DK145408B - CATALYST AND USE OF THIS FOR THE MANUFACTURING OF METHANIC GASES - Google Patents
CATALYST AND USE OF THIS FOR THE MANUFACTURING OF METHANIC GASES Download PDFInfo
- Publication number
- DK145408B DK145408B DK614673AA DK614673A DK145408B DK 145408 B DK145408 B DK 145408B DK 614673A A DK614673A A DK 614673AA DK 614673 A DK614673 A DK 614673A DK 145408 B DK145408 B DK 145408B
- Authority
- DK
- Denmark
- Prior art keywords
- catalyst
- gases
- catalysts
- methane
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/02—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
- C07C4/06—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/20—Carbon compounds
- C07C2527/232—Carbonates
- C07C2527/236—Hydroxy carbonates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
IP (12) FREMUEGGELSESSKRIFT od 145408 BIP (12) PROCEDURE WRITING OR 145408 B
(19) DANMARK(19) DENMARK
DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM
(21) Ansøgning nr. 6l 46/73 Int.CI.3 B 01 J 23/74 (22) Indleveringsdag 14. nov. 1973 C 07 C 4/06 (24) Løbedag 14. nov. 1 973 (41) Aim. tilgængelig ] 6. maj 1974 (44) Fremlagt 15. nov. 1982 (86) International ansøgning nr. ’ ' (86) International indleveringsdag _ (85) Videreførelsesdag _ (62) Stamansøgning nr. _(21) Application No. 6l 46/73 Int.CI.3 B 01 J 23/74 (22) Filing date 14 Nov. 1973 C 07 C 4/06 (24) Running day 14 Nov. 1 973 (41) Aim. available] May 6, 1974 (44) Presented Nov. 15; 1982 (86) International Application No. '' (86) International Filing Day _ (85) Continuation Day _ (62) Master Application No _
(30) Prioritet 15. nov. g72, 2255909, DE(30) Priority 15 Nov. g72, 2255909, DE
(71) Ansøger BASF AKTIENGESELLSCHAFT, 6700 Ludwigshafen, DE.(71) Applicant BASF AKTIENGESELLSCHAFT, 6700 Ludwigshafen, DE.
(72) Opfinder Franz Josef Broecker, DE: Guenter Zlrker, DE: Bruno(72) Inventor Franz Josef Broecker, DE: Guenter Zlrker, DE: Bruno
Triebskorn, DE: Laszlo Marosi, DE: Matthias Schwarzmann, DE:m.fl. (74) Fuldmægtig ingeniørfirmaet Hofman-Bang & Bout ard.Triebskorn, DE: Laszlo Marosi, DE: Matthias Schwarzmann, DE: et al. (74) Hofman-Bang & Bout ard engineering firm.
Katalysator og anvendelse af denne til fremstilling af methanholdige gasser.Catalyst and its use in the production of methane-containing gases.
Opfindelsen angår en katalysator af den i indledningen til krav 1 angivne art samt en anvendelse deraf. Katalysatoren ifølge opfindelsen er således fremstillet ud fra definerede, på basis af vandig opløsning tildannede forbindelser af den såkaldte kataly-satorforløbertype ved tørring, kalcinering og reduktion, eller den er udvundet ved udfældning af katalysatorforløbeme på i vandig Q fase opslemmede bærere, og anvendelsen af katalysatoren er til 0 fremstilling af methanholdige gasser ved spaltning af carbon- ^ hydrider.The invention relates to a catalyst of the kind set forth in the preamble of claim 1 and to a use thereof. Thus, the catalyst of the invention is prepared from defined aqueous solution-formed compounds of the so-called catalyst precursor type by drying, calcining and reduction, or it is recovered by precipitation of the catalyst precursors on aqueous Q phase suspended carriers and the use of the catalyst. is for the production of methane-containing gases by decomposition of hydrocarbons.
1 uen *** ep*™ aT for™S1 uen *** ep * ™ aT for ™ S
såsom for eksempel me than, propan og butan, til gasser, der 1 det ^ væsentlige indeholder carbonmonoxid og hydrogen (såkaldte synte- segasser), i forbindelse med nikkelkatalysatorer i nærværelse af vanddamp har allerede været kendt længe. Den gennemføres i al- 2 U5408 mindelighed ved temperaturer mellem 600 og 900° C. Denne reaktion betegnes damp-reforming.such as, for example, methane, propane and butane, for gases containing substantially carbon monoxide and hydrogen (so-called synthesis gases) in association with nickel catalysts in the presence of water vapor have long been known. It is generally carried out at temperatures between 600 and 900 ° C. This reaction is referred to as steam reforming.
Carbonhydrider kan imidlertid også spaltes til methanrige gasser ved lavere temperaturer med nikkelkatalysatorer. Dannelsen af methanrige gasser på basis af carbonhydrider som ethan, propan, butan eller naphtha osv. ved lave temperaturer er dog til forskel fra damp-reforming en exothermt forløbende proces. Derfor bliver denne reaktion gennemført under adiabatiske betingelser i skaktovne, mens fremstillingen af syntesegasser foretages i rørovne ved damp-reforming., I tysk fremlæggelsesskrift nr. 1.180.481 beskrives, at man kan omsætte flydende carbonhydrider i området mellem 400 og 550° G med vanddamp til methanrige gasser i forbindelse med nikkelkatalysatorer på bærere (med methanindhold på over 50 1° efter tørringen), de såkaldte berigede gasser, når man overholder forskellige forhold mellem damp og carbonhydrid ved omsætningen.However, hydrocarbons can also be decomposed into methane-rich gases at lower temperatures with nickel catalysts. However, the formation of methane-rich gases based on hydrocarbons such as ethane, propane, butane or naphtha, etc. at low temperatures is, unlike steam reforming, an exothermic process. Therefore, this reaction is carried out under adiabatic conditions in shaft furnaces, while the production of synthesis gases is carried out in tube furnaces by steam reforming. German Patent Specification No. 1,180,481 discloses that one can react liquid hydrocarbons in the range of 400 to 550 ° G with water vapor. for methane-rich gases in connection with nickel catalysts on carriers (with methane content above 50 ° C after drying), the so-called enriched gases, when observing different ratios of steam to hydrocarbon in the reaction.
Til denne fremgangsmåde foreslår man helt alment nikkelkatalysatorer på bærere af den konventionelle type. Det har dog vist sig, at de fra dampspaltningen ved høj temperatur kendte nikkelkatalysatorer ikke er velegnede til spaltning af carbonhydrider ved lavere temperatur, fordi de i almindelighed udviser en for ringe aktivitet, da deres bærere for det meste blev kalcineret ved høj temperatur for at tilfredsstille kravene til damp-refor-ming.For this process, it is generally proposed to use nickel catalysts on carriers of the conventional type. However, it has been found that the nickel catalysts known from the high temperature vapor cleavage are not suitable for low temperature hydrocarbon decomposition because they generally exhibit too little activity since their carriers were mostly calcined at high temperature to satisfy the requirements for steam reforming.
Også den i det ovenfor angivne fremlæggelsesskrift som en fore-trukken udførelsesform angivne alkalifrie katalysator, der indeholder 15 9^ nikkel på aluminiumoxid (jfr. spalte 4, linie 29 - 49), er lidet egnet til fremgangsmåden, fordi kun belastninger, der ikke er større end 0,5 kg carbonhydrid pr. liter katalysator og time, er tilladelige med en sådan katalysator, når man skal opnå løbetider på approximativt over 14 dage. En sådan fremgangsmåde er dog uøkonomisk, når man ikke tillader katalysatorbelastninger på ca.Also, the alkali-free catalyst which contains 15 9 ^ nickel on alumina (cf. column 4, lines 29-49), mentioned in the preferred embodiment as a preferred embodiment, is not well suited for the process because only loads which are not greater than 0.5 kg hydrocarbon per per liter of catalyst and hour, such catalyst is permissible when maturities of approximately 14 days are obtained. However, such a procedure is uneconomical when not allowing catalyst loads of approx.
1 - 1,5 kg carbonhydrid pr. liter katalysator og time (se sammenligningsforsøg i eksempel 5 og 6).1 - 1.5 kg hydrocarbon per per liter of catalyst and hour (see comparative experiments in Examples 5 and 6).
I tysk fremlæggelsesskrift nr. 1.227.603, der hidrører fra den 3 145408 samme ansøger, anføres det, at katalysatorlivslængden ved en frem-gangsmåde af den art, der er beskrevet i engelsk patent nr. 820.257, et ækvivalent til det ovenfor angivne tyske fremlæggelsesskrift nr. 1.180.481, er forholdsvis kort, især i de tilfælde, hvor højere kogende carbonhydrider i henzinkogepunktsintervallet skal spaltes.German Patent Specification No. 1,227,603, issued by the same applicant, states that the catalyst life is, by a method of the kind described in English Patent No. 820,257, equivalent to the German Patent Specification cited above. No. 1,180,481, is relatively short, especially in cases where higher boiling hydrocarbons in the henzine boiling range are to be cleaved.
I det angivne fremlæggelsesskrift nr. 1.227,603 fremstiller ansøgeren en nikkelhærerkatalysator, der udover nikkel og aluminiumoxid indeholder 0,75 - 8,6 # oxider, hydroxider og oarbonater af alkali- eller jordalkalimetaller, herunder magnesium. I spalte 2, fra linie 44, og spalte 3, til linie 16, angives, at man opnår optimale resultater under anvendelse af alkalier, især kalium, som additiv til katalysatoren, 1 alle eksempler er der som følge deraf også anvendt kaliumforbindelser som alkaliseringsmiddel.In the disclosed specification No. 1,227,603, the applicant manufactures a nickel hardening catalyst which, in addition to nickel and alumina, contains 0.75 - 8.6 # oxides, hydroxides and carbonates of alkali or alkaline earth metals, including magnesium. In column 2, from line 44, and column 3, to line 16, it is stated that optimum results are obtained using alkalis, especially potassium, as an additive to the catalyst. In all examples, as a result, potassium compounds as an alkalizing agent are also used.
Den obligatoriske alkalisering af nikkelkatalysatorer før anvendelsen deraf til dampspaltningen af især flydende carbonhydrider i temperaturområdet mellem 350 og 1.000° C, altså både for den egentlige damp-reforming-metode og for fremstillingen af berigede gasser, er også foreslået i tysk fremlæ^elsesskrift nr.The compulsory alkalization of nickel catalysts prior to their use for the vapor decomposition of especially liquid hydrocarbons in the temperature range between 350 and 1,000 ° C, ie both for the actual steam reforming method and for the production of enriched gases, is also proposed in German Pat.
1.199.427 hidrørende fra ICI.1,199,427 from ICI.
Ved kendskab til den angivne del af teknikkens kendte stade var det naturligt for gennemsnitsfagmanden at anvende alkaliholdige katalysatorer til spaltningen af carbonhydrider, fordi det var alment antaget, at udskillelsen af kulstof på katalysatoren kun kunne standses i rimelige tidsrum med alkaliholdige nikkelkatalysatorer, når omsætningen gennemføres under i økonomisk henseende gunstige betingelser, herunder små værdier af forholdet [HgOj/tO].Knowing the specified part of the prior art, it was natural for the average person skilled in the art to use alkali-containing catalysts for the decomposition of hydrocarbons, since it was generally believed that the separation of carbon on the catalyst could be stopped only for a reasonable period of time with alkali-containing nickel catalysts during the reaction. in economically favorable conditions, including small values of the ratio [HgOj / tO].
Por fagmanden forelå der således på grund af angivelserne i tysk fremlæggelsesskrift nr. 1.227#603 en fordom imod at anvende alkali-' frie nikkelkatalysatorer til dannelse af berigede gasser, fordi på den ene side promotorvirkningen af alkalier, såsom for eksempel kalium, var bevist, og fordi man på den anden side kun måtte forvente et negativt resultat ved anvendelsen af aluminium-oxid som bærer (jfr. eksempel 9 og sammenligningsforsøgene i eksempel 8 i den foreliggende ansøgning).According to one skilled in the art, therefore, because of the disclosures in German Patent Specification No. 1,227 # 603, there was a prejudice against using alkali-free nickel catalysts to generate enriched gases because, on the one hand, the promoter effect of alkalis, such as, for example, potassium, was proven. and, on the other hand, one would only expect a negative result from the use of aluminum oxide as a carrier (cf. Example 9 and the comparative experiments of Example 8 in the present application).
Det har nu overraskende vist sig, at alkalifrie katalysatorer, der 4 U5408 indeholder nikkel og aluminiumoxid, kan fremstilles på en sådan måde, at de er overlegne i sammenligning med de kendte katalysatorer, hvad angår deres anvendelse til fremstilling af methanhol-dige gasser, når man ved fremstillingen af disse katalysatorer går ud fra definerede katalysatorforløhere og overfører disse til den egentlige katalysator ved fældning, tørring, kalcinering og reduktion, idet man samtidigt drager omsorg for, at den i den kendetegnende del af krav 1 angivne temperaturgradient ligger i det' angivne område.It has now surprisingly been found that alkali-free catalysts containing nickel and alumina can be prepared in such a way that they are superior in comparison to the known catalysts in their use in the production of methane-containing gases when in the preparation of these catalysts, predetermined catalyst precursors are assumed and transferred to the actual catalyst by precipitation, drying, calcination and reduction, while at the same time ensuring that the temperature gradient specified in claim 1 is within the stated territory.
Katalysatoren ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 1 angivne.The catalyst according to the invention is characterized by the characterizing part of claim 1.
Man kender ganske vist fra den tidligere indleverede, men på ansøgningsdatoen for den foreliggende ansøgning endnu ikke offentliggjorte ansøgning nr. 3177/73 en katalysator af den i indledningen til krav 1 angivne art, men ved fremstillingen af denne kendte katalysator har man ikke gjort brug af det i den kendetegnende del af krav 1 angivne interval for temperaturgradienten mellem tørre- og kalcineringstrinnet.Although it is known from the previously filed application, but on the application date of the present application, application no. 3177/73 has not yet published a catalyst of the kind specified in the preamble of claim 1, but in the preparation of this known catalyst no use has been made of the interval of the temperature gradient between the drying and calcining steps specified in the characterizing part of claim 1.
Opfindelsen angår yderligere anvendelsen af denne katalysator til dannelse af methanholdige, især methanrige, gasser, ved spaltning af carbonhydrider med 2-30 O-atomer, svarende til et kogeområde mellem 30 og 300° 0, i nærværelse af vanddamp.The invention further relates to the use of this catalyst for the production of methane-containing, in particular methane-rich, gases, by the decomposition of hydrocarbons having from 2 to 30 O atoms, corresponding to a boiling range between 30 and 300 ° 0, in the presence of water vapor.
Opfindelsen omfatter derfor også en anvendelse af den i indledningen til krav 4 angivne art, hvilken anvendelse er ejendommelig ved det i den kendetegnende del af krav 4 angivne.The invention therefore also includes an application of the kind set forth in the preamble of claim 4, which use is peculiar to the characterizing part of claim 4.
Denne reaktion er - som allerede angivet i indledningen - exotherm, og den kan derfor i tilfælde af, at reaktionspartneren er forvarmet til en tilstrækkelig høj temperatur, gennemføres adiabatisk i en skaktovn. I forbindelse med de kendte katalysatorer blev denne metode i almindelighed gennemført på en sådan måde, at udgangsstofferne blev forvarmet til over 350° 0, og at de blev indført i katalysatormassen på en sådan måde, at temperaturen af denne masse blev holdt på en værdi i området mellem 400 og ca. 550° C (jfr. tysk fremlæggelsesskrift nr. 1.180.481 og tysk fremlæggelsesskrift nr. 1.227.603).This reaction is - as already stated in the introduction - exothermic and, therefore, in the event that the reaction partner is preheated to a sufficiently high temperature, it can be conducted adiabatically in a shaft furnace. In connection with the known catalysts, this method was generally carried out in such a way that the starting materials were preheated to more than 350 ° 0 and introduced into the catalyst mass in such a way that the temperature of this mass was kept at a value of range between 400 and approx. 550 ° C (cf. German Laid-Open No. 1,180,481 and German Laid-Open No. 1,227,603).
5 1454085 145408
Under anvendelse af katalysatoren Ifølge opfindelsen er det muligt at gennemføre den før angivne fremgangsmåde ved lavere temperaturer under adiabatiske betingelser. Dette betyder, at de som udgangsmaterialer tjenende carbonhydrider skal opvarmes til en lavere temperatur, idet en forvarimingstemperatur på 250° ' 0 er tilstrækkelig. Ted adiabatisk gennemførelse af reaktionen kan spaltningen derfor gennemføres i et temperaturområde mellem 250 og 550° 0, men fortrinsvis gennemføres fremgangsmåden dog i et temperaturområde mellem 500 og 450° C og især i et temperaturområde mellem 300 og 400° 0. De i det foregååbde angivne angivelser refererer til forvarmningstemperatur«! af blandingen vanddamp/ carbonhydrid. Denne er afhængig af det anvendte råstof og kan vælges desto lavere, jo lavere kogende c&rbonhydridblandingen er, og desto højere paraffinandelen i denne cårhonhydridblanding er.Using the Catalyst According to the invention, it is possible to carry out the aforementioned process at lower temperatures under adiabatic conditions. This means that the hydrocarbons serving as starting materials must be heated to a lower temperature, with a preheat temperature of 250 ° 0 being sufficient. Therefore, for adiabatic execution of the reaction, cleavage can be carried out in a temperature range between 250 and 550 ° 0, but preferably the process is carried out in a temperature range between 500 and 450 ° C and in particular in a temperature range between 300 and 400 ° 0. indications refer to preheating temperature «! of the water vapor / hydrocarbon mixture. This is dependent on the raw material used and can be selected the lower the lower the boiling hydrocarbon mixture and the higher the paraffin content of this hydrocarbon mixture.
Som bekendt er ligevægten for omsætningen og dermed methanindhol-! det i gassen meget stærkt temperatur- og trykafhængig. Den er desto højere, jo lavere reaktionstsmperaturen og jo højere trykket vælges.As is well known, the equilibrium of the reaction and thus the methane content is! it in the gas very strongly temperature and pressure dependent. It is the higher the lower the reaction temperature and the higher the pressure is chosen.
Det er i denne forbindelse en fordel, at katalysatoren ifølge opfindelsen kan lade sig anvende i et trykområde mellem 10 og 100 atm. overtryk. Fortrinsvis vælges tryk i området mellem 25 og 85 atm. overtryk.In this connection, it is an advantage that the catalyst according to the invention can be used in a pressure range between 10 and 100 atm. overpressure. Preferably, pressures are selected in the range of 25 to 85 atm. overpressure.
Som råstoffer kommer carbonhydrider med en højere molekylvægt end methan i betragtning. Fortrinsvis anvender man blandinger af carbonhydrider med et gennemsnitligt 0-tal på Og - C^q, surende til et kogeområde på ca. 30 - 300° C. Særligt velegnede er carbonhydridblandinger, der overvejende består af paraffin!ske carbonhydrider. Antallet af de paraffiniske carbonhydrider i blandingen skulle ikke være under 70 volumenprocent.As raw materials, hydrocarbons with a higher molecular weight than methane are considered. Preferably, mixtures of hydrocarbons having an average 0 number of And - C 2 q are used, acidifying to a boiling range of approx. 30 to 300 ° C. Particularly suitable are hydrocarbon mixtures consisting predominantly of paraffinic hydrocarbons. The number of paraffinic hydrocarbons in the mixture should not be less than 70% by volume.
Råstoffet (naphtha) skal være afsvovlet til et svovlindhold på under 0,5 ppm» fordi de kendte nikkelkatalysatorer på lignende måde som katalysatoren ifølge opfindelsen ikke godt kan tåle højere svovlindhold over længere tidsrum. Denne forgiftningsvirkning er fælles for alle nikkelspaltekatalysatorer, således at råstoffet før anvendelsen til spaltning principielt må afsvovles i høj 6 145A08 grad. Denne afsvovling er kendt og gennemføres sædvanligvis med svovlfaste katalysatorer.The raw material (naphtha) must be desulfurized to a sulfur content of less than 0.5 ppm because the known nickel catalysts, similar to the inventive catalyst, cannot withstand higher sulfur content over a long period of time. This poisoning effect is common to all nickel slit catalysts so that the raw material must, in principle, be desulfurized to a high 6 145A08 degree. This desulfurization is known and is usually carried out with sulfur-solid catalysts.
Katalysatoren ifølge opfindelsen kan behandles med 1,0 - 2,5 kg naphtha/liter katalysator og time. Fortrinsvis anvendes til tekniske anlæg belastninger på mellem 1,2 og 1,5 kg naphtha/liter katalysator og time. Ved sammenligningsforsøg anvendes en belastning på 5 kg naphtha/liter katalysator og time (jfr. eksempel 8 ) for at kunne opnå tilsvarende virkninger inden for rimelige tidsrum. Den før angivne belastning spiller ingen rolle for den tekniske spaltning af flydende carbonhydrider. Katalysatoren ifølge opfindelsen er dog i stand til på pålidelig måde at spalte benzinfraktioner med et slutteligt kogepunkt på indtil 500° C indtil en belastning på 2 kg naphtha/liter katalysator og time. Ved benziner med lavere slutteligt kogepunkt kan man anvende større belastninger end 2. Ved spaltning af propan eller butan kan man anvende belastninger indtil 3,5 kg naphtha/liter katalysator og time. Disse angivelser viser, at belastningen afhænger af det anvendte carbonhydrid.The catalyst of the invention can be treated with 1.0 - 2.5 kg of naphtha / liter of catalyst and hour. Preferably, for technical plants, loads of between 1.2 and 1.5 kg of naphtha / liter of catalyst per hour are used. In comparative experiments, a load of 5 kg of naphtha / liter of catalyst and hour (cf. Example 8) is used to achieve similar effects within a reasonable time. The aforementioned load does not matter for the technical decomposition of liquid hydrocarbons. However, the catalyst of the invention is capable of reliably decomposing gasoline fractions with a final boiling point of up to 500 ° C up to a load of 2 kg of naphtha / liter of catalyst and hour. For fuels with a lower final boiling point, loads greater than 2. You can apply loads of up to 3.5 kg of naphtha / liter of catalyst and hour for cleavage of propane or butane. These indications show that the load depends on the hydrocarbon used.
Vægtforholdet damp/naphtha skal i det mindste andrage 0,8. Ved dampspaltningen med katalysatoren anvender man forhold i området mellem 1,0 og 2,0 kg damp pr. kg naphtha. Anvendelsen af højere forhold er ikke kritisk, men forbyder sig dog af økonomiske årsager. Behovet for vanddamp er af hasngigt af naturen af råstoffet. Ved anvendelse af meget lavt kogende carbonhydrider kan man vælge mindre værdier for dette forhold, især når man skal spalte overvejende paraffin!ske carbonhydrider.The vapor / naphtha weight ratio should be at least 0.8. In the vapor decomposition with the catalyst, ratios in the range of 1.0 to 2.0 kg of steam per day are used. kg of naphtha. The use of higher ratios is not critical, but is prohibited for economic reasons. The need for water vapor is by the gout of the nature of the raw material. By using very low boiling hydrocarbons, smaller values can be selected for this ratio, especially when cleaving predominantly paraffinic hydrocarbons.
Fortrinsvis anvendes lerhydrater som bærere. Derved kan man opnå vilkårlige nikkelindhold i forbindelse med den færdige katalysator. I almindelighed vælges der nikkelindhold mellem 15 og 77,5 vægtprocent.Preferably, clay hydrates are used as carriers. Thereby, any nickel content can be obtained in connection with the finished catalyst. Generally, nickel content is between 15 and 77.5% by weight.
Fremstillingen af katalysatoren ifølge opfindelsen beskrives nærmere i et senere afsnit i denne beskrivelse. I eks. 1 i den foreliggende beskrivelse beskrives anvendelsen af katalysatoren til spaltningen af carbonhydrider med henblik på frem- 7 145408 stilling af methanholdige gasser. Eksemplerne 3 og 4 angår efterme thani seringen af de i et første fremgangsmédetrin fremstillede, berigede gasser i et yderligere, katalytisk fremgangsmådetrin. 1 eks. 2 beskrives, hvorledes en raffinaderigas, der indeholder carbonoxider, kan omdannes til en methanrig gas i forbindelse med katalysatoren ifølge opfindelsen.The preparation of the catalyst of the invention is described in more detail in a later section of this specification. Example 1 of the present description describes the use of the catalyst for the decomposition of hydrocarbons to produce methane-containing gases. Examples 3 and 4 relate to the addition of the enriched gases produced in a first process step in a further catalytic process step. Example 2 describes how a refinery gas containing carbon oxides can be converted into a methane-rich gas in connection with the catalyst of the invention.
I eks. 8 er der foretaget en sammenligning mellem katalysatoren ifølge opfindelsen, A og en kendt katalysator i henhold til tysk fremlæggelsesskrift nr. 1.180.481 (H^ og H^), hvad angår deres forhold ved fremstillingen af methanholdige gasser. Disse ' forsøg viser på slående måde, at den alkalifrie katalysator ifølge opfindelsen i forhold til de kendte katalysatorer er meget overlegen hvad angår aktiviteten, især ved sådanne høje belastninger, ‘ som i dag anvendes i teknikken.In Example 8, a comparison was made between the catalyst of the invention, A and a known catalyst according to German Patent Specification No. 1,180,481 (H 2 and H 2) as to their ratio in the production of methane-containing gases. These experiments strikingly show that the alkali-free catalyst of the invention, relative to the known catalysts, is very superior in activity, especially at such high loads as are currently used in the art.
Eksempel 8 viser yderligere, at katalysatoren ifølge opfindelsen (A) også er overlegen i sammenligning med de alkaliserede kontakter hørende til teknikkens kendte stade (Jfr. K) i henhold til tysk fremlæggelsesskrift nr, 1,227,603 i alle henseender. Man kan især fremhæve den højere belastningsevne og den dermed forbundne længere løbetid af katalysatoren ifølge opfindelsen i sammenligning med de i teknikken anvendte, alkaliserede nikkelkatalysatorer. 7ed anvendelse af katalysatorerne til fremstilling af methanrige gasser har denne forhøjede aktivitet af katalysatoren den fordel, at fremgangsmåden kan gennemføres ved lavere tempera torer, således at man allerede i et fremgangsmåde trin kan opnå methanindhold i området mellem 65 og 75 volumenprocent, hvilke derpå i kun et yderligere katalytisk fremgangsmådetrin og en påfølgende tørring og C02~vask kan omdannes til gasser, der kan tjene som udvekslingsgasser til Jordgas, og som udviser de specifikationer, der kræves i forbindelse med disse gasser (summen Hg + CO maximalt 0,1 volumenprocent, beregnet på gassen efter OOg-vasken).Example 8 further shows that the catalyst of the invention (A) is also superior in comparison to the alkaline contacts of the prior art (cf. K) according to German Patent Specification No. 1,227,603 in all respects. In particular, one can emphasize the higher load capacity and the associated longer run time of the catalyst according to the invention in comparison with the alkali nickel catalysts used in the art. By using the catalysts to produce methane-rich gases, this increased activity of the catalyst has the advantage that the process can be carried out at lower temperatures, so that methane content in the range of between 65 and 75% by volume can be obtained already in a process step, a further catalytic process step and a subsequent drying and CO 2 wash can be converted into gases which can serve as exchange gases for natural gas and which exhibit the specifications required for these gases (sum Hg + CO maximum 0.1% by volume, calculated on the gas after the Oog wash).
Ved fremstillingen af methan kan spaltgasseroe efter det første katalytiske fremgangsmåde trin afkøles til temperaturer under reaktorudgangstemperaturen for at udkondensére det overskydende vand. Fortrinsvis vælges til dette formål temperaturer under 100° 0, f.eks. temperaturer i området mellem 20 og 80° C (tør methani-sering).In the preparation of methane, after the first catalytic process, flue gas can be cooled to temperatures below the reactor outlet temperature to condense the excess water. For this purpose, temperatures below 100 ° 0, e.g. temperatures in the range of 20 to 80 ° C (dry methanation).
8 1454088 145408
Det er dog også muligt, at man kun delvist fjerner vandet fra spaltgasseme efter det første katalytiske fremgangsmåde trin, og at man omsætter de endnu vandholdige spaltgasser direkte til methanrige gasser i et yderligere katalytisk trin ("våd methani-sering", jfr. eksempel 3 og 4).However, it is also possible that the water is only partially removed from the flue gases after the first catalytic process step and that the still aqueous fission gases are directly converted to methane-rich gases in a further catalytic step ("wet methanation", cf. Example 3 and 4).
Som udgangsstoffer for omsætningen i det andet katalytiske trin af fremgangsmåden anvendes gasser, der indeholder carbonoxider. Særligt velegnede er de berigede gasser, der hidrører fra naphtha-spaltningen ved lave temperaturer, og som i almindelighed kan indeholde 50 - 75 $ methan, 19 - 25 $> carbondioxid, indtil 16 # hydrogen og indtil 5 # carbonmonoxid. Det har vist sig, at disse tørre gasser uden forkoksning af katalysatoren ved forvarmnings-temperaturer i området mellem 200 og 300° 0 kan indføres i massen af nikkelkatalysatoren. Dette var overraskende, fordi det i den offentliggjorte tyske ansøgning nr. 1.645.840 blev hævdet, at eftermethaniseringen af berigede gasser kun er gennemførlig i nærværelse af vand, fordi de til methaniseringen benyttede nikkelkatalysatorer har tendens til forkoksning ved fravær af vand.Gases containing carbon oxides are used as starting materials for the reaction of the second catalytic step of the process. Particularly suitable are the enriched gases resulting from the naphtha cleavage at low temperatures, which can generally contain 50 - 75 $ methane, 19 - 25 $> carbon dioxide, up to 16 # hydrogen and up to 5 # carbon monoxide. It has been found that these dry gases can be introduced into the mass of the nickel catalyst without coking the catalyst at preheating temperatures in the range of 200 to 300 ° 0. This was surprising because in published German application No. 1,645,840 it was claimed that the post-methanization of enriched gases is feasible only in the presence of water because the nickel catalysts used for methanization tend to coking in the absence of water.
fil det andet katalytiske behandlingstrin kan man vælge belastninger i området mellem 2.000 og 10.000 NI gas pr. liter katalysator og time. Ved højere carbonmonoxidindhold af spaltgasseme vælges ringere belastninger, og omvendt kan man ved lavere car-bonmonoxidindhold af råstoffet indstille noget højere belastninger. Man foretrækker belastninger mellem 3.000 og 7.000 NI gas pr. liter katalysator og time.In the second catalytic treatment stage, loads can be selected in the range of between 2,000 and 10,000 NI of gas per hectare. liter of catalyst and hour. At higher carbon monoxide content of the flue gases, lower loads are selected, and conversely, at lower carbon monoxide content of the feedstock, slightly higher loads can be set. Loads between 3,000 and 7,000 NI of gas per unit are preferred. liter of catalyst and hour.
De følgende eksempler skal belyse katalysatorerne ifølge opfindelsen i sammenligning med de kendte katalysatorer samt de tekniske fordele, som katalysatorerne ifølge opfindelsen udviser i forhold til de kendte katalysatorer.The following examples will illustrate the catalysts of the invention in comparison with the known catalysts as well as the technical advantages shown by the catalysts of the invention over the known catalysts.
Nedenstående skema viser, hvilke katalysatorer, der ligger indenfor opfindelsens omfang, og hvilke, der ligger uden for opfindelsens omfang.The diagram below shows which catalysts are within the scope of the invention and which are outside the scope of the invention.
145408 9145408 9
Katalysatorercatalysts
Ifølge opfin- Katalysatorer udenfor opfindelsen delsen A G 1 - 11, G 1 - 21, G 1 - 40 B %, H2, H3In accordance with the invention, catalysts outside the invention give A G 1 - 11, G 1 - 21, G 1 - 40 B%, H2, H3
C IC I
D KD K
E FE F
Fremstillingen af de seks ovenfor angivne katalysatorer, der ligger indenfor opfindelsen, er beskrevet i de umiddelbart følgende afsnit (forsøg 1-3), mens fremstillingen af de kendte katalysatorer er beskrevet i forbindelse med de i senere afsnit beskrevne anvendelsesforsøg.The preparation of the above-mentioned catalysts which are within the invention is described in the immediately following sections (Experiments 1-3), while the preparation of the known catalysts is described in connection with the application experiments described in later sections.
FORSØG 1EXPERIMENT 1
Til fældning af forbindelsen NigAlg(OH)^·003*4Η20, der tjener som katalysatorforløber, fremstillede man først 2 molære opløsninger:To precipitate the compound NigAlg (OH) + · 003 * 4Η20, which serves as a catalyst precursor, 2 molar solutions were first prepared:
Opløsning 1: 13,960 kg = 48 mol Ni(N03)2*6H20 og 6,002 kg = 16 mol Al(N03)3*9H20 opløstes i en så stor vandmængde, at der fremkom en opløsning, hvis totale volumen var 32 liter.Solution 1: 13,960 kg = 48 moles of Ni (NO3) 2 * 6H2O and 6.002 kg = 16 moles Al (NO3) 3 * 9H2O were dissolved in such a volume of water that a solution was obtained whose total volume was 32 liters.
Opløsning 2: 7,635 kg = 72 mol natriumcarbonat opløstes ligeledes i vand, og der blev fyldt op til 36 liter.Solution 2: 7.635 kg = 72 moles of sodium carbonate was also dissolved in water and made up to 36 liters.
1 en rørekedel indførtes der 10 liter vand. pH-målingen under fældningen foretoges med en elektrode, der dykkede ned i vandforlaget. Begge opløsninger og vandforlaget blev separat opvarmet til 80° 0. Ved tilsætning af en velegnet mængde af opløsning 2 indstillede man i vandforlaget en pH-værdi på 8,0.10 liters of water were introduced into a stirrer. The pH measurement during the precipitation was performed with an electrode which dipped into the water publisher. Both solutions and the water publisher were separately heated to 80 ° 0. By adding a suitable amount of solution 2, a pH value of 8.0 was adjusted in the water publisher.
145408 ίο145408 ίο
Til fældning af den ovenfor angivne forbindelse lod man opløsning 1 og opløsning 2 separat løfte ind i vandforlaget og opretholdt under god omrøring ved regulering af tilløftshastigheden en pH-værdi på 7,5 - 8,0. Efter fuldstændigt tilløft af opløsning 1 ftlev tilløftet af oplosning 2 standset, og fældningen ftlev endnu efterrørt i 15 minutter ved 80° 0. Det opståede bundfald ftlev frafiltreret og vasket alkalifrit. Det vaskede produkt, der ved røntgenografisk undersøgelse viste sig at være en fejlfri fældning af NigAl2(0H).jg»C03*4H20, ftlev derpå tørret i 24 timer ved 110° C, kalcineret i 20 timer ved 450° 0 og derpå sammenpresset med 2 $ grafitadditiv til 5 x 5 mm· piller. I analytisk henseende fremkom der følgende værdier for ftestanddelene (alle angivelser Γ vægtprocent og fteregnet i forhold til den oxidiske kontakt): Nikkel 56,8, aluminium 9,5 og natrium 0,009.To precipitate the above compound, solution 1 and solution 2 were separately lifted into the water publisher and maintained under good stirring by adjusting the feed rate a pH of 7.5 - 8.0. After complete addition of solution 1, the addition of solution 2 was stopped and the precipitate was still stirred for 15 minutes at 80 ° 0. The resulting precipitate was filtered off and washed alkali-free. The washed product, which, by X-rayography, proved to be a flawless precipitate of NigAl2 (0H) .g0 CO3 * 4H2O, then dried for 24 hours at 110 ° C, calcined for 20 hours at 450 ° 0 and then compressed with 2 $ graphite additive for 5 x 5 mm pills. For analytical purposes, the following values were obtained for the components (all indications Γ% by weight and calculated in relation to the oxidic contact): Nickel 56.8, aluminum 9.5 and sodium 0.009.
FORSØG 2EXPERIMENT 2
Katalysator B:Catalyst B:
Katalysator B indeholder som ftærer et lerhydrat. Dette lerhydrat fremstilledes ved parallelfældning af natriumaluminatopløsning og salpetersyre i et pH-interval på 7,5 - 8,0. Bundfaldet ftlev filtreret, vasket alkalifrit og slutteligt tørret ved 200° 0.Catalyst B contains as clay a clay hydrate. This clay hydrate was prepared by parallel precipitation of sodium aluminate solution and nitric acid in a pH range of 7.5 - 8.0. The precipitate was filtered, washed alkali-free and finally dried at 200 ° 0.
5,720 kg af denne ftærer ftlev opslemmet i en rørekedel i 10 liter vand og opvarmet til 80° C, Forbindelsen NigAl2(0H)1600^·4Η20 udfældedes nu på denne opslemmede ftærer. Til dette formål fremstilledes to opløsninger, og de opvarmedes separat til 80° C.5.720 kg of this spring was suspended in a stirrer in 10 liters of water and heated to 80 ° C. The compound NigAl 2 (0H) 1600 ^ · 4Η20 was now precipitated on this suspended spring. For this purpose, two solutions were prepared and heated separately to 80 ° C.
Opløsning 1: 13,960 kg = 48 mol Ni(N03)2·6H20 og 6,002 kg = 16 mol Α1(Ν03)3·9Η20 opløstes i vand og ftlev fyldt op til 32 liter opløsning.Solution 1: 13,960 kg = 48 moles Ni (NO3) 2 · 6H20 and 6.002 kg = 16 moles Α1 (303) 3 · 9es20 dissolved in water and added up to 32 liters of solution.
Opløsning 2; 7,635 kg teknisk soda opløstes i vand, og der ftlev fyldt op til 36 liter opløsning.Solution 2; 7.635 kg of technical soda was dissolved in water and up to 36 liters of solution was added.
145408 11145408 11
Som beskrevet i eksempel 1 udfældes derpå ved pH = 7,5 - 8,0 forbindelsen NigAl2(0H)på lerhydratet (bæreren). 5ro-duktet fra fældningen blev endnu efterrørt 1 15 minutter, og derpå blev bundfaldet frafiltreret, vasket alkalifrit, tørret ved 110° C, kalcineret i 20 timer ved 450° C og slutteligt sammenpresset til piller med dimensionen 5 ς 5 m efter 2 $ grafittilsætning. Analysen viste følgende værdier for sammensætningen af den oxidi-ske kontakt (alle angivelser i vægtprocent): 39,3 nikkel, 24,1 aluminium, 0,01 natrium, fremstilledes som angivet i det foregående, med den forskel, at forbindelsen NigAl2(OH),jgC0j.4H20 var udfældet på 4,080 kg af den opslemmede bærer, og at kalcineringen af det tørre bundfald fandt sted ved 350° C. Den fremkomne katalysator (oxidisk) Havde følgende sammensætning (alle angivelser i vægtprocent): 32,5 nikkel, 27,1 aluminium og 0,009 natrium.Then, as described in Example 1, at pH = 7.5 - 8.0 the compound NigAl2 (OH) precipitates on the clay hydrate (carrier). The precipitate from the precipitate was further stirred for 15 minutes, and then the precipitate was filtered off, washed alkali-free, dried at 110 ° C, calcined for 20 hours at 450 ° C and finally compressed into pellets with the dimension of 5 to 5 m after 2 $ graphite addition . The analysis showed the following values for the composition of the oxidic contact (all percentages by weight): 39.3 nickel, 24.1 aluminum, 0.01 sodium, were prepared as above, with the difference that the compound NigAl2 (OH was precipitated at 4,080 kg of the slurry carrier and that the dry precipitation was calcined at 350 ° C. The resulting catalyst (oxidic) had the following composition (all percentages by weight): 32.5 27.1 aluminum and 0.009 sodium.
tf3d3
Kator__D: fremstilledes som katalysator C, men kun med den forskel, at den foreliggende lerhydratmængde var éndret. Man opnåede en bærer-kontakt med følgende sammensætning (alle angivelser i vægtprocent): 16,7 nikkel, 38,3 aluminium og 0,007 natrium.Kator__D: was prepared as catalyst C, but only with the difference that the amount of clay hydrate present was changed. A carrier contact was obtained with the following composition (all percentages by weight): 16.7 nickel, 38.3 aluminum and 0.007 sodium.
Katalysator E: fremstilledes som katalysator C og D, blot med den forskel, at forbindelsen Ν16Α12(ΟΗ)^00^·4Η20 blev udfældet på 6,830 kg op-slemmet lerhydrat. Den fremkomne katalysator har ført til den oxidiske tilstand med følgende sammensætning (alle angivelser i vægtprocent): 23,9 nikkel, 31,4 aluminium og 0,01 natrium.Catalyst E: was prepared as Catalysts C and D, except that the compound Ν16Α12 (ΟΗ) 00 00 00 · 4Η20 was precipitated on 6,830 kg of slurry clay hydrate. The resulting catalyst has led to the oxidic state of the following composition (all percentages by weight): 23.9 nickel, 31.4 aluminum and 0.01 sodium.
FORSØG 3 or_F:TRY 3 or_F:
Ved parallelfældning af en aluminiumsulfatopløsning med ammoniak ved pH = 7,5 fremstilledes en lerhydratbærer. Bundfaldet blev filtreret, vasket så lang tid, at sulfatindholdet var ringere end 0,5 vægtprocent, og tørret ved 200° 0.By parallel precipitation of an aluminum sulfate solution with ammonia at pH = 7.5, a clay hydrate support was prepared. The precipitate was filtered, washed so long that the sulfate content was less than 0.5% by weight, and dried at 200 ° 0.
145408 12 0,134 leg af dette bærermateriale blev opslemmet i en rørekedel i 10 liter vand. Som beskrevet i forsøg 2 udfældedes forbindelsen NigAl2(0H)^gC0^.4H20 på lerhydratet. Bundfaldet blev filtreret, vasket, tørret ved 110° C, kalcineret ved 350° C i 20 timer og slutteligt sammenpresset til piller med dimensionerne 5x5 mm.0.134 of this carrier material was suspended in a stirrer in 10 liters of water. As described in Experiment 2, the compound NigAl 2 (OH) 2 g CO 2 .4H 2 O precipitated on the clay hydrate. The precipitate was filtered, washed, dried at 110 ° C, calcined at 350 ° C for 20 hours and finally compressed into pellets of dimensions 5x5 mm.
Der fremkom en katalysator med følgende sammensætning (alle angivelser i vægtprocent): 52,4 nikkel, 12,2 aluminium, 0,006 natrium.A catalyst was obtained having the following composition (all percentages by weight): 52.4 nickel, 12.2 aluminum, 0.006 sodium.
EKSEMPEL 1 200 ml af katalysator A reduceredes i et reaktionsrør, der havde en indre diameter på 24 mm, og som udefra kunne opvarmes med en aluminiumblok, ved et tryk på 16 atm. absolut med hydrogen ved 450° C.EXAMPLE 1 200 ml of Catalyst A was reduced in a reaction tube having an internal diameter of 24 mm and which could be heated from the outside with an aluminum block, at a pressure of 16 atm. definitely with hydrogen at 450 ° C.
En afsvovlet naphtha (massefylde: 0,727 g/cm^, kogeinterval 80 - 155° C) fordampedes under tilsætning af 2 kg vand pr. kg naphtha og lededes under et tryk på 30 atm. absolut med en indgangstem-peratur på 380° C gennem katalysatoren. Katalysatorbelastningen androg 5 kg naphtha pr. liter katalysator og time. Temperaturen af den omgivende aluminiumblok blev holdt ved 450° C. Ved afkøling af den med en temperatur på 462° 0 af katalysatorlaget udtrædende spaltgas opnåede man pr. time 1,31 kg vand og 1770 NI af en tør gas, der bestod af 65,9 volumenprocent methan, 23,1 volumenprocent carbondioxid, 10,6 volumenprocent hydrogen og 0,4 volumenprocent carbonmonoxid.A desulfurized naphtha (density: 0.727 g / cm 2, boiling range 80 - 155 ° C) was evaporated while adding 2 kg of water per minute. kg of naphtha and was conducted under a pressure of 30 atm. absolutely with an inlet temperature of 380 ° C through the catalyst. The catalyst load was 5 kg of naphtha. liter of catalyst and hour. The temperature of the surrounding aluminum block was kept at 450 ° C. By cooling the decomposed decomposing gas with a temperature of 462 ° 0, the catalyst layer was obtained. 1.31 kg of water and 1770 NI of dry gas consisting of 65.9% by volume of methane, 23.1% by volume of carbon dioxide, 10.6% by volume of hydrogen and 0.4% by volume of carbon monoxide.
S2£2lZ£ator_B:S2 £ 2LZ £ ator_B:
Med katalysator B opnåede man med det samme råstof og under de i det foregående angivne betingelser en spaltgas, der trådte ud af katalysatormassen med en temperatur på 470° C. Ved afkøling af spaltgassen opnåede man pr. time 1,31 kg vand og 1680 NI af en tør gas, der bestod af (alle angivelser i volumenprocent) 64,8 methan, 23,0 carbondioxid, 11,7 hydrogen og 0,5 carbonmonoxid.Catalyst B was obtained with the same feedstock and under the conditions set out above, a flue gas exiting the catalyst mass at a temperature of 470 ° C was obtained by cooling the flue gas. 1.31 kg of water and 1680 NI of a dry gas consisting of (all percentages by volume) 64.8 methane, 23.0 carbon dioxide, 11.7 hydrogen and 0.5 carbon monoxide.
145408 13145408 13
Katalysator g:Catalyst g:
Katalysator F anvendtes under de samme betingelser som A og B til spaltningen af naphtha. Ved afkøling af den med en temperatur på 468° O fra katalysatorlaget udtrædende spaltgas opnåede man pr. time 1,30 kg vand og 1750 NI af en tør gas, der bestod af 65,0 methan, 23,1 carbondioxid, 11,4 hydrogen og 0,5 carbonmon-oxid (alle angivelser i volumenprocent).Catalyst F was used under the same conditions as A and B for the cleavage of naphtha. By cooling the decomposed flue gas leaving the catalyst layer at a temperature of 468 ° O, 1.30 kg of water and 1750 NI of a dry gas consisting of 65.0 methane, 23.1 carbon dioxide, 11.4 hydrogen and 0.5 carbon monoxide (all percentages by volume).
EKSEMPEL· 2EXAMPLE 2
Katalysator C: 200 ml af katalysator C reduceredes i et reaktorrør, der havde en indre diameter på 24 mm, og som udefra kunne opvarmes med en r" aluminiumblok, under et tryk på 16 atm. absolut, med hydrogen ved 400° C.Catalyst C: 200 ml of Catalyst C was reduced in a reactor tube having an internal diameter of 24 mm and which could be heated from the outside with a r "aluminum block, under a pressure of 16 atm absolute, with hydrogen at 400 ° C.
En. tør gas, der bestod af (alle angivelser i volumenprocent) 60,5 methan, 25,9 hydrogen, 12,5 carbondioxid og 1,1 carbonmon- : oxid, blev udtaget fra en trykbeholder, blev opvarmet og sammen- -blandet med vanddamp i forholdet 1,07 mol ^0 pr. mol tørgas.One. dry gas consisting of (all percentages by volume) 60.5 methane, 25.9 hydrogen, 12.5 carbon dioxide, and 1.1 carbon monoxide was taken from a pressure vessel, heated and mixed with water vapor in the ratio 1.07 mol moles of dry gas.
Ben på denne måde fremstillede, våde gas, der, hvad angår sammen- r sætningen, svarer til en ved katalytisk dampspaltning af en raffinaderigas fremstillet spaltgas, lededes gennem katalysatoren med en katalysatorbelastning på 6020 NI våd gas pr. liter kata«t lysator og time, ved et tryk på 17 atm. absolut og ved en Indgangstemperatur på 270° 0. Temperaturen af den omgivende aluminiumblok blev holdt på 270° C, Ved afkøling af den med en temperatur på 295° 0 fra katalysatorlaget udtrædende, våde gas opnåede man pr. time 0,56 liter vand og 450 NI af en tør gas, der bestod af 85,5 methan, 4*3 hydrogen, 10,2 carbondioxid og under 0,05 carbonmonoxid (alle angivelser i volumenprocent), l2iSlysator_D:Legs thus produced, wet gas which, in terms of the composition, correspond to a split gas produced by catalytic vapor decomposition of a refinery gas, were passed through the catalyst with a catalyst load of 6020 NI wet gas per minute. liter kata «t lysator and hour, at a pressure of 17 atm. absolute and at an Inlet temperature of 270 ° 0. The temperature of the surrounding aluminum block was kept at 270 ° C. By cooling it with a temperature of 295 ° 0 from the catalyst layer, wet gas exiting was obtained. 0.56 liters of water and 450 NI of dry gas consisting of 85.5 methane, 4 * 3 hydrogen, 10.2 carbon dioxide and less than 0.05 carbon monoxide (all percentages),
Katalysator Ώ anvendtes under de samme betingelser til efter-methanisering af en raffinaderi-spaltgas, der Indeholder earbon-oxider, som beskrevet i forbindelse med katalysator C, 145408 14Catalyst Ώ was used under the same conditions to post-methanize a refinery flue gas containing ear-oxides as described in connection with Catalyst C, 145408 14
Ved afkøling af den med en temperatur på 300° C fra katalysatorlaget udtrædende, våde gas opnåede man pr. time 0,56 liter vand og 450 NI af en tør gas, der bestod af 84,9 methan, 5,0 hydrogen, 10,1 carbondioxid og mindre end 0,05 carbonmonoxid (alle angivelser i volumenprocent).By cooling the wet gas extracting from the catalyst layer with a temperature of 300 ° C, a. 0.56 liters of water and 450 NI of a dry gas consisting of 84.9 methane, 5.0 hydrogen, 10.1 carbon dioxide and less than 0.05 carbon monoxide (all percentages by volume).
EKSEMPEL 3 450 ml af katalysator A blev ved. 450° C reduceret med hydrogen i et reaktionsrør, der havde en indre diameter på 24 mm, og som udefra kunne opvarmes med en aluminiumblok, ved et tryk på 16 atm. abs.EXAMPLE 3 450 ml of Catalyst A remained. 450 ° C reduced by hydrogen in a reaction tube having an internal diameter of 24 mm and which could be heated from the outside with an aluminum block, at a pressure of 16 atm. abs.
En afsvovlet naphtha (massefyldei 0,727 g/cm ; kogepunktsinterval 80 - 155° C) blev under tilsætning af 2 kg vand pr. kg naphtha fordampet og ledet gennem katalysatoren med en indgangstemperatur på 400° 0 og under et tryk på 30 atm. absolut. Katalysatorbelastningen androg 0,9 kg naphtha pr. liter katalysator og time. Temperaturen af den omgivende aluminiumblok blev holdt på 450° 0. Ved afkøling af den med en temperatur af 455° C af katalysatorlaget udtrædende spaltgas opnåede man pr. time 0,54 kg vand og 700 NI af en tør gas, der bestod af 67,1 methan, 22,9 carbondioxid, 9,6 hydrogen og 0,4 carbonmonoxid (alle angivelser i volumenprocent).A sulfurized naphtha (density 0.727 g / cm; boiling range 80 - 155 ° C) was added with 2 kg of water per ml. kg of naphtha evaporated and passed through the catalyst with an inlet temperature of 400 ° 0 and under a pressure of 30 atm. absolutely. The catalyst load was 0.9 kg of naphtha. liter of catalyst and hour. The temperature of the surrounding aluminum block was kept at 450 ° 0. By cooling the leaving gas leaving the catalyst layer at 455 ° C, the decomposition gas was obtained. 0.54 kg of water and 700 NI of a dry gas consisting of 67.1 methane, 22.9 carbon dioxide, 9.6 hydrogen and 0.4 carbon monoxide (all percentages by volume).
Efter 24 timers forløb indskød man efter det første reaktionsrør et andet reaktionsrør, der ligeledes kunne opvarmes udefra med en aluminiumblok, og som havde en indre diameter på 32 mm. Dette andet reaktionsrør indeholdt 250 ml af katalysator E, der i forvejen var reduceret med hydrogen ved 350° 0 under et tryk på 16 atm. absolut. Den efter det første reaktionsrør udkondenserede vandmængde blev igen tildoseret før det andet reaktionsrør, fordampet og sammenblandet med den tørre gas fra det første reaktionsrør. Den på denne måde fremkomne, våde gas (der, hvad angår sin sammensætning, svarer til den fra katalysatorlaget i det første reaktionsrør udtrædende, våde gas) lededes under et tryk af 30 atm. absolut gennem den i det andet reaktionsrør foreliggende 145408 15 katalysator E «ed. an indgangstempera^ur på,.270° C .i Sei^erø^ur^ f ; af den omgivende aluminiumblok blev holdt på 270° C. Ved afkøling af den med en temperatur af 305° 0 fra katalysatorlaget udtråden-. h. de gas opnåede man pr. time.·©,,56 leg...-.vsgauåj.,o^g[650.ΙΪ3. · der bestod af 75,6 methan, 22,8 carbondioxid, 1,6 hydrogen .og jt! under 0,05 carbonmonoxid (alle angiyels«j|i i yolumenproC^t^' r/ ti;rrAfter 24 hours, a second reaction tube was inserted after the first reaction tube, which could also be heated from the outside with an aluminum block and had an internal diameter of 32 mm. This second reaction tube contained 250 ml of catalyst E which had already been reduced with hydrogen at 350 ° C under a pressure of 16 atm. absolutely. The amount of water condensed after the first reaction tube was again dosed before the second reaction tube, evaporated and mixed with the dry gas from the first reaction tube. The wet gas thus obtained (which, in terms of its composition, corresponds to the wet gas emerging from the catalyst layer in the first reaction tube) was conducted under a pressure of 30 atm. absolutely through the catalyst present in the second reaction tube. an inlet temperature of, .270 ° C. Sei ^ erø ^ ur ^ f; of the surrounding aluminum block was kept at 270 ° C. Upon cooling it at a temperature of 305 ° 0 from the catalyst layer, the extraction wire. h. the gas obtained per hour. © ©,, 56 leg ...-. vsgauåj., o ^ g [650.ΙΪ3. · It consisted of 75.6 methane, 22.8 carbon dioxide, 1.6 hydrogen and jt! less than 0.05 carbon monoxide (all angles of 1
Efter 1040 timers forløb kunne man endnu ikke konstatere nogen Vi.After 1040 hours, no Vi could be found.
ændring af sammensætningen af de i det første og det andet re-aktionsrør frembragte gasser. Under fortsættelse af naphthaspalt-, ningen i det første reaktionsrør erstattede man nu katalysator ; * E i det andet reaktionsrør med katalysator 2): 250 ml af kataly- r,: sator D blev reduceret og anvendt i 1090 timer under de samme betingelser som før katalysator E. Ved afkøling af den méd en temperatur på 302° C fra katalysatorlaget udtrædende gas Opnåede man pr. time 0,56 kg vand og 660 NI af en tør gas, der beøtod affr- 74,0 methan, 22,8 carbondioxid, 3,2 hydrogen og under 0,05 car- " bonmonoxid (alle angivelser i volumenprocent). Da sammensætningen~ af de i det første og andet reaktionsrør dannede gaseer hpller ikke senere ændrede sig, blev forsøget afbrudt efter 1220i timers'^ forløb. ... '!" 5 i. . , ' ' ,’·."' ?> <h'’: ' .ichanging the composition of the gases produced in the first and second reaction tubes. Continueing the naphtha gap in the first reaction tube, catalyst was now replaced; * E in the second reaction tube with catalyst 2): 250 ml of catalyst: Sator D was reduced and used for 1090 hours under the same conditions as before catalyst E. By cooling it at a temperature of 302 ° C from the catalyst layer outgoing gas 0.56 kg of water and 660 NI of a dry gas which consumed 74.0 methane, 22.8 carbon dioxide, 3.2 hydrogen and less than 0.05 carbon monoxide (all percentages by volume). ~ of the gases formed in the first and second reaction tubes did not later change, the attempt was discontinued after 1220 hours. 5 i. , '', '·. "'?> <H" ':' .i
. EKSEMPEL 4 . "v.iV. EXAMPLE 4. "we V
200 ml af katalysator A blev, som beskrevet, i eksempel 3, reduceret og blev under betingelser, der - med undtagelse af ly sat orbe lastningen, der nu androg 2, 0 kg naphtha pr. liter ka-talysator og time - var de samme som angivet, i eksempel 3, ^nvsdd^^ til dampspaltning af naphtha. Ved afkøling af, den med en tempe- .;. „„ ratur af 475° 0 fra katalysatorlaget udtræd^nd© ^ man pr. time 0,53 kg vand og 710 Nl.,af. $as, .dar ,|f.... r3, 66,2 methan, 22,4 carbondioxid, 10,9 hydrogen og 0,5 carban«on-oxid (alle angivelser i volumenprocent;). r , , nm / 'Ο/·.. - ir-ikon r-V' t-:; \i yt$.S *7* ' .ir- -- ·.· ,-- · ·;ί - ;! : ; '>·Ε · ; :,; :...' : ^. .::: .i;; i.:· :; v ; ir i.1 ' ' 145403 16As described in Example 3, 200 ml of Catalyst A was reduced and, under conditions that, with the exception of shelter, put the orb loading, which now amounted to 2.0 kg of naphtha per liter. liter of catalyst and hour - were the same as given in Example 3, nvsdd ^^ for vapor decomposition of naphtha. Upon cooling, the one with a temp.;. "475 ° R temperature from the catalyst layer was withdrawn. hourly 0.53 kg of water and 710 Nl., of. $ as, .dar, | f .... r3, 66.2 methane, 22.4 carbon dioxide, 10.9 hydrogen and 0.5 carban «on oxide (all percentages by volume;). r,, nm / 'Ο / · .. - ir-icon r-V' t-:; \ i yt $ .S * 7 * '.ir- - ·. ·, - · ·; ί -;! :; '> · Ε ·; :,; : ... ': ^. . ::: .i ;; i.:·:; v; ir i.1 '' 145403 16
Efter 24 timers løbetid indførte man efter det første reaktionsrør et andet reaktionsrør med 200 ml af katalysator C. Reduktion og drift af katalysator 0 foregik på samme måde som beskrevet for katalysator E i eksempel 3. Ved afkøling af den med en temperatur af 315° 0 fra katalysatorlaget udtrædende gas opnåede man pr. time 0,56 kg vand og 650 NI af en tør gas, der bestod af 75,4 methan, 22,9 carbondioxid, 3,2 hydrogen og under 0,05 car-bonmonoxid (alle angivelser i volumenprocent).After a 24 hour run, after the first reaction tube, a second reaction tube containing 200 ml of catalyst C. was introduced. gas extracted from the catalyst layer was obtained per 0.56 kg of water and 650 NI of a dry gas consisting of 75.4 methane, 22.9 carbon dioxide, 3.2 hydrogen and less than 0.05 carbon monoxide (all percentages by volume).
Porsøget blev afbrudt efter 520 timers forløb, da man efter dette tidspunkt ikke kunne konstatere nogen ændring af sammensætningen af de i det første og andet reaktionsrør fremstillede gasser.The test was discontinued after 520 hours, as after this time no change in the composition of the gases produced in the first and second reaction tubes was detected.
EKSEMPEL 5EXAMPLE 5
Sammenligningsforsøgene blev gennemført under de i eksempel 1 og 2 af tysk fremlæggelsesskrift nr. 1.180.481 angivne betingelser, nemlig:The comparative experiments were carried out under the conditions set out in Examples 1 and 2 of German Patent Specification No. 1,180,481, namely:
Katalysatortemperatur ...................... 500° CCatalyst temperature ...................... 500 ° C
Porvarmningstemperatur for blandingen...... 450° CPore heating temperature of the mixture ...... 450 ° C
Tryk....................................... 25 atm.Pressure ....................................... 25 atm.
Anvendt stof...............................letbenzinSubstance used ............................... light petrol
Vanddamp-benzin-forhold .................... 2 kg/kgWater vapor-gasoline ratio .................... 2 kg / kg
Belastning................................. 0,5 kg benzin/1 kat.*hLoad ................................. 0.5 kg gasoline / 1 cat. * H
Len anvendte lette benzin havde en massefylde på 0,693 g/cm^ (ved 20° C) og et kogepunktsinterval fra 63 til 102° C. Len indeholdt 88 volumenprocent paraffiner, 10 volumenprocent 6-ring-naphthener og 2 volumenprocent aromater. La der i forbindelse med katalysatorbelastningen ikke var angivet noget i eksemplerne, valgte man den ovenfor angivne ringe katalysatorbelastning.Len used light petrol had a density of 0.693 g / cm 2 (at 20 ° C) and a boiling range from 63 to 102 ° C. Len contained 88% by volume paraffins, 10% by volume 6-ring naphthenes and 2% by volume aromatics. If nothing was stated in connection with the catalyst load in the examples, the low catalyst load indicated above was selected.
Man sammenlignede tre kommercielle, til højtemperaturdampspalt-ning af carbonhydrider velegnede nikkelkatalysatorer fra BASPThree commercial BASP nickel catalysts suitable for high temperature vapor decomposition were compared
145403 17 (G 1 - 11, G 1 - 21 og G 1 - 40) og den i det citeréde fremlæggelsesskrift beskrevne specielle katalysator (H·^), der indeholder 15 % nikkel. I den følgende tabel er der opført nikkelindhold, bæreren for de angivne katalysatorer * samt disses handelsbetegnelser: .\ ' ’. i145403 17 (G 1 - 11, G 1 - 21 and G 1 - 40) and the special catalyst (H · ^) cited in the cited disclosure containing 15% nickel. The following table lists the nickel content, the carrier of the specified catalysts * and their trade names:. in
Nikkelnickel
Katalysatortype vægt-# Bærer_ G 1 - 11 6 Magnesit G 1 - 21 16 Kaolin + magnesiumoxid + lercement G 1 - 40 20 Magnesiumoxid + ler H1; fremstillet i hen- 15 Bei1 ' : hold til MS j i 1.180.481, spalte 4, linie 29 ff.Catalyst type weight - # Carrier_ G 1 - 11 6 Magnesite G 1 - 21 16 Kaolin + magnesium oxide + clay cement G 1 - 40 20 Magnesium oxide + clay H1; prepared in accordance with Bei1 ': hold to MS j in 1,180,481, column 4, line 29 et seq.
Forsøgene blev gennemført i et reaktionerør, der i hvert tilfælde indeholdt 270 cm^ af de angivne katalysatorer.The experiments were conducted in a reaction tube containing in each case 270 cm 2 of the catalysts indicated.
- * 1 '£* V r; - 10 145408 1 o- * 1 '£ * V r; - 10 145408 1 o
Resultaterne af forsøgene er gengivet i den følgende tabel:The results of the experiments are presented in the following table:
Katalysator Katalysator Katalysator H1 $ MSCatalyst Catalyst Catalyst H1 $ MS
G 1 - 11 G 1 - 21 G 1 - 40 1.180.481G 1 - 11 G 1 - 21 G 1 - 40 1,180,481
Varighed, vægtprocent vægtprocent vægtprocent vægtprocent dage omsat benzin omsat benzin omsat benzin omsat benzinDuration, weight percent weight percent weight percent weight percent days gasoline converted gasoline converted gasoline converted gasoline
Begyndelse 100,0 100,0 96,7 100 1 93,4 97,9 94,0 100 2 82,0 82,6 93,1 100 3 43,7 53,0 91,6 100 4 - 36,9 76,1 100 5 - 23,3 75,0 100 6 30,2 15,9 - 100 7 18,8 32,7 54,5 100 8 10,7 - - 100 9 - 29,9 61,0 100 10 48,2 100 12 18,5 100 H - - 0 100Beginning 100.0 100.0 96.7 100 1 93.4 97.9 94.0 100 2 82.0 82.6 93.1 100 3 43.7 53.0 91.6 100 4 - 36.9 76 , 1 100 5 - 23.3 75.0 100 6 30.2 15.9 - 100 7 18.8 32.7 54.5 100 8 10.7 - - 100 9 - 29.9 61.0 100 10 48 , 2 100 12 18.5 100 H - - 0 100
Forsøgene viser, at fremgangsmåden ikke kan gennemføres med de kommercielle, nikkelspaltende katalysatorer, fordi alle tre katalysatorer i løbet af meget kort tid bliver in aktiveret. Forsøget med katalysatoren G 1 - 11 blev afbrudt efter 8 dages forløb ved en omsætning på kun 11 vægtprocent, forsøget med katalysatoren G 1 - 21 blev afbrudt efter 9 dages forløb ved en omsætning på 30 vægtprocent. Da forsøget med katalysatoren G 1 - 40 efter 9 dages forløb endnu udviste en omsætning på 61 vægtprocent af benzinen, blev dette forsøg udvidet til over i alt 14 dage.The experiments show that the process cannot be carried out with the commercial nickel-splitting catalysts because all three catalysts become inactivated in a very short time. The test with catalyst G 1 - 11 was discontinued after 8 days at a turnover of only 11% by weight, the test with catalyst G 1 - 21 was discontinued after 9 days at a turnover of 30% by weight. Since the test with catalyst G 1 - 40 after 9 days, still showed a turnover of 61% by weight of the gasoline, this experiment was extended to a total of 14 days.
Efter denne tid var katalysatoren fuldstændigt inaktiveret, og den omsatte overhovedet ikke mere benzin. Dette viser tillige, at der ikke indtræder nogen stabilisering af katalysatoraktiviteten, men at aktivitetsforringelsen skrider fremad indtil den fuldstændige inaktivering af en katalysator i løbet af meget kort tid.After this time, the catalyst was completely inactivated and no gasoline was reacted at all. This also shows that there is no stabilization of the catalyst activity, but that the deterioration of activity progresses until the complete inactivation of a catalyst in a very short time.
145408 19145408 19
Af disse forsøg fremgår, at nikkelkatalysatorer ganske simpelt ; J ikke er velegnede til den i det citerede fremlæggelsesskrift ] angivne fremgangsmåde. Kun den i henhold til tysk fremlæggel- " H sesskrift nr. 1.180.481 fremstillede, specielle nikkelkatalysator med en ren lerbærer viste sig at være velegnet i meget begrænset ~ i omfang. Forsøget med denne katalysator blev ligeledes udvidet ! til H dage. Endnu efter dette tidsrum omsatte katalysatoren j benzin fuldstændigt. Ved en teknisk belastning på 1 kg naphtha. -J pr. liter katalysator og time er dog heller ikke ved denne katalysator nogen fuldstændig naphthaspaltning mere mulig (jfr. eksempel 6).These experiments show that nickel catalysts are quite simple; J is not suitable for the method set forth in the cited script]. Only the special, special nickel catalyst produced in accordance with German Patent No. 1,180,481 with a pure clay support proved to be very limited in scope. The experiment with this catalyst was also extended to H days. In this period, the catalyst j reacted completely with petrol, but with a technical load of 1 kg of naphtha -J per liter of catalyst and hour, however, no complete naphtha decomposition is possible with this catalyst (cf. example 6).
I forbindelse med forsøgsmetodikken skal det bemærkes, at høje*-re carbonhydrider ad gaschromatografisk vej kunne konstateres > indtil 1 ppm .In connection with the experimental method, it should be noted that high * -carbon hydrocarbons could be detected by gas chromatographic> up to 1 ppm.
' :' EKSEMPEL· 6 , ^ ,EXAMPLE 6,
Forsøgsbetingelser:Test conditions:
Katalysatortemperatur (Al-blok-temperatur max.) ..................... 470° C iCatalyst temperature (Al block temperature max.) ..................... 470 ° C i
Fervarmningstemperatur af blandingen .......... 420° CPreheating temperature of the mixture .......... 420 ° C
Tryk..........................................30 atm.Pressure .......................................... 30 atm.
Anvendt stof..................................NaphthaApplied Substance .................................. Naphtha
Vanddamp/benzin-forhold ...................... 2 kg/kg ^ „Water vapor / gasoline ratio ...................... 2 kg / kg
Belastning.................................... 1 kg naphtha/1 kat.*hLoad .................................... 1 kg of naphtha / 1 cat. * H
Det anvendte naphtha havde en massefylde på 0,728 g/cm** ved 20° C og et kogepunktsinterval mellem 80 og 150° 0. Det indeholdt 62 volumenprocent paraffiner, 34,5 volumenprocent naphthener og 3,'5 volumenprocent arornater.The naphtha used had a density of 0.728 g / cm ** at 20 ° C and a boiling range between 80 and 150 ° 0. It contained 62% by volume of paraffins, 34.5% by volume of naphthenes and 3.5% by volume of aromatics.
Ved disse Bammenlignlngsforsøg, der blev gennemført 1 et reaktioner ør med i hvert tilfælde 200 ml katalysator, har man anvendt lavere temperaturer, et højere tryk, en højere kogende benzin og især en højere belastning end i eksempel 5. Resultaterne er gen-? givet i den følgende tabel: 20 U5408In these Bamm comparison experiments conducted in one reaction with at least 200 ml of catalyst, lower temperatures, a higher pressure, a higher boiling gasoline and in particular a higher load than in Example 5. have been used. given in the following table: 20 U5408
Katalysator i henhold Nikkelindhold, Tidspunkt indtil det til DAS 1.180.481 vægtprocent første benzingennembrud 1 H| 15 fra begyndelsen 2 H2 24,9 fra begyndelsen 3 Hj 51,2 efter 7 timers forløb EKSEMPEL· 7Catalyst according to Nickel content, Time until DAS 1,180,481 weight percent first gasoline breakthrough 1 H | 15 from the beginning 2 H2 24.9 from the beginning 3 Hj 51.2 after 7 hours EXAMPLE · 7
Katalysator I:Catalyst I:
Efter angivelserne i tysk fremlæggelsesskrift nr. 1.227.603 fremstillede man en katalysator ved fældning. Efter frafiltrering af bundfaldet, en seks gange gentagen varm opslemning, alkalisering og tørring ved 110° C kalcinerede man ved 450° C. Derpå sammenpressedes den ristede masse under tilsætning af 2 # grafit til tabletter med dimensionerne 5x5 mm. Analysen af den oxidiske kontakt viste sammensætningen (alle angivelser i vægtprocent) 25,0 nikkel, 65,4 A120j, 3,05 kalium.Following the disclosures in German Patent Specification No. 1,227,603, a catalyst was prepared by precipitation. After filtering off the precipitate, a six times repeated hot slurry, alkalization and drying at 110 ° C, calcined at 450 ° C. Then the shredded mass was compressed while adding 2 # graphite to tablets of dimensions 5x5 mm. The analysis of the oxidic contact showed the composition (all percentages by weight) of 25.0 nickel, 65.4 Al 2 O 3, 3.05 potassium.
Katalysator K:Catalyst K:
Katalysatoren fremstilledes analogt med eksempel 6 i tysk fremlæggelsesskrift nr. 1.227.603. Analysen af den oxidiske kontakt viste sammensætningen (alle angivelser i vægtprocent) 61,4 nikkel, 19,5 AlgO^, 1,31 kalium.The catalyst was prepared analogously to Example 6 of German Patent Specification No. 1,227,603. The analysis of the oxidic contact showed the composition (all percentages by weight) 61.4 nickel, 19.5 AlgO ^, 1.31 potassium.
EKSEMPEL 8EXAMPLE 8
Alle katalysatorerne H^, I, K og A undersøgtes med henblik på en sammenligning af deres aktivitet .under følgende betingelser:All of the catalysts H 1, I, K and A were tested for a comparison of their activity under the following conditions:
Forsøgene blev i hvert tilfælde gennemført i det samme reaktionsrør, der har en indre diameter på 24 mm, og som var omgivet med en aluminiumblok. Indgangstemperaturen af blandingen af naphtha og damp androg 380° C. Man anvendte en af svovlet naphtha med en massefylde på 0,727 g/cm^ og et kogepunktsinterval mellem 80 og 21 145408 155° C. Katalysatorbelastningen androg 5 Kg naphtha for hver 1 katalysator og time ved et vægtforhold I^O/carbonhydrid på 2,0 og et tryk på 30 atm. absolut. Temperaturen af den omgivende aluminiumblok androg 450° C.In each case, the experiments were conducted in the same reaction tube having an internal diameter of 24 mm and which was surrounded with an aluminum block. The inlet temperature of the mixture of naphtha and steam was 380 ° C. One of sulfurized naphtha with a density of 0.727 g / cm 2 and a boiling range between 80 and 21 was used. at a weight ratio of IO / hydrocarbon of 2.0 and a pressure of 30 atm. absolutely. The temperature of the surrounding aluminum block was 450 ° C.
Som aktivitetssammenlignende størrelse målte man den tid i timer, efter hvilken de første mængder af i spaltgassen foreliggende ikke omsatte højere carbonhydrider optrådte. Resultaterne er gengivet på tegningen, hvor man som ordinat valgte tiden i timer (h), og hvor katalysatorerne er optegnet på abscissen.As activity comparative size, the time was measured in hours after which the first amounts of higher hydrocarbons present in the fission gas did not occur. The results are shown in the drawing where, as ordinate, the time was chosen in hours (h) and where the catalysts are plotted on the abscissa.
Katalysator oxid, kontakt oxid kontakt Naphthaslip vagt-# Ni vægt-# K eller Na H1 15,2 0,01 fra begyndelsen - h5 51,2 0,01 efter 3 timer I 25,0 3,05 fra begyndelsen K 61,4 1,31 efter 89 timer A (eks. 1) 56,8 0,009 efter 121 timerCatalyst oxide, contact oxide contact Naphthaslip guard - # Nine weight # K or Na H1 15.2 0.01 from the beginning - h5 51.2 0.01 after 3 hours I 25.0 3.05 from the beginning K 61.4 1.31 after 89 hours A (Example 1) 56.8 0.009 after 121 hours
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2255909A DE2255909C3 (en) | 1972-11-15 | 1972-11-15 | Process for the production of catalysts containing nickel and aluminum and their use |
DE2255909 | 1972-11-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK145408B true DK145408B (en) | 1982-11-15 |
DK145408C DK145408C (en) | 1983-04-11 |
Family
ID=5861768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK614673A DK145408C (en) | 1972-11-15 | 1973-11-14 | CATALYST AND USE OF THIS FOR THE MANUFACTURING OF METHANIC GASES |
Country Status (12)
Country | Link |
---|---|
US (1) | US3941721A (en) |
JP (1) | JPS4981292A (en) |
AT (1) | AT332357B (en) |
BE (1) | BE807423A (en) |
CA (1) | CA1020591A (en) |
DE (1) | DE2255909C3 (en) |
DK (1) | DK145408C (en) |
ES (1) | ES420569A1 (en) |
FR (1) | FR2206127B3 (en) |
GB (1) | GB1462059A (en) |
IT (1) | IT1008604B (en) |
NL (1) | NL7315693A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4009124A (en) * | 1975-09-15 | 1977-02-22 | Basf Aktiengesellschaft | Basic mixed carbonate of copper and aluminum and process for manufacturing a copper-containing catalyst |
DE2601462C3 (en) * | 1976-01-16 | 1979-11-22 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of 6-aminocaproic acid amide |
GB1573706A (en) * | 1976-04-30 | 1980-08-28 | Ici Ltd | Crystalline compounds |
NL7908283A (en) * | 1979-11-13 | 1981-06-01 | Veg Gasinstituut Nv | PROCESS FOR THE PRODUCTION OF SYNTHETIC NATURAL GAS FROM HYDROCARBONS. |
GB2080136B (en) * | 1980-07-16 | 1984-05-16 | Dyson Refractories | Coprecipitated modified nickel catalysts |
GB2080135B (en) * | 1980-07-16 | 1984-05-10 | Dyson Refractories | A method of preparing a supported catalyst |
GB2118453B (en) * | 1982-03-12 | 1985-06-26 | British Gas Corp | Passivated nickel-alumina catalysts |
GB2144446A (en) * | 1983-08-04 | 1985-03-06 | Veg Gasinstituut Nv | Process for the production of methane rich gases |
GB8619373D0 (en) * | 1986-08-08 | 1986-09-17 | Ici Plc | Hydrogenation |
NO316440B1 (en) † | 2000-05-18 | 2004-01-26 | Statoil Asa | Hydrotalcite-based material with improved strength, use and process thereof, and catalyst comprising this material |
AU2002310799A1 (en) * | 2001-05-03 | 2002-11-18 | Atotech Deutschland Gmbh | High temperature-resistant catalyzer consisting of an "ab204" spinel and the excess oxide of metal "a" on a carrier and method for the production thereof |
WO2015092006A2 (en) | 2013-12-20 | 2015-06-25 | Basf Se | Two-layer catalyst bed |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3407149A (en) * | 1963-10-21 | 1968-10-22 | Exxon Research Engineering Co | Promoted catalyst for methane production |
US3433610A (en) * | 1965-06-01 | 1969-03-18 | Inst Gas Technology | Steam-reforming of hydrocarbons for production of high methane content gas |
-
1972
- 1972-11-15 DE DE2255909A patent/DE2255909C3/en not_active Expired
-
1973
- 1973-11-13 US US05/415,407 patent/US3941721A/en not_active Expired - Lifetime
- 1973-11-13 IT IT53670/73A patent/IT1008604B/en active
- 1973-11-14 CA CA185,730A patent/CA1020591A/en not_active Expired
- 1973-11-14 AT AT957973A patent/AT332357B/en not_active IP Right Cessation
- 1973-11-14 DK DK614673A patent/DK145408C/en not_active IP Right Cessation
- 1973-11-14 GB GB5278773A patent/GB1462059A/en not_active Expired
- 1973-11-14 FR FR7340464A patent/FR2206127B3/fr not_active Expired
- 1973-11-15 NL NL7315693A patent/NL7315693A/xx not_active Application Discontinuation
- 1973-11-15 JP JP48127796A patent/JPS4981292A/ja active Pending
- 1973-11-15 ES ES420569A patent/ES420569A1/en not_active Expired
- 1973-11-16 BE BE137839A patent/BE807423A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
IT1008604B (en) | 1976-11-30 |
FR2206127B3 (en) | 1976-09-24 |
DE2255909C3 (en) | 1978-04-06 |
JPS4981292A (en) | 1974-08-06 |
NL7315693A (en) | 1974-05-17 |
CA1020591A (en) | 1977-11-08 |
GB1462059A (en) | 1977-01-19 |
DK145408C (en) | 1983-04-11 |
DE2255909B2 (en) | 1977-07-07 |
ATA957973A (en) | 1976-01-15 |
ES420569A1 (en) | 1976-04-01 |
US3941721A (en) | 1976-03-02 |
BE807423A (en) | 1974-05-16 |
DE2255909A1 (en) | 1974-05-16 |
AT332357B (en) | 1976-09-27 |
FR2206127A1 (en) | 1974-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3912775A (en) | Catalyst and its use for the manufacture of methane from gases containing carbon monoxide and dioxide and hydrogen | |
US3586621A (en) | Hydrocarbon steam reforming,conversion and refining | |
DK145408B (en) | CATALYST AND USE OF THIS FOR THE MANUFACTURING OF METHANIC GASES | |
DK174087B1 (en) | Process for steam reforming nitrogen-containing hydrocarbons with reduced ammonia formation | |
WO2011008464A1 (en) | Process for the oxidative coupling of methane | |
FI72273B (en) | AUTOTERMISK REFORMERANDE KATALYSATOR OCH REFORMERINGSFOERFARANDE. | |
US3943226A (en) | Fluids purification | |
JPH02302301A (en) | Improvement of hydrocarbon by water vapor | |
NL8301426A (en) | HIGH ACTIVITY STEAM REFORM CATALYST SYSTEM, AND METHOD USING THIS CATALYST. | |
US3926584A (en) | Catalyst and catalytic process | |
US3515527A (en) | Catalytic treatment of hydrocarbons | |
WO2015074127A1 (en) | Hydrogen production method and catalyst | |
US3865753A (en) | Process for the preparation of a nickel magnesium aluminum catalyst | |
US4026823A (en) | Hydrocarbon reforming catalyst and method for preparing same | |
KR920002722B1 (en) | Cafolysts | |
US2037790A (en) | Treatment of hydrocarbon oils | |
KR960015912B1 (en) | Process for steam reforming of hydrocarbon | |
US3950368A (en) | Manufacture of methane | |
US5340465A (en) | Use of a metal oxide solid solution for sweetening a sour hydrocarbon fraction | |
US2013066A (en) | Hydrocarbon decomposition and catalyst therefor | |
NO136463B (en) | ||
BRPI1107073A2 (en) | STEAM REFORM CATALYST, PROCESS FOR THE PREPARATION OF THE REFERENCE CATALYST AND PROCESS FOR THE PRODUCTION OF HYDROGEN AND SYNTHETIC NATURAL GAS | |
US4483693A (en) | Reforming of hydrocarbons in the presence of sulfur | |
US5622790A (en) | Fuel cell and catalyst for use therein | |
US2845382A (en) | Cyclic process for the removal of hydrogen sulfide from high temperature gaseous streams without reduction in temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |