DK141277B - Process for Electrochemical Preparation of Silver Catalysts. - Google Patents

Process for Electrochemical Preparation of Silver Catalysts. Download PDF

Info

Publication number
DK141277B
DK141277B DK374872AA DK374872A DK141277B DK 141277 B DK141277 B DK 141277B DK 374872A A DK374872A A DK 374872AA DK 374872 A DK374872 A DK 374872A DK 141277 B DK141277 B DK 141277B
Authority
DK
Denmark
Prior art keywords
silver
cell
solution
cathode
anode
Prior art date
Application number
DK374872AA
Other languages
Danish (da)
Other versions
DK141277C (en
Inventor
Bruno Notari
Luigi Rivola
Vittorio Mormino
Original Assignee
Snam Progetti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snam Progetti filed Critical Snam Progetti
Publication of DK141277B publication Critical patent/DK141277B/en
Application granted granted Critical
Publication of DK141277C publication Critical patent/DK141277C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

(11) FREMLÆGGELSESSKRIFT 141277 DANMARK (51) int.ci.3b 01 j 23/60 §(21) Ansøgning nr. 37^8/72 (22) Indleveret den 28. jul. 1972 (23) Løbedag 28. jul. 1972 (44) Ansøgningen fremlagt og(11) PUBLICATION 141277 DENMARK (51) int.ci.3b 01 j 23/60 § (21) Application No. 37 ^ 8/72 (22) Filed on 28 Jul. 1972 (23) Race day 28 Jul. 1972 (44) The application presented and

fremlaggelseeskrfftet offentliggjort den i O. 16D. 1 yOUthe disclosure order published it in O. 16D. 1 yOU

DIREKTORATET FORDIRECTORATE OF

PATENT-OG VAREMÆRKEVÆSENET (3°) Prioritet begæret fra den 31. Jul. 1971, 27022/71, IT (71) SNAM EROGEETI S.P.A., Corso Venezia 16, Milano, IT.PATENT AND TRADEMARK (3 °) Priority requested from 31 Jul. 1971, 27022/71, IT (71) SNAM EROGEETI S.P.A., Corso Venezia 16, Milan, IT.

(72) Opfinder: Lulgi Rivola, Via Soreslna 1B, San Donato Milanese, IT: Vitto= rlo Mormlno, Via Gramscl 18, San Donato Milanese, IT: Bruno Notari,(72) Inventor: Lulgi Rivola, Via Soreslna 1B, San Donato Milanese, IT: Vitto = rlo Mormlno, Via Gramscl 18, San Donato Milanese, IT: Bruno Notari,

Via Tiadena 6, San Donato Milanese, IT.Via Tiadena 6, San Donato Milanese, IT.

(74) Fuldmagtig under sagens behandling:(74) Proxy during the proceedings:

Internationalt Patent-Bureau.International Patent Office.

(54) Fremgangsmåde til elektrokemisk fremstilling af sølvkatalysatorer.(54) Process for the electrochemical preparation of silver catalysts.

Den foreliggende opfindelse angår en fremgangsmåde til elektrokemisk fremstilling af sølvkatalysatorer, hvis partikler er mindre end 1500 Å.The present invention relates to a process for the electrochemical preparation of silver catalysts whose particles are less than 1500 Å.

Disse sølvkatalysatorer kan anvendes ved katalytisk fremstilling af ethylenoxid.These silver catalysts can be used in the catalytic production of ethylene oxide.

Der kendes mange fremgangsmåde til fremstilling af sølvkatalysatorer, der kan anvendes ved fremstilling af ethylenoxid. Det er imidlertid også kendt, at sølvstrukturen og driftsbetingelserne under sølvfremstillingen er af betydning for opnåelse af en høj aktivitet og selektivitet. De hidtil foreslåede kemiske metoder medfører i det væsentlige en sønderdeling af sølvsaltet eller sølvforbindelsen til tilvejebringelse af findelt sølv. Hovedulempen ved disse metoder er den dårlige reproducerbarhed og de uundgåelige tab af sølv, som kan forekomme 2 141277 i løbet af behandlingen, og derfor er kostbare udvindingsprocesser påkrævet.Many processes are known for preparing silver catalysts which can be used in the production of ethylene oxide. However, it is also known that the silver structure and operating conditions during the silver manufacture are important for achieving high activity and selectivity. The chemical methods heretofore proposed essentially result in the decomposition of the silver salt or silver compound to provide comminuted silver. The main disadvantage of these methods is the poor reproducibility and the inevitable loss of silver that can occur during treatment, and therefore expensive extraction processes are required.

Det skulle være muligt at fremstille sølv i høje udbytter og på reducerbar måde véd at anvende fremgangsmåden til elektrokemisk udskillelse af metallet. Det er imidlertid også kendt, at man ved elektrolyse af sølvopløsninger får fremstillet metallet med en kompakt struktur eller i hvert fald med en stor partikelstørrelse, som følge af hvilket man ikke kan opnå en sådan aktivitet og selektivitet, at metallet kan anvendes ved en industriel fremgangsmåde til fremstilling af ethyl-enoxid ved oxidation af ethylen.It should be possible to produce silver in high yields and in a reducible way using the electrochemical separation method of the metal. However, it is also known that by electrolysis of silver solutions the metal is produced with a compact structure or at least a large particle size, due to which such activity and selectivity cannot be obtained that the metal can be used in an industrial process. for the preparation of ethylene oxide by the oxidation of ethylene.

Det har nu vist sig, at det er muligt elektrokemisk at fremstille sølvkatalysatorer, hvis partikler er mindre end 1500 A , fortrinsvis mellem 300 og 1500 Å, og som anvendt til fremstilling af ethylenoxid ved oxidation af ethylen giver høj •aktivitet og selektivitet.It has now been found that it is possible to electrochemically prepare silver catalysts whose particles are less than 1500 A, preferably between 300 and 1500 Å, and as used for the production of ethylene oxide by the oxidation of ethylene give high activity and selectivity.

Fremgangsmåde ifølge opfindelsen til fremstilling af sølvkatalysatorer er kendetegnet ved, at man elektrolyserer opløsninger af sølvsalte på en pulserende måde, dvs. med periodisk afbrydelse af strømtilførslen. Sølvsaltopløsningen er med fordel tilsat et kompleksdannende middel.Process according to the invention for the preparation of silver catalysts is characterized by electrolysing solutions of silver salts in a pulsating manner, ie. with intermittent interruption of power supply. The silver salt solution is advantageously added to a complexing agent.

Den nævnte strømafbrydelse kan i nogle tilfælde efterfølges af en ombytning af strømretningen.Said power cut may in some cases be followed by a change of direction.

StrømtilførseIsperiodeme kan f.eks. ligge på mellem 3 og 10 sekunder og efterfølges af strømafbrydelsesperioder på mellem 3 og 60 sekunder. Eventuelt kan man efter 10 til 15 cycler med strømtilførsel og strømafbrydelse vende strømmen, fortrinsvis i en periode på mellem 1 og 60 sekunder.The power supply periods can e.g. be between 3 and 10 seconds and are followed by power cut periods of between 3 and 60 seconds. Optionally, after 10 to 15 cycles of power supply and power failure, the current can be reversed, preferably for a period of between 1 and 60 seconds.

De ifølge opfindelsen anvendte sølvsaltopløsninger kan med fordel bestå v-.- af sølvnitrat, sølvchlorid, sølvsulfat, sølvacetat eller sølvoxalat, kompleksdannet med ammoniak.The silver salt solutions used according to the invention may advantageously consist of silver nitrate, silver chloride, silver sulfate, silver acetate or silver oxalate, complexed with ammonia.

Sølvsaltopløsningernes koncentrationer ligger fortrinsvis mellem 0,1 og 10 g sølv/1 opløsning.The concentrations of the silver salt solutions are preferably between 0.1 and 10 g of silver / 1 solution.

Der anvendes fortrinsvis mellem 3 og 50 mol kompleksdannende middel/ gramatom anvendt sølv.Preferably, between 3 and 50 moles of complexing agent / gram atom used silver is used.

Det foretrækkes også at anvende en pufferopløsning for at holde pH-værdien af den elektrolytiske opløsning konstant.It is also preferred to use a buffer solution to keep the pH of the electrolytic solution constant.

Hensigtsmæssige pufferopløsninger skal holde pH-værdien på mellem 9 og 12,5. Eksempler på sådanne pufferopløsninger er: glycin + natriumhydroxid, dinatriumphos-phat 4- natriumhydroxid og lignende. Man har fået særdeles gode resultater med blandingen borax + natriumhydroxid.Appropriate buffer solutions should keep the pH between 9 and 12.5. Examples of such buffer solutions are: glycine + sodium hydroxide, disodium phosphate 4 sodium hydroxide and the like. Very good results have been obtained with the borax + sodium hydroxide mixture.

Elektrolysen udføres fordelagtigt ved en temperatur mellem 0 og 80°C og fortrinsvis mellem 10 og 40°C.The electrolysis is advantageously carried out at a temperature between 0 and 80 ° C and preferably between 10 and 40 ° C.

Potentialet kan holdes mellem -500 og -1500 mV målt i forhold til den mættede calornelelektrode. Den tilsyneladende strømtæthed kan ligge mellem 0,1 og 0,5 3 141277 2 2 amp/cm og fortrinsvis mellem 0,2 og 0,3 amp/cm .The potential can be maintained between -500 and -1500 mV measured relative to the saturated calorel electrode. The apparent current density may be between 0.1 and 0.5 and preferably between 0.2 and 0.3 amp / cm.

Den elektrolytiske celles anode kan udgøres af graphit, platin, platin-rho-dium, titanium eller i almindelighed a£ enhver god leder, som ikke kan angribes af et alkalisk materiale, og katoden kan udgøres af sølv, rustfrit stål, graphit eller sædvanligvis de samne materialer, der anvendes som anode.The anode of the electrolytic cell may be graphite, platinum, platinum rhodium, titanium or, in general, any good conductor which cannot be attacked by an alkaline material, and the cathode may be silver, stainless steel, graphite or usually the the same materials used as an anode.

Under den elektrolytiske udskillelse holdes søJvsaltopløsningen fortrinsvis under kraftig omrøring. Det dannede pulverformige sølv kan efter vask anvendes direkte som det er eller, fortrinsvis, båret af et keramisk materiale som katalysator ved fremstilling af ethylpnoxid.During the electrolytic separation, the silver salt solution is preferably kept under vigorous stirring. The powdered silver formed after washing can be used directly as is or, preferably, carried by a ceramic material as a catalyst in the production of ethyl pnoxide.

Fremgangsmåden ifølge opfindelsen belyses nærmere i det følgende under henvisning til tegningen, på hvilken fig. 1 viser en elektrolytisk celle til sølvudskillelse ifølge opfindelsen, fig. 2 en plan over en enhed til fremstilling af sølv i industriel målestok, fig. 3 og 4 henholdsvis et snit og et planbillede af den i fig. 2 viste industrielle énhed, og fig. 5 et strømforsyningsskema for den i fig. 3 og 4 viste celle.The method according to the invention is illustrated in more detail below with reference to the drawing, in which FIG. 1 shows an electrolytic cell for silver secretion according to the invention; FIG. 2 is a plan of an industrial scale unit for producing silver; FIG. 3 and 4, respectively, are a sectional and plan view of the embodiment of FIG. 2, and FIG. 5 is a power supply diagram of the embodiment of FIG. 3 and 4.

I fig. 1 er 1 en cirkulationspumpe for elektrolytten, 2 er en anode, f.eks. af graphit, 3 er en katode, f.eks. et sølvnet, 4 er en celle, hvori elektrolysen finder sted, og hvis bund består af sølvnettet, 5 er en i et reservoir 11 indeholdt elektrolyt, 6 er et voltmeter til måling af jævnspændingen, der påtrykkes cellen, 7 er et tidsrelæ til odbytning af strømretningen i cellen, 8 er en jævnstrømsgenerator, 9 er et amperometer til måling af jævnstrømmen, der afgives til cellen, og 10 er et tidsrelæ til den pulserende elektroudskillelse.In FIG. 1 is 1 a circulation pump for the electrolyte; 2 is an anode, e.g. of graphite, 3 is a cathode, e.g. a silver grid, 4 is a cell in which the electrolysis takes place and the bottom of which consists of the silver grid, 5 is an electrolyte contained in a reservoir 11, 6 is a voltmeter for measuring the DC voltage applied to the cell, 7 is a time relay for the exchange of the current direction in the cell, 8 is a direct current generator, 9 is an amperometer for measuring the direct current delivered to the cell, and 10 is a time relay for the pulsating electrical separation.

Cellen fungerer på følgende måde: den ved siden af i en ikke vist beholder fremstillede elektrolyt 5 opbevares i reservoiret 11 og pumpes ved hjælp af pumpen 1 ind i cellen 4 ovenfra. Elektrolytten 5 fornyes periodisk, når dens sølvindhold er faldet til under en forudbestemt værdi.The cell operates as follows: the electrolyte 5 produced in a container, not shown, is stored in the reservoir 11 and pumped into the cell 4 from above by means of the pump 1. The electrolyte 5 is periodically renewed when its silver content has dropped below a predetermined value.

Cellen 4 forsynes med jævnstrøm ved hjælp af generatoren 8 gennem tidsrelæet 10, der har til formål at sende strømimpulser til cellen. Strøraretningen vendes periodisk ved hjælp af tidsrelæet 7 .The cell 4 is supplied with DC by means of the generator 8 through the time relay 10, which is intended to send current pulses to the cell. The string direction is inverted periodically by means of the time relay 7.

Det elektroudskilte sølv, der løsgøres fra elektroden 3 , falder direkte ned i reservoiret 11 gennem en åbning i bunden af cellen.The electro-separated silver detached from the electrode 3 falls directly into the reservoir 11 through an opening at the bottom of the cell.

I fig. 2 er 101 en kontinuerlig centrifuge, 102 er en elektrolytisk celle forsynet med en omrører 108 og en cirkulationspumpe 106, 103 og 104 er reservoirer for sølvsaltopløsningen forsynet med en cirkulationspumpe 107, og det udskilte sølv fjernes ved hjælp af et rør 105.In FIG. 2, 101 is a continuous centrifuge, 102 is an electrolytic cell provided with a stirrer 108 and a circulation pump 106, 103 and 104 are reservoirs for the silver salt solution provided with a circulation pump 107 and the separated silver is removed by a tube 105.

Systemet fungerer på følgende måde: i den elektrolytiske celle 102, der beskrives nærmere i det følgende under henvisning til fig· 3 og 4, udskilles det elektrolytiske sølv, der som en suspension ledes til centrifugen 101 ved hjælp af pumpen 106 og afgives gennem røret 105. Pumpen 106 har også til formål at recirku- 4 141277 lere elektrolytten ved hjælp af en passende række ventiler, og elektrolytten ledes til cellen 102 fra reservoirene 103 og 104 ved hjælp af pumpen 107.The system operates as follows: in the electrolytic cell 102, which will be described in more detail below with reference to Figs. 3 and 4, the electrolytic silver which is fed as a suspension to the centrifuge 101 by the pump 106 and delivered through the tube 105 The pump 106 also aims to recycle the electrolyte by means of a suitable series of valves, and the electrolyte is directed to the cell 102 from the reservoirs 103 and 104 by the pump 107.

Reservoirene 103 og 104 anvendes skiftevis, dvs. det ene anvendes til fremstilling af elektrolytten, mens det andet indeholdende elektrolytten føder cellen. Reservoirene er naturligvis forsynet med omrørere, som imidlertid ikke er vist.Reservoirs 103 and 104 are used alternately, i. one is used to prepare the electrolyte while the other containing the electrolyte feeds the cell. The reservoirs, of course, are provided with agitators, which, however, are not shown.

Den elektrolytiske celle er vist detaljeret i fig. 3 og 4, hvori 109 er en anode, f.eks. af perforeret graphit, 110 er en katode, f.eks. et sølvnet, lli er gennemgående polklemmer til forsyning af elektroderne med jævnstrøm, 112 er en ventil, som tillader udtagelse af sølv i retning mod centrifugen 101, 113 er et recirkulationsrør til centrifugen 101, 114 er et recirkulationsrør til cellen 102, og 115 er et føderør for frisk opløsning.The electrolytic cell is shown in detail in FIG. 3 and 4, wherein 109 is an anode, e.g. of perforated graphite, 110 is a cathode, e.g. a silver mesh, III is through terminal terminals for supplying the electrodes with direct current, 112 is a valve which permits removal of silver towards the centrifuge 101, 113 is a recirculation tube for the centrifuge 101, 114 is a recirculation tube for the cell 102, and 115 is a feed solution for fresh solution.

Af fig. 4 fremgår det, at anode/katode-parrene er indbyrdes serieforbundet i grupper, og grupperne kan f.eks. som vist på tegningen hver indeholde 5 par.In FIG. 4 it appears that the anode / cathode pairs are interconnected in groups and the groups may e.g. as shown in the drawing each contain 5 pairs.

Strømtilførselsskemaet for den industrielle celle er vist skematisk i fig. 5.The power supply scheme of the industrial cell is shown schematically in FIG. 5th

Som det fremgår af fig. 3 og 4 forsynes de 30 elektroder med strøm i små u-afhængige grupper på 5 serieforbundne par.As shown in FIG. 3 and 4, the 30 electrodes are supplied with power in small independent groups of 5 series connected pairs.

Jævnstrøms tiIførsien (impulser på 5 til 15 sekunder) sker ved hjælp af en amperostatisk generator 123 , som ved hjælp af omskiftningsenheder 121a til 121f efter hinanden føder en af de små,hver af 5 elementpar bestående grupper 112 a til 12 2 f.Direct current (pulses of 5 to 15 seconds) is effected by an amperostatic generator 123 which, by means of switching units 121a to 121f, successively feeds one of the small, each of 5 element pairs, 112 a to 12 2 f.

Til at begynde med føder omskiftningsenheden 121a kun den lille gruppe 122a i den tid, impulsen varer. Derefter standser tilførslen til denne gruppe, og tilførslen til den lille gruppe 122b påbegyndes ved hjælp af omskiftningsenheden 121b og varer ligeså længe som tilførslen til gruppen 122a og så fremdeles indtil den sidste lille gruppe.First, the switching unit 121a feeds only the small group 122a during the duration of the pulse. Thereafter, the supply to this group stops and the supply to the small group 122b is started by means of the switching unit 121b and lasts as long as the supply to the group 122a and then until the last small group.

Tilførselscyclen starter igen som programmeret af en logisk kontrolenhed 120 bestående af en firkantsgenerator 116, en frékvensdeler 117, en tælleenhed i binær kode 118 og en binær decimalenhed 119.The supply cycle starts again as programmed by a logic control unit 120 consisting of a square generator 116, a frequency divider 117, a counting unit in binary code 118 and a binary decimal unit 119.

Retningen af jævnstrømstilførslen til de enkelte små grupper 122a til 122f vendes periodisk ved hjælp af en ombytningsenhed 124, som direkte driver generatoren 123.The direction of the DC supply to the individual small groups 122a to 122f is periodically reversed by means of a switching unit 124 which directly drives the generator 123.

Fremgangsmåden ifølge opfindelsen belyses nærmere ved hjælp af de følgende ikke begrænsende eksempler.The method according to the invention is further illustrated by the following non-limiting examples.

Eksempe1 1 100 g sølvnitrat, 750 g borax (Na2B^0^ . lOl^CO^OO g natriumhydroxid og 10 g presolubiliseret carboxymethylcellulose opløses i destilleret vand indtil et to- 3 talrumfang på 100 1, hvorefter der tilsættes en vandig opløsning af 600 cm ammo- 5 141277 niak.Example 1 100 g of silver nitrate, 750 g of borax (Na 2 B 2 ammo- 5 141277 niak.

Denne opløsning, der indeholder sølv som et ammoniakkompleks, anvendes som elektrolyt i en elektrolytisk celle (vist i fig. 1) under anvendelse af et sølvr-net som katode (1 x 1 mm mesh) og en rørformet eller- perforeret graphitplade som anode. De elektriske kontakter er fremstillet af geldtråd, da guld under cellens driftsbetingelser optræder som et indifferent metal.This solution, containing silver as an ammonia complex, is used as the electrolyte in an electrolytic cell (shown in Figure 1) using a silver mesh as cathode (1 x 1 mm mesh) and a tubular or perforated graphite plate as the anode. The electrical contacts are made of wire as gold under the cell operating conditions acts as an inert metal.

Opløsningen cirkuleres i den i fig. 1 angivne retning ved hjælp af en ydre cirkulationspumpe, og sølvindholdet holdes konstant ved påfølgende tilsætninger af sølvnitrat i en ammoniakopløsning.The solution is circulated in the embodiment shown in FIG. 1 by means of an external circulation pump and the silver content is kept constant by subsequent additions of silver nitrate in an ammonia solution.

Den kontinuerlige strømtilførsel til cellen sker ved hjælp af impulser med en rektangulær profil på 10 sekunder.The continuous power supply to the cell is done by means of pulses with a rectangular profile of 10 seconds.

Strømtilførsels- kredsløbet er indrettet, s& man får 10 sekunders strømtilførsel og 60 sekunders strømafbrydelse. Por hver 6-12 cycler vendes strømretningen med det formål at lette en løsgøring af det på katoden udskilte sølv.The power supply circuit is arranged so you get 10 seconds of power supply and 60 seconds of power cut. Every 6-12 cycles, the current direction is reversed for the purpose of facilitating the release of the silver separated on the cathode.

Den katodiske udskillelse udføres ved konstant strøm (amperostatisk).The cathodic separation is performed at constant current (amperostatic).

Den vigtigste anodeproces er oxygenafgivelsen, og den vigtigste katodeproces er sølvudskillelsen. Af denne grund reduceres den elektrolytiske opløsnings indhold af sølvioner, kompleksdannet med ammoniak, mens indholdet af ammoniumnitrat forøges.The most important anode process is the oxygen release and the most important cathode process is the silver secretion. For this reason, the electrolytic solution content of silver ions, complexed with ammonia, is reduced while the content of ammonium nitrate is increased.

Driftsbetingelserne er som følger:The operating conditions are as follows:

Temperatur Stuetemperatur 2Temperature Room temperature 2

Tilsyneladende katodeoverflade 10-15 cm 2Apparent cathode surface 10-15 cm 2

Tilsyneladende katodisk strømtæthed 0,2-0,5 A/cmApparent cathodic current density 0.2-0.5 A / cm

Udladespænding for Ag efter fradrag -600 til -1200 mV (i foraf det ohmiske fald hold til den mættede calo- melelektrode) 2Discharge voltage for Ag after deduction -600 to -1200 mV (in advance the ohmic drop to the saturated calcium electrode) 2

Tilsyneladende anodeoverflade 10-15 cmApparent anode surface 10-15 cm

Elektrolytstrøm gennem katoden 250-350 1/timeElectrolyte flow through cathode 250-350 l / hr

Den totale spænding, der påtrykkes cellen, ligger mellem 7,5 og 15 V. Den faradiske effektivitet for det på katoden dannede sølv ligger mellem 80 og 90%.The total voltage applied to the cell is between 7.5 and 15 V. The faradic efficiency of the silver formed on the cathode is between 80 and 90%.

Sølvindholdet holdes konstant ved hver anden time at tilsætte 2,0 til 2,4 g sølvnitrat, kompleksdannet med ammoniak.The silver content is kept constant by adding 2.0 to 2.4 g of silver nitrate, complexed with ammonia, every two hours.

Det totale forbrug af elektrisk kraft ligger mellem 2,3 og 4,5 kwh/kg dannet sølv.The total consumption of electric power is between 2.3 and 4.5 kwh / kg of silver formed.

Det på denne måde dannede sølvpulver blev udvundet dels fra opløsningen og dels fra overfladen af elektroden, filtreret, vasket med destilleret vand og derefter tørret i en ovn i 3 timer.The silver powder thus formed was recovered partly from the solution and partly from the surface of the electrode, filtered, washed with distilled water and then dried in an oven for 3 hours.

Produktiviteten er blevet øget indtil 20 til 24 g sølv for 24 timers konti- 2 nuerligt arbejde, dvs. til ca. 2 g daglig for hver cm tilsyneladende katodeoverflade. Med det på denne måde fremstillede sølv er der blevet udført et forsøg over 6 141277 katalytisk aktivitet.Productivity has been increased to 20 to 24 grams of silver for 24 hours of continuous work, ie. to approx. 2 g daily for each cm apparent cathode surface. With the silver thus prepared, an experiment on catalytic activity has been carried out.

Sølvet afsættes på en keramisk bærer, og den således fremstillede katalysator indeholdende 15% Ag indføres i et rør med en diameter på 2,4 cm og forsynet med en ydre kappe til cirkulation af en termostaterende væske. Katalysatorlagets højde er ca. 1 m. Reaktoren opvarmes under tilbagesvaling og atmosfæretryk med en gasformig blanding med følgende sammensætning: 5% ethylen, 6,5% carbondioxid, 5% oxygen og 83,5% nitrogen.The silver is deposited on a ceramic support and the catalyst thus containing containing 15% Ag is introduced into a tube of 2.4 cm diameter and provided with an outer casing for circulating a thermostating liquid. The height of the catalyst layer is approx. The reactor is heated under reflux and atmospheric pressure with a gaseous mixture of the following composition: 5% ethylene, 6.5% carbon dioxide, 5% oxygen and 83.5% nitrogen.

StrømtiIførsien er 210 Nl/time, og kontakttiden er ca. 4,6 sekunder. Ved 20O°C fik man en god omdannelse af ethylen til ethylenoxid med en selektivitet (mol ethylenoxid/100 mol omsat ethylen) på 80% og en omdannelse på 25%,.The power supply is 210 Nl / hour and the contact time is approx. 4.6 seconds. At 20 ° C a good conversion of ethylene to ethylene oxide was obtained with a selectivity (mole of ethylene oxide / 100 mole of converted ethylene) of 80% and a conversion of 25%.

Eksempel 2Example 2

Eksemplet angår en industriel fremgangsmåde til fremstilling af en sølvbaseret katalysator ved pulserende elektrokemisk udskillelse under anvendelse af en særlig elektrolytisk celle og sølvnitrat som udgangsmateriale.The example relates to an industrial process for preparing a silver based catalyst by pulsating electrochemical separation using a special electrolytic cell and silver nitrate as starting material.

Som elektrolyt anvendes en opløsning med følgende sammensætning: Sølvnitrat 0,5 - 5 g/1As an electrolyte a solution of the following composition is used: Silver nitrate 0.5 - 5 g / l

Borax 5 -20 g/1Borax 5 -20 g / l

Carboxymethylcellulose 0,1 - 0,5 g/1Carboxymethyl cellulose 0.1 - 0.5 g / l

Ammoniak 5 -50 g/1Ammonia 5 -50 g / l

Natriumhydroxid 3,5 -10 g/1 i en elektrolytisk celle (vist i fig. 3 og 4) under anvendelse af et sølvnet ( 1 xl mm mesh) som katode og perforeret kompakt graphit som anode. En fuldstændig plan over enheden er vist i fig. 3. Opløsningen holdes under kontinuerlig omrøring ved hjælp af en mekanisk omrører 108 og passerer gennem elektroderne, der som vist i fig. 3 og 4 er anbragt radiært i bunden af cellen. Strømtilførslen til den elek-trolytiske celle sker ved hjælp af impulser med en rektangulær profil på 5 til 15 sekunder. Strømtilførsels- kredsløbet er indrettet, så man får 5 til 15 sekunders strømtilførsel og 20 til 60 sekunders strømafbrydelse. For hver 10 til 20 cycler vendes strømretningen med&t formål at løsgøre det på katoden udskilte sølv.Sodium hydroxide 3.5 -10 g / l in an electrolytic cell (shown in Figures 3 and 4) using a silver mesh (1 x 1 mm mesh) as the cathode and perforated compact graphite as the anode. A complete plan of the unit is shown in FIG. 3. The solution is kept under continuous agitation by a mechanical stirrer 108 and passes through the electrodes which, as shown in FIG. 3 and 4 are located radially at the bottom of the cell. The power supply to the electrolytic cell is effected by means of pulses with a rectangular profile of 5 to 15 seconds. The power supply circuit is arranged to provide 5 to 15 seconds of power supply and 20 to 60 seconds of power failure. For every 10 to 20 cycles, the current direction is reversed for the purpose of detaching the silver separated on the cathode.

Den totale strøm for hver enkelt impuls er 700 til 900 amp.The total current for each pulse is 700 to 900 amp.

Driftsbetingelserne er som følger:The operating conditions are as follows:

Temperatur StuetemperaturTemperature Room temperature

Tilsyneladende katodeoverflade (30 enkelt- 2 elementer på 60 x 60 cm) 10 m 2Apparent cathode surface (30 single- 2 elements of 60 x 60 cm) 10 m 2

Katodisk strømtæthed 0,2 - 0,25 A/cmCathodic current density 0.2 - 0.25 A / cm

Udladespænding for Ag efter fradrag af det 250 -350 mV (i for- ohmiske fald hold til den mæt tede calomelelek-trode)Discharge voltage for Ag after deduction of the 250 -350 mV (pre-ohmic hold to the saturated calomel electrode)

Tilsyneladende anodeoverflade (30 enkeltele- 2 menter på 60 x 60 cm) 10 m 141277 2 7Apparent anode surface (30 individual 60 x 60 cm elements) 10 m 141277 2 7

Anodisk strømtæthed ' 0,2 - 0,3 A/cmAnodic current density '0.2 - 0.3 A / cm

Omrørerhastighed 40 -1000 omd./iain.Stirrer speed 40 -1000 rpm.

Den vigtigste anodeproces er afgivelsen af oxygen, og den vigtigste katodeproces er udskillelsen af sølv.The most important anode process is the release of oxygen and the most important cathode process is the secretion of silver.

Den faradiske effektivitet for sølvudskillelsen er 80-90%, og spændingen, der påtrykkes cellen, ligger mellem 5 og 15 V.The faradic efficiency of the silver secretion is 80-90% and the voltage applied to the cell is between 5 and 15 V.

Forbruget af elektrisk kraft ligger mellem 1,5 og 4,5 kwtime/kg dannet sølv.The consumption of electric power is between 1.5 and 4.5 kwtime / kg of silver formed.

Da det vigtigste anodeprodukt er oxygen, bliver den elektrolytiske opløsnings indhold af sølv mindre og mindre, mens indholdet af ammoniumnitrat forøges.Since the main anode product is oxygen, the content of the electrolytic solution of silver becomes less and less while the content of ammonium nitrate is increased.

Der er derfor tilvejebragt et tilførselssystem, ved hjælp af hvilket der tilføres frisk opløsning, kontinuerligt recirkuleret og indstillet med hensyn til sølvindholdet med en meget koncentreret opløsning af sølvnitrat, kompleksdannet med ammoniak (se fig. 3).Therefore, a feed system is provided by which fresh solution is fed, continuously recycled and adjusted for the silver content with a highly concentrated solution of silver nitrate, complexed with ammonia (see Figure 3).

Opløsningen anses ikke mere for at være anvendelig, når den molære koncentration af ammoniumnitrat er 100 gange større end den molære koncentration af sølvnitrat.The solution is no longer considered useful when the molar concentration of ammonium nitrate is 100 times greater than the molar concentration of silver nitrate.

Fra denne udpinte opløsning udvindes der sølv ved hjælp af en anden elektro-lytisk celle,! det væsentlige identisk med den i fig. 1 viste. Her kan der udvindes ca. 1% sølv i forhold til den førstdannede sølvmængde.From this degraded solution, silver is extracted by means of another electrolytic cell,! substantially identical to that of FIG. 1. Here, approx. 1% silver compared to the first quantity of silver.

Den højeste produktivitet for denne elektrolytiske celle er 300 kg katalytisk aktivt sølv daglig for 24 timers kontinuerligt arbejde under anvendelse af 2 en tilsyneladende elektrodeoverflade på 10 m , hvilket svarer til en total produktion på mere end 75 fons metallisk sølv om året.The highest productivity for this electrolytic cell is 300 kg of catalytically active silver daily for 24 hours of continuous work using 2 an apparent electrode surface of 10 m, which corresponds to a total production of more than 75 fps metallic silver per year.

Ved anvendelse af det dannede sølv som katalysator på den i eksempel 1 anførte måde fik man ved fremstilling af ethylenoxid værdier for omdannelse og selektivitet, der var praktisk taget identiske med de i det foregående eksempel anførte værdier.Using the silver formed as a catalyst in the manner set forth in Example 1, ethylene oxide conversion and selectivity values which were virtually identical to the values set forth in the previous example were obtained.

DK374872AA 1971-07-31 1972-07-28 Process for Electrochemical Preparation of Silver Catalysts. DK141277B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2702271 1971-07-31
IT2702271 1971-07-31

Publications (2)

Publication Number Publication Date
DK141277B true DK141277B (en) 1980-02-18
DK141277C DK141277C (en) 1980-08-11

Family

ID=11220791

Family Applications (1)

Application Number Title Priority Date Filing Date
DK374872AA DK141277B (en) 1971-07-31 1972-07-28 Process for Electrochemical Preparation of Silver Catalysts.

Country Status (25)

Country Link
US (1) US3836436A (en)
JP (1) JPS5639932B1 (en)
AT (1) AT322514B (en)
AU (1) AU470570B2 (en)
BE (1) BE786623A (en)
BR (1) BR7205136D0 (en)
CA (1) CA1005388A (en)
CH (1) CH545653A (en)
CS (1) CS168601B2 (en)
DD (1) DD98211A5 (en)
DE (1) DE2237574C3 (en)
DK (1) DK141277B (en)
ES (1) ES405711A1 (en)
FR (1) FR2148028B1 (en)
GB (1) GB1393689A (en)
LU (1) LU65795A1 (en)
NL (1) NL161509C (en)
NO (1) NO131776C (en)
PL (1) PL82002B1 (en)
RO (1) RO61157A (en)
SE (1) SE371938B (en)
SU (1) SU444351A3 (en)
TR (1) TR18002A (en)
YU (1) YU34574B (en)
ZA (1) ZA725196B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2520219C3 (en) * 1975-05-07 1983-02-24 Basf Ag, 6700 Ludwigshafen Process for the production of formaldehyde
SE8504290L (en) * 1985-09-16 1987-03-17 Boliden Ab PROCEDURE FOR SELECTIVE EXTRACTION OF LEAD FROM COMPLEX SULFIDE ORE
US5413987A (en) * 1994-01-24 1995-05-09 Midwest Research Institute Preparation of superconductor precursor powders
DE69510477T2 (en) * 1994-03-14 2000-03-16 Studiengesellschaft Kohle Mbh Process for the production of highly dispersed metal colloids and of metal clusters bound on a substrate by electrochemical reduction of metal salts
US5462647A (en) * 1994-09-09 1995-10-31 Midwest Research Institute Preparation of lead-zirconium-titanium film and powder by electrodeposition
DE59605306D1 (en) * 1995-03-15 2000-06-29 Basf Ag METHOD FOR PRODUCING PHOSPHOROUS-Doped SILVER CATALYSTS
US5785837A (en) * 1996-01-02 1998-07-28 Midwest Research Institute Preparation of transparent conductors ferroelectric memory materials and ferrites
DE19835481A1 (en) 1998-08-07 2000-02-17 Bayer Ag Process for the oxidation of hydrocarbons
DE19912896A1 (en) * 1999-03-23 2000-09-28 Daimler Chrysler Ag Process for producing a catalyst
PL377451A1 (en) * 2005-10-05 2007-04-16 Instytut Wysokich Ciśnień PAN Methods of reaction leading, chemical reactor
DE102014204372A1 (en) 2014-03-11 2015-09-17 Bayer Materialscience Ag Process for the preparation of catalytically active powders of metallic silver or of mixtures of metallic silver with silver oxide for the production of gas diffusion electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216167A (en) * 1936-08-24 1940-10-01 Gen Metals Powder Company Method of producing metal powders
SU129447A1 (en) * 1959-09-15 1959-11-30 В.И. Семерюк The method of electrolytically obtaining silver powder from insoluble compounds
DE1188822B (en) * 1964-04-24 1965-03-11 Agfa Ag Method and device for the electrolytic recovery of silver from used photographic processing fluids

Also Published As

Publication number Publication date
DE2237574B2 (en) 1974-07-04
RO61157A (en) 1977-01-15
YU191272A (en) 1979-04-30
GB1393689A (en) 1975-05-07
BR7205136D0 (en) 1973-06-14
AU4447272A (en) 1974-01-17
CA1005388A (en) 1977-02-15
FR2148028B1 (en) 1976-01-16
FR2148028A1 (en) 1973-03-11
NL161509B (en) 1979-09-17
BE786623A (en) 1973-01-24
PL82002B1 (en) 1975-10-31
AU470570B2 (en) 1976-03-18
NO131776C (en) 1975-07-30
NL161509C (en) 1980-02-15
CS168601B2 (en) 1976-06-29
NO131776B (en) 1975-04-21
AT322514B (en) 1975-05-26
SE371938B (en) 1974-12-09
DD98211A5 (en) 1973-06-12
DE2237574C3 (en) 1975-02-27
CH545653A (en) 1974-02-15
DK141277C (en) 1980-08-11
LU65795A1 (en) 1972-11-28
NL7210498A (en) 1973-02-02
ZA725196B (en) 1973-04-25
DE2237574A1 (en) 1973-02-22
US3836436A (en) 1974-09-17
JPS5639932B1 (en) 1981-09-17
TR18002A (en) 1976-08-20
ES405711A1 (en) 1975-09-01
YU34574B (en) 1979-10-31
SU444351A3 (en) 1974-09-25

Similar Documents

Publication Publication Date Title
DK141277B (en) Process for Electrochemical Preparation of Silver Catalysts.
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
EP0253783B1 (en) Process for refining gold and apparatus employed therefor
EP0043854B1 (en) Aqueous electrowinning of metals
SU444351A1 (en) A method of producing a silver catalyst for the oxidation of ethylene
US4795538A (en) Electrochemical process for recovering metallic rhodium from aqueous solutions of spent catalysts
US3413203A (en) Electrolytic oxidation of cerium
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
EP0235908A2 (en) Method for the production of L-cysteine
US3329594A (en) Electrolytic production of alkali metal chlorates
US3336209A (en) Reducing the excess voltage in electrolysis of aqueous hydrochloric acid in diaphragm cells
US3616325A (en) Process for producing potassium peroxydiphosphate
US4663002A (en) Electrolytic process for manufacturing potassium peroxydiphosphate
EP0206554B1 (en) Electrolytic process for manufacturing pure potassium peroxydiphosphate
US5250166A (en) Method of recovering palladium by electrolysis and apparatus therefor
US4626327A (en) Electrolytic process for manufacturing potassium peroxydiphosphate
US3169913A (en) Preparation of gem-dinitroparaffins by electrolysis
EP0221685B1 (en) Electrolytic process for the manufacture of salts
SU525625A1 (en) The method of producing ferric chloride
US590548A (en) Charles kellner
SU737399A1 (en) Method of preparing 3-methyl- or 1,3-dimethyl-4-amino-5-formylamino-2,6-dioxypyrimidine
Balakrishnan et al. Electrolytic Production of Aminoguanidine Bicarbonate
US2542888A (en) Electrochemical processes of producing manganese from aqueous manganese salt solution
SU1421807A1 (en) Electrolyzer for regeneration of sulfuric acid etching solutions
Shalashova et al. Electrolytic formation of phosphine from red phosphorus in aqueous solutions