determined by the cysteine-carbazole method.

Mængden af fructose, der dannes pr. ml af den uopløseliggjor-te glucoseisomerase, beregnes, værdierne, der opnås, betegnes "A" for den ikke tidligere anvendte isomerase og "A,,r for den tidligere benyttede. Derpå beregnes graden af aktivitetsbevarelsen ud fra følgende ligning: 1 x 100 (%)The amount of fructose produced per ml of the insoluble glucose isomerase is calculated, the values obtained are denoted "A" for the isomerase not previously used and "A ,, r for the previously used. Then the degree of activity retention is calculated from the following equation: 1 x 100 ( %)

Aktivitetstiter af glucoseisomeraseekstrakt.Activity titer of glucose isomerase extract.

En blanding af vandige opløsninger af 0,2 ml 1 m D-glueose, 0,2 ml 0,05 m MgS04,7H20 og 0,2 ml 0,5 m phosphatstødpude (pH = 7,2) sættes til 0,2 ml glucoseisomeraseekstrakt, og opløsningen fortyndes med vand til ialt 2 ml. Den resulterende fortyndede opløsning holdes ved en temperatur på 70°C i 60 minutter til opnåelse af isomerisation, og reaktionen standses ved tilsætning af 2 ml af en 0,5 m vandig perchlorsyreopløsning. Derpå bestemmes mængden af dannet fructose ved cystein-carbazol-metoden. Den "enhed", der er anvendt i forbindelse med angivelse af aktivitetstiteren ovenfor, er defineret som mængden af dannet fructose (mg) mængden af isomeraseekstrakt (ml) .A mixture of aqueous solutions of 0.2 ml of 1 m D-glueose, 0.2 ml of 0.05 m MgSO4.7H2O and 0.2 ml of 0.5 m phosphate buffer (pH = 7.2) is added to 0.2 ml glucose isomerase extract and dilute the solution with water to a total of 2 ml. The resulting dilute solution is kept at a temperature of 70 ° C for 60 minutes to obtain isomerization and the reaction is quenched by the addition of 2 ml of a 0.5 m aqueous perchloric acid solution. Then the amount of fructose formed is determined by the cysteine-carbazole method. The "unit" used in reference to the activity titer above is defined as the amount of fructose (mg) produced, the amount of isomerase extract (ml).

DK385875A 1975-08-27 1975-08-27 PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE DK146263C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK385875A DK146263C (en) 1975-08-27 1975-08-27 PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK385875A DK146263C (en) 1975-08-27 1975-08-27 PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE
DK385875 1975-08-27

Publications (3)

Publication Number Publication Date
DK385875A DK385875A (en) 1977-02-28
DK146263B true DK146263B (en) 1983-08-15
DK146263C DK146263C (en) 1984-01-23

Family

ID=8127539

Family Applications (1)

Application Number Title Priority Date Filing Date
DK385875A DK146263C (en) 1975-08-27 1975-08-27 PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE

Country Status (1)

Country Link
DK (1) DK146263C (en)

Also Published As

Publication number Publication date
DK146263C (en) 1984-01-23
DK385875A (en) 1977-02-28

Similar Documents

Publication Publication Date Title
US3791926A (en) Process for the production of l-aspartic acid
US4008124A (en) Process for the isomerization of glucose into fructose
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
US4132596A (en) Support-aminoacylase complexes
JPS6049479B2 (en) Glucose isomerase deactivation prevention material and glucose isomerization reaction method
DK146263B (en) PROCEDURE FOR ISOMERIZING GLUCOSE TO FRUCTOSE
EP0050007B1 (en) A heat-resistant adenylate kinase, a stable immobilized adenylate kinase composite material, and processes for their production
JPS6219835B2 (en)
EP0859051B1 (en) Immobilized biocatalyst
Kennedy et al. Immobilisation of biocatalysts by metal-link/chelation processes
US5093253A (en) Method for microbial immobilization by entrapment in gellan gum
IE841136L (en) Immobilization of catalytically active microorganisms in¹agar gel fibers
AU603827B2 (en) Novel preparation
EP0340378B1 (en) Method for microbial immobilization
NO144633B (en) PROCEDURE FOR THE PREPARATION OF 6-AMINOPENICILLANIC ACID
JPS6030683A (en) Resin composition containing immobilized enzyme, its production and regeneration
Lee et al. Studies of l‐phenylalanine production by immobilised aminoacylase in stabilized calcium alginate beads
JPS61205483A (en) Stabilization of extralcellular enzyme
US3821082A (en) Treating cells of microorganisms containing intracellular glucose isomerase
JP3179058B2 (en) Immobilized biocatalyst
Chibata Production of useful chemicals using cells immobilized with polyacrylamide and carrageenan
SU810717A1 (en) Method of preparing immobilized polyribonucleotidephosphorylase
Chibata et al. Immobilized cells
SU121909A1 (en) Method for industrial production of purified and concentrated (adsorbed) tetanus toxoid
JPS60237993A (en) Method of immobilizing enzyme to hydroxyl group-containing fiber

Legal Events

Date Code Title Description
PBP Patent lapsed