DK141331B - Process for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material. - Google Patents

Process for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material. Download PDF

Info

Publication number
DK141331B
DK141331B DK482869AA DK482869A DK141331B DK 141331 B DK141331 B DK 141331B DK 482869A A DK482869A A DK 482869AA DK 482869 A DK482869 A DK 482869A DK 141331 B DK141331 B DK 141331B
Authority
DK
Denmark
Prior art keywords
glass
bath
ions
diffusion
medium
Prior art date
Application number
DK482869AA
Other languages
Danish (da)
Other versions
DK141331C (en
Inventor
Francois Toussaint
Emile Plumat
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB4089269A external-priority patent/GB1274733A/en
Application filed by Glaverbel filed Critical Glaverbel
Publication of DK141331B publication Critical patent/DK141331B/en
Application granted granted Critical
Publication of DK141331C publication Critical patent/DK141331C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • C03B27/035Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt the liquid being sprayed on the object
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/052Tempering or quenching glass products using gas for flat or bent glass sheets being in a vertical position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • C03C21/003Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions under application of an electrical potential difference

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mathematical Physics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)

Description

(tf) \fiay di) FREMLÆ66ELSESSKRIFT 1 A-1 33 1 DANMARK c» mt.ci.= c os c 21/00 «(21) Ansøgning nr. 4828/¾ (22) Indleveret den 9 · B®P· 19¾ (23) Løbedag 9· B®P· 19¾ (44) Ansegnlngen fremlagt og(tf) \ fiay di) PUBLICATION MANUAL 1 A-1 33 1 DENMARK c »mt.ci. = c os c 21/00 '(21) Application No 4828 / ¾ (22) Filed on 9 · B®P · 19¾ (23) Race day 9 · B®P · 19¾ (44) The assessment presented and

fremlaeggelaeaakrlftot offentliggjort den 25 · I©D· 1 y£5Usubmitted to the public on the 25th of December

DIREKTORATET FORDIRECTORATE OF

PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begasret fra dmPATENT AND TRADE MARKET (30) Priority gassed from dm

12. sep. 1968, 56873, LU 15· aug. 1969# 40892/69, GBSep 12 1968, 56873, LU 15 Aug. 1969 # 40892/69, GB

(71) GLAVERBEL-MECANIVER, 166, Chaussee de la Hulpe, Watermael-Boitsfort, ΉΕ.(71) GLAVERBEL MECANIVER, 166, Chaussee de la Hulpe, Watermael-Boitsfort, ΉΕ.

(72) Opfinder: Emile Plumat, 279, Chaussee de Raneart, Gllly, BE: Francois Toussaint, Rue Terry Mouchon, 101, Lodellneart, BE.(72) Inventor: Emile Plumat, 279, Chaussee de Raneart, Gllly, BE: Francois Toussaint, Rue Terry Mouchon, 101, Lodellneart, BE.

(74) Fuldmægtig under aagens behandling:(74) Plenipotentiary under consideration:

Ingeniørfirmaet Lehmann & Ree.The engineering firm Lehmann & Ree.

(04) Fremgangsmåde til modifikation af en eller flere egenskaber ved lege* mer af glas, vitrokrystallinsk, keramisk eller mineralsk materiale.(04) Process for modifying one or more properties of glass, vitrocrystalline, ceramic or mineral material.

Opfindelsen angår en fremgangsmåde til modifikation af en eller flere egenskaber ved legemer af glas, vitrokrystallinsk, keramisk eller mineralsk materiale som resultat af diffusion af mindst én forbindelse ind i legemet fra et medium i kontakt med CC^·The invention relates to a method for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material as a result of diffusion of at least one compound into the body from a medium in contact with CC

Det er velkendt at bringe stoffer til at diffundere ind i glaslegemer fra et berøringsmedium, der består af eller som indeholder et smeltet nitratsalt. På denne måde kan der opnås forskellige modifikationer afhængig af beskaffenheden af det diffunderede stof og de betingelser, der foreligger ved behandlingen. Som eksempel kan diffusionen tilvejebringe en ændring i glassets overfladesammensætning eller en forøgelse af dets brudstyrke.It is well known to bring substances to diffuse into glass bodies from a contact medium consisting of or containing a molten nitrate salt. In this way, various modifications can be obtained depending on the nature of the diffused substance and the conditions present in the treatment. By way of example, the diffusion can provide a change in the surface composition of the glass or an increase in its breaking strength.

Det er ikke let at gennemføre disse diffusionsbehandlinger under industrielle masseproduktionsbetingelser og opnå forudsigelige og ens- 2 U1331 artede resultater. En af vanskelighederne består i at sikre, at diffusionen foregår i tilstrækkeligt omfang og på forudseelig måde i løbet af et forud bestemt tidsrum. Undertiden forsinkes diffusionen u-forudseeligt efter tilvejebringelsen af de betingelser, ved hvilke der skulle foregå diffusion, eller diffusionen begynder, efter at den er startet, at gå langsommere eller endog standse, således at der ved afslutningen af det fastsatte tidsrum ikke er opnået den krævende modifikation.These diffusion treatments are not easy to perform under industrial mass production conditions and achieve predictable and similar results. One of the difficulties is to ensure that the diffusion takes place sufficiently and predictably over a predetermined period of time. Sometimes the diffusion is delayed foreseeably after providing the conditions under which diffusion should take place, or the diffusion begins, after starting, to slow down or even stop, so that at the end of the stipulated period the required modification.

Fra beskrivelsen til belgisk patent nr. 712.091 er det imidlertid kendt, at disse problemer kan afhjælpes ved tilsætning af et re-generingsstof og et - eventuelt gasformigt - hjælpestof, såsom f.eks. C02· Regenereringsstoffet foreligger derhos som en adskilt, fast eller flydende fase.However, from the specification of Belgian Patent No. 712,091, it is known that these problems can be remedied by the addition of a regenerant and - possibly gaseous - auxiliary, such as e.g. CO 2 · The regenerant is present there as a separate, solid or liquid phase.

Formålet med den foreliggende opfindelse er at tilvejebringe en særlig fordelagtig fremgangsmåde af den i krav 11 s indledning nævnte art. Dette opnås med fremgangsmåden ifølge opfindelsen, som er ejendommelig ved, at mediet består af et smeltet nitrat eller består af smeltede salte, hvoraf mindst ét er et smeltet nitrat, og at diffusionen foretages, medens det smeltede salt eller salte er i kontakt med CC>2 i en mængde på mindst 0,1 liter/minut/m nitrat.The object of the present invention is to provide a particularly advantageous method of the kind mentioned in the preamble of claim 11. This is achieved with the process according to the invention, characterized in that the medium consists of a molten nitrate or consists of molten salts, at least one of which is a molten nitrate and that the diffusion is carried out while the molten salt or salts are in contact with CC 2 in an amount of at least 0.1 liter / minute / m nitrate.

Man undgår brugen af det generende regenereringsstof, og ved sammenligningsforsøg, hvorunder glaslegemer med ens sammensætning behandledes, blev det konstateret, at i tilfælde, hvor der anvendtes et medium i kontakt med C02 i de angivne mængder, begyndte diffusionen meget hurtigere, end når det samme medium anvendtes under de samme betingelser, men i fravær af CC>2.The use of the annoying regenerant is avoided, and in comparative experiments in which glass bodies of similar composition were treated, it was found that in cases where a medium in contact with CO 2 was used in the indicated amounts, diffusion began much faster than when the same medium was used under the same conditions, but in the absence of CC> 2.

Tilsvarende fordele opnåedes ved forsøg med legemer af vitro-krystallinsk materiale. Arsagerne til de fordelagtige resultater ved anvendelse af C02~gas i de angivne mængder, er endnu ikke helt klarlagt.Similar benefits were obtained from experiments with bodies of in vitro crystalline material. The reasons for the advantageous results of using CO 2 gas in the amounts indicated have not yet been fully established.

Muligvis skyldes resultatet en indflydelse af CC>2 på dissociations- eller på dissociations- og rekombineringsreaktionerne i behandlingsmediet, der forøger tilstedeværelsen af O -ioner, der igen fremmer starten på diffusionen.Possibly, the result is due to an influence of CC> 2 on the dissociation or dissociation and recombination reactions in the treatment medium, which increases the presence of O-ions, which in turn promotes the onset of diffusion.

I betragtning af virkningen af C02 kan en bestemt modifikation af det behandlede legeme tilvejebringes med behandlingsmediet ved lavere temperatur, og dette er fordelagtigt, specielt for at undgå enhver uønsket deformation af legemet.Given the effect of CO 2, a certain modification of the treated body can be provided with the treatment medium at lower temperature, and this is advantageous, especially to avoid any unwanted deformation of the body.

Opfindelsen gør det muligt at gennemføre en bestemt behandling f.eks. en bestemt kemisk hærdning i løbet af et behandlingstidsrum, der er væsentligt kortere end hidtil med det resultat, at kemisk hær- 3 141331 dede og på anden måde behandlede genstande kan fremstilles billigere.The invention makes it possible to carry out a particular treatment e.g. a certain chemical cure during a treatment period that is substantially shorter than heretofore, with the result that chemically cured and otherwise treated articles can be made cheaper.

Ved gennemførelse af opfindelsen er det ikke nødvendigt, at CO2 er til stede under hele det tidsrum, hvorunder et eller flere stoffer dif-funderer ind i legemet fra et berøringsmedium. Fordelen opnås ved at overholde de nævnte betingelser alene under en indledende del af det samlede tidsrum, under hvilket diffusionen finder sted.In carrying out the invention, it is not necessary that CO2 be present for the entire period of time during which one or more substances diffuse into the body from a contact medium. The benefit is obtained by complying with the above conditions only for an initial portion of the total period during which the diffusion takes place.

Det er selvfølgelig ikke nødvendigt, at mediet, hvorfra diffusionen finder sted, berører hele legemet, der behandles. En sådan samlet behandling kan ofte være ønskelig, men i visse tilfælde kan det være ønskeligt at begrænse behandlingen til kun at omfatte en eller flere dele af legemet, f.eks. i tilfælde af en glasplade, at begrænse behandlingen til pladens rand- eller kantdele for at modificere udseendet af eller for at forstærke alene disse dele.Of course, it is not necessary that the medium from which the diffusion takes place touch the whole body being treated. Such overall treatment may often be desirable, but in some cases it may be desirable to limit the treatment to only one or more parts of the body, e.g. in the case of a glass plate, to limit the treatment to the edge or edge portions of the plate to modify the appearance of or to reinforce only those parts.

Opfindelsen er af særlig potentiel vigtighed med hensyn til såkaldt kemisk hærdning. Det er kendt, at glas kan forstærkes ved hjælp af en kemisk hærdningsbehandling, hvorunder stof bringes til at diffundere ind i glasset fra et berøringsmedium, alt medens temperaturen under og efter denne diffusion reguleres således, at glassets ydre lag bringes i en trykspamdingstilstand eller en tilstand med forøget trækspænding.The invention is of particular potential importance with regard to so-called chemical curing. It is known that glass can be reinforced by a chemical curing treatment, under which substance is caused to diffuse into the glass from a contacting medium while controlling the temperature during and after this diffusion so that the outer layer of the glass is brought into a pressure-pampering state or state. with increased tensile stress.

Kemisk hærdning omfatter sædvanligvis erstatning af ioner i glasset med ioner, der fås fra det berørende behandlingsmedium. Det er f.eks. muligt at tilvejebringe trykspændinger ved at erstatte ioner i glassets ydre lag med ioner, der bibringer disse ydre lag en mindre termisk udvidelseskoefficient ved en temperatur, der er tilstrækkelig høj, og som opretholdes i et tilstrækkeligt tidsrum til, at der sker spændingsudjævning,og derefter at lade glasset afkøle. Som en anden mulighed kan der tilvejebringes overfladetrykspændinger ved at erstatte ioner i glassets ydre lag med større ioner, medens glassets overfladelag befinder sig ved en forhøjet temperatur, der imidlertid er altfor lav til at tillade væsentlig eller i det mindste ikke fuldstændig spændingsudjævning i det tidsrum, hvori denne temperatur opretholdes, idet glasset derefter afkøles til normal temperatur, således at de fremkaldte spændinger "indefryses". Det er endvidere muligt at tilvejebringe overfladetrykspændinger ved at bringe ioner til at trænge ind i glasset gennem en overflade på dette fra et berøringsmedium under påvirkning af et elektrisk felt uden en samtidig lige så stor bevægelse af ioner fra glasset ud i berøringsmediet gennem denne overflade.Chemical curing usually involves replacing ions in the glass with ions obtained from the touching treatment medium. It is e.g. it is possible to provide compressive stresses by replacing ions in the outer layer of the glass with ions which give these outer layers a less thermal expansion coefficient at a temperature sufficiently high and maintained for a sufficient period of time for stress equalization, and then allow the glass to cool. As another option, surface pressure stresses can be provided by replacing ions in the outer layer of the glass with larger ions, while the surface layer of the glass is at an elevated temperature, however, too low to allow substantial or at least not complete stress equalization during that time. at which this temperature is maintained, the glass being then cooled to normal temperature so that the induced voltages are "frozen". Furthermore, it is possible to provide surface pressure stresses by causing ions to penetrate the glass through a surface thereon from a contact medium under the influence of an electric field without a simultaneous equal movement of ions from the glass into the contact medium through this surface.

En kemisk hærdningsfremgangsmåde kan ikke alene anvendes på et glaslegeme men også på et legeme af vitrokrystallinsk materiale. Hærdningsbehandlingen giver, anvendt på et sådant legeme, de bedste resultater, når den fase i det vitrokrystallinske materiale, der er modta- 4 141331 gelig for den større eller største grad af diffusion af stof fra berøringsmediet, er godt fordelt over legemets overflade. En kemisk hærdningsfremgangsmåde kan også anvendes på et legeme af keramik eller bjergart, forudsat at der ved materialets overflade er tilstrækkeligt med ioner til stede, som er mobile ved behandlingstemperaturen, til at tillade tilvejebringelse af overfladetrykspændinger eller forøgelse af overfladespændinger ved indføring eller udbytning af sådanne ioner.A chemical curing process can be applied not only to a glass body but also to a body of vitrocrystalline material. The curing treatment, applied to such a body, gives the best results when the phase of the vitrocrystalline material which is susceptible to the greater or greater degree of diffusion of substance from the contact medium is well distributed over the body surface. A chemical curing process can also be applied to a ceramic or rock body, provided that at the material surface sufficient ions are present, which are mobile at the treatment temperature, to allow the provision of surface pressure stresses or increase of surface stresses upon introduction or exchange of such ions. .

I de omtalte kemiske hærdningsfremgangsmåder er diffusionen af stof ind i legemet, der behandles, sædvanligvis en del af en ionbytning mellem legemet og berøringsmediet. Særlig betydning er knyttet til fremgangsmåder ifølge opfindelsen, hvor diffusionen er en del af et ionbytningsfænomen og specielt til fremgangsmåder, hvor denne ionbytning er en udbytning af alkalimetalioner. Det må imidlertid forstås, at ionbytning ikke er væsentlig for opfindelsen. For at anføre et eksempel på en alternativ type fremgangsmåde er det muligt at bringe ioner til at trænge ind i et legeme af glas, vitrokrystallinsk materiale, keramik eller bjergart fra et berøringsmedium uden en tilhørende bevægelse af ioner fra legemet ud i mediet ved at gennemføre diffusionen under påvirkning af et pålagt elektrisk felt, der kan være et kontinuerligt eller pulserende ensrettet felt eller et vekselfelt, og i en foretrukket udførelsesform for opfindelsen gennemføres diffusionen af i det mindste ét stof ind i legemet i løbet af i det mindste en del af diffusionsperioden under påvirkning af et elektrisk felt.In the aforementioned chemical curing methods, the diffusion of substance into the body being treated is usually part of an ion exchange between the body and the contact medium. Particular importance is attached to processes according to the invention where the diffusion is part of an ion exchange phenomenon and especially to processes where this ion exchange is an exchange of alkali metal ions. However, it is to be understood that ion exchange is not essential to the invention. To give an example of an alternative type of method, it is possible to introduce ions into a body of glass, vitrocrystalline material, ceramics or rock from a contact medium without an associated movement of ions from the body into the medium by conducting the diffusion under the influence of an applied electric field which may be a continuous or pulsating unidirectional field or alternating field, and in a preferred embodiment of the invention, the diffusion of at least one substance into the body is carried out during at least part of the diffusion period during influence of an electric field.

De umiddelbart foretrukne udførelsesformer for opfindelsen er ' udførelsesformer, hvor kaliumioner indføres i legemet fra berøringsmediet i bytte med natriumioner under sådanne betingelser, at der gennemføres hærdning af legemet. Ved disse fremgangsmåder omfatter behandlingsmediet fortrinsvis smeltet kaliumnitrat.The immediately preferred embodiments of the invention are embodiments in which potassium ions are introduced into the body from the contact medium in exchange with sodium ions under conditions such that curing of the body is carried out. In these processes, the treatment medium preferably comprises molten potassium nitrate.

Det smeltede medium kan udgøre et bad, hvori legemet, der skal behandles, eller en del af dette, neddyppes i diffusionstidsrummet.The molten medium may constitute a bath in which the body to be treated, or a portion thereof, is immersed in the diffusion period.

Som en anden mulighed kan mindst én kontinuerlig eller forstøvet strøm af mediet tilføres legemet og bringes til at strømme langs legemet.As another option, at least one continuous or atomized stream of the medium can be applied to the body and caused to flow along the body.

Der er en fordel ved denne fremgangsmåde til at bringe legemet i kontakt med behandlingsmediet, idet ensartetheden for behandling af overfladen eller overfladerne, der er befugtet af mediet, fremmes.There is an advantage of this method of contacting the body with the treatment medium, promoting the uniformity of treatment of the surface or surfaces wetted by the medium.

Når der anvendes et smeltet medium i form af et behandlingsbad kan C02-gassen bobles gennem badet. Ved på passende måde at indsprøjte gassen kan det sikres, at selv i et bad af stor størrelse fordeles gassen over hele badet, og endvidere at alle dissociations- og rekom-bineringsprodukter, afhængig af tilfældet, fordeles i badet i stedet for at forblive afgrænset til stedet for deres dannelse, og således 5 U1331 forhindre eller nedsætte enhver yderligere påvirkning. Diffusionsiværksættelsen fremmes således på meget gunstig måde ved at boble C02 gennem mediet.When a molten medium is used in the form of a treatment bath, the CO 2 gas can be bubbled through the bath. By appropriately injecting the gas, it can be ensured that even in a large-sized bath, the gas is distributed throughout the bath, and furthermore that, as the case may be, all dissociation and recombination products are distributed in the bath rather than being confined to site of their formation, and thus prevent or reduce any further influence. Thus, the diffusion initiation is promoted in a very favorable manner by bubbling CO 2 through the medium.

Fortrinsvis er C02-gassen blandet med luft. Denne blanding forøger yderligere begyndelseshastigheden for diffusionen, sandsynligvis ved yderligere påvirkning af 0 -ionindholdet i badet.Preferably, the CO 2 gas is mixed with air. This mixture further increases the initial rate of diffusion, probably by further influencing the 0-ion content in the bath.

Ifølge opfindelsen er den mængde CO-, der føres i kontakt med ^ 3 det smeltede salt eller salte, mindst 0,1 liter/minut/m nitrat (ved standardbetingelser). Om ønsket kan C02-gassen anvendes blandet med en inaktiv gas, såsom nitrogen.According to the invention, the amount of CO- brought into contact with 3 the molten salt or salts is at least 0.1 liter / minute / m nitrate (under standard conditions). If desired, the CO 2 gas can be used mixed with an inert gas such as nitrogen.

C02, evt. i blanding med en hvilken som helst anden gas, der anvendes ved fremgangsmåden, kan indføres kontinuerligt eller pulserende.CO2, possibly in admixture with any other gas used in the process, may be introduced continuously or pulsed.

I det tilfælde, hvor behandling smed ie t strømmer over legemet, der skal behandles som omtalt ovenfor, kan C02, evt. i blanding med en hvilken som helst anden gas, der anvendes, samtidig blæses mod overfladen eller overfladerne på legemet for således at berøre mediet, der strømmer over denne eller disse overflader.In the case where treatment is for example flowing over the body to be treated as discussed above, CO in admixture with any other gas used, is simultaneously blown against the surface or surfaces of the body so as to touch the medium flowing over this or these surfaces.

Opfindelsen vil i det følgende blive belyst ved hjælp af et antal specielle eksempler.The invention will now be elucidated by means of a number of particular examples.

Eksempel 1Example 1

En plade af almindelig natron-kalkglas neddyppedes i et bad o af smeltet kaliumnitrat ved en temperatur på 470 C og forblev neddyp- pet i et tidsrum på 20 timer. C0~-gas i en mængde af 2,5 liter/minut/ 3 Δ m salt bobledes gennem badet i hele dette tidsrum. Undersøgelse af glaspladen efter dens fjernelse fra badet viste, at kaliumioner, der stammer fra det smeltede nitratbad, havde erstattet natriumioner i glasset i en dybde på 30 mikron fra hver af pladens overflader. Denne indtrængen blev bestemt ved hjælp af en mikrosonde ("mikroprobe"). Som følge af ionbytningen havde glaspladen væsentlig større brudstyrke end før behandlingen.A plate of ordinary baking soda lime was immersed in a bath o of molten potassium nitrate at a temperature of 470 ° C and immersed for a period of 20 hours. C0 ~ gas in an amount of 2.5 liters / minute / 3 Δ m of salt was bubbled through the bath throughout this time. Examination of the glass plate after its removal from the bath revealed that potassium ions emanating from the molten nitrate bath had replaced sodium ions in the glass at a depth of 30 microns from each of the plate's surfaces. This penetration was determined by a microprobe. As a result of the ion exchange, the glass plate had significantly higher breaking strength than before the treatment.

Ved et sammenligningsforsøg gennemført på en tilsvarende glasplade under tilsvarende betingelser med undtagelse af, at der ikke anvendtes C02, kunne der ikke påvises kaliumioner i glaspladen efter dens fjernelse fra badet.In a comparison experiment conducted on a similar glass plate under similar conditions except that no CO 2 was used, potassium ions could not be detected in the glass plate after its removal from the bath.

Eksempel 2.Example 2.

Plader af natron-kalkglas fremstillet med følgende sammensætning (i vægtprocent): SK>2 68%Plates of baking soda made of the following composition (by weight): SK> 2 68%

Na20 22,5%Na₂O 22.5%

CaO 9,5% 6 141331 hærdedes kemisk ved at oversprøjte pladen med RbNO^ ved 445°C, Rubidi-umnitratet strømmede sammenhængende over glaspladernes overflader i 2 dage. Undersøgelse af pladerne viste, at ingen rubidiumioner var dif-funderet ind i glasset. Rummet, hvori behandlingen blev gennemført, blev derefter fyldt med C02· Den omgivende atmosfære udgjordes af 100% CO2 og blev opretholdt ved at indblæse CO2 i behandlingsrummet i en mængde af 10 liter/minut/m^ salt. Rubidiumionerne diffunderede ind i glasset, og efter 30 timers behandling bemærkedes allerede en betydelig stigning i glaspladernes brudstyrke.CaO 9.5% 6 was chemically cured by spraying the plate with RbNO4 at 445 ° C, the Rubidi nitrate flowing continuously over the glass plate surfaces for 2 days. Examination of the plates showed that no rubidium ions were diffused into the glass. The room in which the treatment was carried out was then filled with CO 2 · The ambient atmosphere was made up of 100% CO 2 and was maintained by injecting CO 2 into the treatment room in an amount of 10 liters / minute / m 2 salt. The rubidium ions diffused into the glass and, after 30 hours of treatment, a significant increase in the breaking strength of the glass plates was already noticed.

Eksempel 3.Example 3

Den ene af tre portioner glasplader fremstillet med følgende sammensætning (i vægtprocent):One of three portions of glass sheets made with the following composition (by weight):

SiO2 71% A1203 2%SiO2 71% A1203 2%

Na20 13%Na20 13%

CaO 12% 3 og som måler 1,60 m x 55 cm x 1 mm, neddyppedes i 8 m af en blanding omfattende 99,8 vægtprocent KNO^ og 0,2 vægtprocent I^CO^/ idet badets temperatur var 468°C. Efter 20 timers forløb fjernedes pladerne fra badet. Der havde ikke fundet nogen ionbytning sted mellem glasset og det smeltede materiale i badet.CaO 12% 3, measuring 1.60 m x 55 cm x 1 mm, was immersed in 8 m of a mixture comprising 99.8 wt% KNO 2 and 0.2 wt% I 2 CO 2 / with the temperature of the bath being 468 ° C. After 20 hours, the plates were removed from the bath. No ion exchange had taken place between the glass and the molten material in the bath.

Ved et andet forsøg neddyppedes en anden af de tre portioner plader i 20 timer i et bad med den samme sammensætning, men som havde en temperatur på 485°. En betydelig ionbytning fandt sted i løbet af dette tidsrum, men pladerne blev deformeret som følge af deres udsættelse for den højere temperatur.In another experiment, another of the three batches of plates was immersed for 20 hours in a bath of the same composition but having a temperature of 485 °. Significant ion exchange occurred during this time, but the plates were deformed as a result of their exposure to the higher temperature.

Ved et tredie forsøg neddyppedes den tredie portion plader i 20 timer i et bad med den samme sammensætning og ved den samme temperatur (468°C), som den der blev anvendt ved det første forsøg, og C02 og luft sammenblandet blæstes gennem badet med en hastighed på 10 li- 3 ter C02 og 40 liter luft pr. minut pr. m nitrat. Pladerne fjernedes fra badet efter 20 timer, og det konstateredes, at kaliumioner var trængt ind i pladerne i en dybde på op til 30 mikron fra pladeoverfladerne, hvilket resulterede i en betydelig stigning i pladernes brudstyrke. Pladerne var fri for deformation.In a third experiment, the third batch of plates was immersed for 20 hours in a bath of the same composition and temperature (468 ° C) as the one used in the first experiment, and CO 2 and air mixed were blown through the bath with a speed of 10 liters of CO2 and 40 liters of air per day. per minute m nitrate. The plates were removed from the bath after 20 hours and it was found that potassium ions had penetrated the plates at a depth of up to 30 microns from the plate surfaces, resulting in a significant increase in the breaking strength of the plates. The plates were free of deformation.

Eksempel 4.Example 4

Nogle få af den portion af plader, der er omtalt i den anden del af eksempel 2, hvilke var blevet forstærket ved rubidiumioners diffusion ind i glasset i bytte for natriumioner,opbevaredes i 1 måned i en omgivende atmosfære ved 20°C og neddyppedes derefter i 20 minutter i et smeltet saltbad sammensat af 98 vægtprocent NaNO^ og 2 vægtprocent LiN03 og med en temperatur på 440Oq. Der fandt ingen ion- 7 U1331 bytning sted mellem pladerne og det smeltede medium i løbet af dette tidsrum. Nogle af pladerne forblev i badet, og der blæstes derefter 3 CC>2 i en mængde af 3 liter/minut/m salt. gennem badet. Efter et tidsrum på 20 minutter fandtes der betydelige mængder lithium- og natriumioner i glasset foruden rubidiumionerne.A few of the batches of plates mentioned in the second part of Example 2 which had been enhanced by diffusion of rubidium ions into the glass in exchange for sodium ions were stored for 1 month in an ambient atmosphere at 20 ° C and then immersed in 20 minutes in a molten salt bath composed of 98% by weight NaNO3 and 2% by weight LiNO3 and at a temperature of 440Oq. No ion exchange between the plates and the molten medium occurred during this time. Some of the plates remained in the bath and then 3 CC> 2 was blown in an amount of 3 liters / minute / m salt. through the bath. After a period of 20 minutes, significant amounts of lithium and sodium ions were found in the glass in addition to the rubidium ions.

Eksempel 5.Example 5

Nogle få af en portion ens stykker keramisk materiale fremstillet med følgende sammensætning (i vægtprocent): A1203 40%A few of a portion of identical pieces of ceramic material made with the following composition (by weight): A1203 40%

Si02 55%Si02 55%

Na20 2% neddyppedes i et bad af rent kaliumnitrat ved 450°C, og under neddyp- i ningen udsattes prøverne for et ensrettet elektrisk felt, hvis middelværdi mellem elektroderne var 50 V/cm, idet elektroderne var anbragt ud for prøverne. Efter et tidsrum på 10 timer fjernedes nogle af stykkerne fra badet for at blive undersøgt, og en blanding af C02 og luft bestående af 30 volumenprocent CO, og 70 volumenprocent luft i en mæng-de af 2 liter blanding/minut/m salt blæstes gennem badet, der endnu indeholdt de andre stykker, idet det elektriske felt bevaredes. Det konstateredes ved undersøgelse af de udtagne stykker, at der kun havde fundet ringe eller ingen ionbytning sted mellem stykkerne og det smeltede salt under det 10 timers neddypningstidsrum. Stykkerne, der var efterladt i badet, fjernedes efter et yderligere tidsrum på 1 time, og det konstateredes, at i dette tidsrum var der diffunderet kaliumioner ind i stykkerne i en dybde på op til 70 mikron. Ved et andet sammenligningsforsøg underkastedes de resterende stykker i den oprindelige portion en tilsvarende prøve i nærværelse af ovenfor nævnte blanding af C02 og luft (30 vol.% C02 og 70 vol.% luft), men der anvendtes et elektrisk vekselfelt med en frekvens på 16,6-10-3 Hz. I dette tilfælde trængte kaliumionerne ind i prøvestykkerne til en dybde på 25 mikron på begge sider.Na 2 O was immersed in a bath of pure potassium nitrate at 450 ° C and, during the immersion, the samples were exposed to a unidirectional electric field whose mean value between the electrodes was 50 V / cm, the electrodes being placed next to the samples. After a period of 10 hours, some of the pieces were removed from the bath to be examined and a mixture of CO 2 and air consisting of 30% by volume CO and 70% by volume of air in an amount of 2 liters mixture / minute / m salt is blown through the bath, which still contained the other pieces, preserving the electric field. Upon examination of the pieces taken, it was found that little or no ion exchange had occurred between the pieces and the molten salt during the 10 hour immersion period. The pieces left in the bath were removed after a further period of 1 hour and it was found that during this time potassium ions were diffused into the pieces at a depth of up to 70 microns. In another comparative experiment, the remaining pieces in the original portion were subjected to a similar sample in the presence of the above-mentioned mixture of CO 2 and air (30 vol% CO 2 and 70 vol% air), but an electric alternating field at a frequency of 16 , 6-10-3 Hz. In this case, the potassium ions penetrated into the test pieces to a depth of 25 microns on both sides.

Eksempel 6Example 6

Et stykke nephelin bjergart (Na^KAl^Si^O^g) neddyppedes i et bad af KNO.^, der havde en temperatur på 470°C. Der fandt ingen diffusion af ioner ind i bjergarten sted under et neddypningstidsrum på 30 timer. Ved et sammenligningsforsøg på et tilsvarende stykke bjergart, hvorunder betingelserne var de samme som før med den eneste undtagelse, at der blæstes en blanding af luft og CO, i et rumfangsforhold på 3:1 og ^ 3 i en mængde af 5 liter blanding/minut/m salt gennem badet, diffunderede der en betydelig mængde kaliumioner ind i bjergarten i bytte for natriumioner i løbet af det 30 timers neddypningstidsrum med det resultat, at den mekaniske styrke for stykket af bjergart forøgedes.A piece of nepheline rock (Na ^ KAl ^ Si ^ O ^ g) was immersed in a bath of KNO. ^ Having a temperature of 470 ° C. No diffusion of ions into the rock occurred during a dipping period of 30 hours. In a comparison experiment on a similar piece of rock, under which the conditions were the same as before, with the only exception being a mixture of air and CO, in a volume ratio of 3: 1 and ^ 3 in an amount of 5 liters of mixture / minute / m of salt through the bath, a significant amount of potassium ions diffused into the rock in exchange for sodium ions during the 30-hour immersion period, with the result that the mechanical strength of the piece of rock increased.

8 1413318 141331

Eksempel 7.Example 7

Plader af vitrokrystalliask materiale fremstillet med følgende sammensætning (i vægtprocent):Plates of vitrocrystalline material made of the following composition (by weight):

Si02 48%Si02 48%

Al203 32%Al203 32%

Na20 10%Na 2 O 10%

CaO 2%CaO 2%

Ti02 8% neddyppedes i forskellige bade af kaliumnitrat ved 500°C. Der fandt ingen diffusion af kaliumioner sted ind i pladerne i løbet af et tidsrum på 5 timer. Efter afslutningen på dette tidsrum bobledes CO2 i en mængde af 0,5 liter/minut/m nitrat gennem nogle af badene.TiO 2 8% was immersed in various potassium nitrate baths at 500 ° C. No diffusion of potassium ions into the plates occurred over a period of 5 hours. At the end of this time, CO2 in an amount of 0.5 liters / minute / m nitrate is bubbled through some of the baths.

X disse bade fandt der betydelig diffusion af kaliumioner ind i pladerne i bytte for natriumioner i glasfasen på pladeoverfladerne sted i løbet af det følgende tidsrum på 5 timer, hvorimod der stadig ikke forekom diffusion i de andre bade.In these baths, significant diffusion of potassium ions into the plates in exchange for sodium ions in the glass phase on the plate surfaces occurred during the following 5 hour period, whereas diffusion still did not occur in the other baths.

DK482869AA 1968-09-12 1969-09-09 Process for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material. DK141331B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
LU56873 1968-09-12
LU56873 1968-09-12
GB4089269A GB1274733A (en) 1969-08-15 1969-08-15 Process for modifying glass and other articles
GB4089269 1969-08-15

Publications (2)

Publication Number Publication Date
DK141331B true DK141331B (en) 1980-02-25
DK141331C DK141331C (en) 1980-09-15

Family

ID=26264531

Family Applications (1)

Application Number Title Priority Date Filing Date
DK482869AA DK141331B (en) 1968-09-12 1969-09-09 Process for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material.

Country Status (16)

Country Link
BE (1) BE738528A (en)
BG (1) BG17288A3 (en)
CA (1) CA946159A (en)
CH (1) CH518243A (en)
CS (1) CS167257B2 (en)
DE (1) DE1946352C3 (en)
DK (1) DK141331B (en)
ES (1) ES371481A1 (en)
FI (1) FI50873C (en)
FR (1) FR2017881A1 (en)
IL (1) IL32991A (en)
NL (1) NL167403C (en)
NO (1) NO124872B (en)
PL (1) PL82715B1 (en)
SE (1) SE356957B (en)
YU (1) YU32899B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516634B1 (en) * 1999-02-12 2003-02-11 The Penn State Research Foundation Strengthening, crack arrest and multiple cracking in brittle materials using residual stresses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1306325A (en) * 1960-11-15 1962-10-13 Research Corp Glass treatment process
FR1418380A (en) * 1963-12-04 1965-11-19 Pittsburgh Plate Glass Co Glass treatment process
BE674212A (en) * 1964-12-23

Also Published As

Publication number Publication date
YU32899B (en) 1975-10-31
ES371481A1 (en) 1971-10-16
IL32991A0 (en) 1969-11-30
FR2017881A1 (en) 1970-05-22
YU232669A (en) 1975-04-30
NL167403C (en) 1981-12-16
DE1946352C3 (en) 1979-06-13
NL167403B (en) 1981-07-16
BG17288A3 (en) 1973-07-25
IL32991A (en) 1973-05-31
BE738528A (en) 1970-03-09
PL82715B1 (en) 1975-10-31
FR2017881B1 (en) 1973-10-19
SE356957B (en) 1973-06-12
DK141331C (en) 1980-09-15
NL6913964A (en) 1970-03-16
DE1946352A1 (en) 1970-08-27
DE1946352B2 (en) 1978-06-15
CS167257B2 (en) 1976-04-29
NO124872B (en) 1972-06-19
CH518243A (en) 1972-01-31
FI50873C (en) 1976-08-10
CA946159A (en) 1974-04-30
FI50873B (en) 1976-04-30

Similar Documents

Publication Publication Date Title
US4872896A (en) Process for strengthening glass
US20110293942A1 (en) Variable temperature/continuous ion exchange process
JP2020100558A (en) Two-step method for strengthening glass
CN108698922A (en) Thin heat strengthens and the glass based articles of chemical strengthening
TW201512124A (en) High strength glass-ceramics having lithium disilicate and beta-spodumene structures
TW201742841A (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
KR20170125054A (en) Fast ion-exchangeable boron-free glass with low softening point
WO2016054349A1 (en) Patterned ion-exchanged substrates and methods for making the same
CN103864283A (en) Ion exchange process for thin glass chemical tempering and fused salt
US3674454A (en) Ion exchange of glass with use of carbon dioxide
IL40405A (en) Process of colouring or modifying the colouration of a glass body containing reducing ions by diffusion
US3495963A (en) Simultaneous staining and strengthening of glass
JP7344909B2 (en) Reverse ion exchange treatment of lithium-containing glass
DK141331B (en) Process for modifying one or more properties of bodies of glass, vitrocrystalline, ceramic or mineral material.
JP6878470B2 (en) Silicate products and how to strengthen them
US3773487A (en) Fabrication and chemical tempering of vitreous products
US3887348A (en) Glass coloring process
JPS6331424B2 (en)
US5102833A (en) Strengthening glass articles with electromagnetic radiation and resulting product
US3627491A (en) Diffusion methods for improving the properties of glass vitrocrystalline and stone materials
CN210340688U (en) Chemical tempering equipment for ultrathin glass
Kang et al. Fabrication of calcium phosphate glass using eggshell and its crystallization behavior
US3293016A (en) Method of manufacturing glass articles having a high mechanical strength
WO2016149164A1 (en) Float glass composition adapted for chemical strengthening
US3489546A (en) Strengthening of oxidized soda-lime glass articles

Legal Events

Date Code Title Description
PUP Patent expired