DE69525756T2 - Wellenlängen selektiver filter - Google Patents

Wellenlängen selektiver filter

Info

Publication number
DE69525756T2
DE69525756T2 DE69525756T DE69525756T DE69525756T2 DE 69525756 T2 DE69525756 T2 DE 69525756T2 DE 69525756 T DE69525756 T DE 69525756T DE 69525756 T DE69525756 T DE 69525756T DE 69525756 T2 DE69525756 T2 DE 69525756T2
Authority
DE
Germany
Prior art keywords
selective filter
wavelengths selective
wavelengths
filter
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69525756T
Other languages
English (en)
Other versions
DE69525756D1 (de
DE69525756T3 (de
Inventor
Joseph Mears
Thomas Warr
Charles Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEARS, ROBERT JOSEPH, WELLESLEY, MASS., US
Original Assignee
BTG International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10762154&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69525756(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BTG International Ltd filed Critical BTG International Ltd
Publication of DE69525756D1 publication Critical patent/DE69525756D1/de
Application granted granted Critical
Publication of DE69525756T2 publication Critical patent/DE69525756T2/de
Publication of DE69525756T3 publication Critical patent/DE69525756T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/22Function characteristic diffractive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Holo Graphy (AREA)
DE69525756T 1994-09-30 1995-09-29 Wellenlängen selektiver filter Expired - Lifetime DE69525756T3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9419757 1994-09-30
GB9419757A GB9419757D0 (en) 1994-09-30 1994-09-30 Wavelength selective filter and laser including it
PCT/GB1995/002326 WO1996010762A1 (en) 1994-09-30 1995-09-29 Wavelength selective filter

Publications (3)

Publication Number Publication Date
DE69525756D1 DE69525756D1 (de) 2002-04-11
DE69525756T2 true DE69525756T2 (de) 2002-08-01
DE69525756T3 DE69525756T3 (de) 2007-10-18

Family

ID=10762154

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69525756T Expired - Lifetime DE69525756T3 (de) 1994-09-30 1995-09-29 Wellenlängen selektiver filter

Country Status (6)

Country Link
US (1) US6141361A (de)
EP (1) EP0783713B2 (de)
AU (1) AU3573195A (de)
DE (1) DE69525756T3 (de)
GB (1) GB9419757D0 (de)
WO (1) WO1996010762A1 (de)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281977B1 (en) * 1998-12-23 2001-08-28 Jds Fitel Inc. Interferometric optical device including an optical resonator
US6826330B1 (en) * 1999-08-11 2004-11-30 Lightconnect, Inc. Dynamic spectral shaping for fiber-optic application
US6735016B1 (en) 1999-09-15 2004-05-11 Spectraswitch, Inc. Electro-optically controllable polarization insensitive optical device
US6813420B1 (en) * 2000-09-21 2004-11-02 Axsun Technologies, Inc. Process and system for tunable filter optical train alignment
US6665476B2 (en) 2000-09-29 2003-12-16 Sarnoff Corporation Wavelength selective optical add/drop multiplexer and method of manufacture
EP1207418A1 (de) * 2000-11-20 2002-05-22 Alcatel Dynamischer räumlicher Entzerrer basierend auf einem räumlichen Lichtmodulator
US6377386B1 (en) * 2001-03-15 2002-04-23 Axsun Technologies, Inc. System and process fabry-perot filter train configuration using derived mode field size in fiber optic system
US7142749B2 (en) * 2001-06-27 2006-11-28 Finisar Corporation System and method for controlling spectral passband profile
GB0121308D0 (en) 2001-09-03 2001-10-24 Thomas Swan & Company Ltd Optical processing
US7349597B2 (en) 2001-12-21 2008-03-25 Opnext, Inc. Grating based multiplexer/demultiplexer component
US20030175030A1 (en) * 2002-03-18 2003-09-18 Shuqiang Chen Re-configurable optical add/drop multiplexer module and method
AUPS268902A0 (en) * 2002-05-29 2002-06-20 Edith Cowan University System for splitting an optical signal and method therefor
US7221452B2 (en) * 2002-08-07 2007-05-22 Coherent, Inc. Tunable optical filter, optical apparatus for use therewith and method utilizing same
US7355671B2 (en) * 2003-02-21 2008-04-08 Xtellus Inc. Fabrication method for liquid crystal cell
US7009680B2 (en) * 2003-06-02 2006-03-07 Xtellus Inc. Narrow band tunable filter with integrated detector
US20060007386A1 (en) * 2003-02-21 2006-01-12 Extellus Usa Flat top tunable filter with integrated detector
US7352428B2 (en) * 2003-02-21 2008-04-01 Xtellus Inc. Liquid crystal cell platform
US6943768B2 (en) * 2003-02-21 2005-09-13 Xtellus Inc. Thermal control system for liquid crystal cell
US20110043742A1 (en) * 2003-02-21 2011-02-24 Cavanaugh Shanti A Contamination prevention in liquid crystal cells
US7184666B1 (en) 2003-10-01 2007-02-27 Ciena Corporation Reconfigurable optical add-drop multiplexer
EP2012173A3 (de) * 2007-07-03 2009-12-09 JDS Uniphase Corporation Ungeätzte flache polarisations-selektive optische Diffraktionselemente
US8643822B2 (en) * 2007-07-03 2014-02-04 Jds Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements
KR100817726B1 (ko) * 2008-01-18 2008-03-31 주식회사 나노베이스 파장 가변 장치 및 그 방법
KR101031087B1 (ko) * 2009-07-23 2011-04-25 주식회사 와이텔포토닉스 파장변환 레이저 시스템
US9042414B2 (en) * 2010-06-24 2015-05-26 Spectral Sciences, Inc. External cavity laser source
US8867580B2 (en) 2012-05-15 2014-10-21 Finisar Corporation Wavelength tunable laser
GB2504970A (en) 2012-08-15 2014-02-19 Swan Thomas & Co Ltd Optical device and methods to reduce cross-talk
US10616987B2 (en) 2015-08-28 2020-04-07 Kla-Tencor Corporation System and method for imaging a sample with an illumination source modified by a spatial selective wavelength filter
US10090639B2 (en) * 2016-01-21 2018-10-02 Luminit Llc Laser diode enhancement device
WO2017197108A1 (en) 2016-05-11 2017-11-16 Atomera Incorporated Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods
US10453945B2 (en) 2016-08-08 2019-10-22 Atomera Incorporated Semiconductor device including resonant tunneling diode structure having a superlattice
US10107854B2 (en) 2016-08-17 2018-10-23 Atomera Incorporated Semiconductor device including threshold voltage measurement circuitry
EP3635789B1 (de) 2017-05-16 2022-08-10 Atomera Incorporated Halbleiterbauelement und verfahren mit übergitter als getterschicht
TWI685109B (zh) 2017-06-13 2020-02-11 美商安托梅拉公司 具有含超晶格之凹槽通道陣列電晶體(rcat)之半導體元件及其相關方法
US10109479B1 (en) 2017-07-31 2018-10-23 Atomera Incorporated Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
CN111247640B (zh) 2017-08-18 2023-11-03 阿托梅拉公司 包括与超晶格sti界面相邻的非单晶纵梁的半导体器件和方法
US10608027B2 (en) 2017-12-15 2020-03-31 Atomera Incorporated Method for making CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10608043B2 (en) 2017-12-15 2020-03-31 Atomera Incorporation Method for making CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
US10529768B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated Method for making CMOS image sensor including pixels with read circuitry having a superlattice
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10361243B2 (en) 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
US10615209B2 (en) 2017-12-15 2020-04-07 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10367028B2 (en) 2017-12-15 2019-07-30 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10529757B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated CMOS image sensor including pixels with read circuitry having a superlattice
EP3762959B1 (de) 2018-03-08 2024-04-10 Atomera Incorporated Halbleiterbauelement mit verbesserten kontaktstrukturen mit einem übergitter und zugehörige verfahren
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10884185B2 (en) 2018-04-12 2021-01-05 Atomera Incorporated Semiconductor device including vertically integrated optical and electronic devices and comprising a superlattice
WO2019199926A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10818755B2 (en) 2018-11-16 2020-10-27 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance
US10840335B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making semiconductor device including body contact dopant diffusion blocking superlattice to reduce contact resistance
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
US10840336B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Semiconductor device with metal-semiconductor contacts including oxygen insertion layer to constrain dopants and related methods
US10840337B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making a FINFET having reduced contact resistance
US10854717B2 (en) 2018-11-16 2020-12-01 Atomera Incorporated Method for making a FINFET including source and drain dopant diffusion blocking superlattices to reduce contact resistance
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10847618B2 (en) 2018-11-16 2020-11-24 Atomera Incorporated Semiconductor device including body contact dopant diffusion blocking superlattice having reduced contact resistance
US11094818B2 (en) 2019-04-23 2021-08-17 Atomera Incorporated Method for making a semiconductor device including a superlattice and an asymmetric channel and related methods
US11579439B2 (en) * 2019-05-20 2023-02-14 Silicon Light Machines Corporation MEMS based spectral shaper using a broadband source
US10937868B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making semiconductor devices with hyper-abrupt junction region including spaced-apart superlattices
US10937888B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making a varactor with a hyper-abrupt junction region including spaced-apart superlattices
US10825901B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including a superlattice
US10879357B1 (en) 2019-07-17 2020-12-29 Atomera Incorporated Method for making a semiconductor device having a hyper-abrupt junction region including a superlattice
US10825902B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Varactor with hyper-abrupt junction region including spaced-apart superlattices
US10840388B1 (en) 2019-07-17 2020-11-17 Atomera Incorporated Varactor with hyper-abrupt junction region including a superlattice
US11183565B2 (en) 2019-07-17 2021-11-23 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including spaced-apart superlattices and related methods
US10868120B1 (en) 2019-07-17 2020-12-15 Atomera Incorporated Method for making a varactor with hyper-abrupt junction region including a superlattice
US11437487B2 (en) 2020-01-14 2022-09-06 Atomera Incorporated Bipolar junction transistors including emitter-base and base-collector superlattices
US11177351B2 (en) 2020-02-26 2021-11-16 Atomera Incorporated Semiconductor device including a superlattice with different non-semiconductor material monolayers
US11302823B2 (en) 2020-02-26 2022-04-12 Atomera Incorporated Method for making semiconductor device including a superlattice with different non-semiconductor material monolayers
US11075078B1 (en) 2020-03-06 2021-07-27 Atomera Incorporated Method for making a semiconductor device including a superlattice within a recessed etch
US11469302B2 (en) 2020-06-11 2022-10-11 Atomera Incorporated Semiconductor device including a superlattice and providing reduced gate leakage
US11569368B2 (en) 2020-06-11 2023-01-31 Atomera Incorporated Method for making semiconductor device including a superlattice and providing reduced gate leakage
US11848356B2 (en) 2020-07-02 2023-12-19 Atomera Incorporated Method for making semiconductor device including superlattice with oxygen and carbon monolayers
US20220285152A1 (en) 2021-03-03 2022-09-08 Atomera Incorporated Radio frequency (rf) semiconductor devices including a ground plane layer having a superlattice
US11810784B2 (en) 2021-04-21 2023-11-07 Atomera Incorporated Method for making semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11923418B2 (en) 2021-04-21 2024-03-05 Atomera Incorporated Semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11728385B2 (en) 2021-05-26 2023-08-15 Atomera Incorporated Semiconductor device including superlattice with O18 enriched monolayers
US11682712B2 (en) 2021-05-26 2023-06-20 Atomera Incorporated Method for making semiconductor device including superlattice with O18 enriched monolayers
US11721546B2 (en) 2021-10-28 2023-08-08 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to accumulate non-semiconductor atoms
US11631584B1 (en) 2021-10-28 2023-04-18 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to define etch stop layer
CN114488408A (zh) * 2022-01-20 2022-05-13 昂纳信息技术(深圳)有限公司 可调谐光滤波器及光通道监测模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2730613C3 (de) * 1977-07-07 1980-04-03 Bodenseewerk Perkin-Elmer & Co Gmbh, 7770 Ueberlingen Doppelmonochromator
GB2216678B (en) * 1985-05-16 1990-02-21 Pilkington Perkin Elmer Ltd Improvements in or relating to optical apparatus with tuneable filter.
DE69023350T2 (de) * 1989-06-28 1996-03-21 Seiko Instr Inc Anordnung zur optischen Verbindung.
US5222071A (en) * 1991-02-21 1993-06-22 Board Of Trustees Leland Stanford, Jr. University Dynamic optical grating device
US5132976A (en) * 1991-05-28 1992-07-21 At&T Bell Laboratories Electrically tunable fiber ring laser
JPH10190105A (ja) * 1996-12-25 1998-07-21 Fuji Photo Film Co Ltd 半導体発光装置

Also Published As

Publication number Publication date
DE69525756D1 (de) 2002-04-11
US6141361A (en) 2000-10-31
DE69525756T3 (de) 2007-10-18
EP0783713B1 (de) 2002-03-06
AU3573195A (en) 1996-04-26
EP0783713A1 (de) 1997-07-16
GB9419757D0 (en) 1994-11-16
WO1996010762A1 (en) 1996-04-11
EP0783713B2 (de) 2007-02-14

Similar Documents

Publication Publication Date Title
DE69525756T2 (de) Wellenlängen selektiver filter
DE59504889D1 (de) Filter
DK0742972T3 (da) Filtrering
DE69534431D1 (de) Entfernbares thrombenfilter
DE69513072T2 (de) Tiefpassfilter
DE69723809D1 (de) Filtervorrichtung
DE19580356T1 (de) Filter mit mehreren Abteilungen
DE69520878T2 (de) Filter
DE9414297U1 (de) Filter
DE69530620T2 (de) Netzfilter
ID16096A (id) Saringan
DE59705240D1 (de) Filter
IS4988A (is) Sía
ID19702A (id) Garpu penyaring
FI103644B1 (fi) Suodatin
DE29508413U1 (de) Filtrationseinheit
DE69500612D1 (de) Filteraufbau
DE29609605U1 (de) Filter
DE9413029U1 (de) Filter
DE69501151T2 (de) Filterelement
FI1560U1 (fi) Filter foer mjoelkningsapparat
FI1595U1 (fi) Filter
SE9400994D0 (sv) Filter
BR7401556U (pt) Filtro
FI945099A0 (fi) Filter foer mjoelkningsmaskin

Legal Events

Date Code Title Description
8363 Opposition against the patent
8327 Change in the person/name/address of the patent owner

Owner name: MEARS, ROBERT JOSEPH, WELLESLEY, MASS., US

8366 Restricted maintained after opposition proceedings