DE69026850T2 - Gitterkoppler - Google Patents

Gitterkoppler

Info

Publication number
DE69026850T2
DE69026850T2 DE69026850T DE69026850T DE69026850T2 DE 69026850 T2 DE69026850 T2 DE 69026850T2 DE 69026850 T DE69026850 T DE 69026850T DE 69026850 T DE69026850 T DE 69026850T DE 69026850 T2 DE69026850 T2 DE 69026850T2
Authority
DE
Germany
Prior art keywords
grating
optical waveguide
light
tapered
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE69026850T
Other languages
English (en)
Other versions
DE69026850D1 (de
Inventor
Osamu Yamamoto
Toshihiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Application granted granted Critical
Publication of DE69026850D1 publication Critical patent/DE69026850D1/de
Publication of DE69026850T2 publication Critical patent/DE69026850T2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

  • Die Erfindung betrifft einen Gitterkoppler zum Eingeben von Licht in einen optischen Wellenleiter oder zum Emittieren von Licht aus einem optischen Wellenleiter in integrierten optischen Elementen oder anderen optischen Elementen.
  • Integrierte optische Aufnehmer, integrierte optische Abrasterelemente, integrierte optische Doppler-Geschwindigkeitsmesser und andere integrierte optische Elemente haben unter Verwendung optischer Wellenleiter, in denen sich Licht ausbreitet, hohes Funktionsvermögen erreicht. Um Licht in den optischen Wellenleiter dieser Arten integrierter optischer Elemente einzugeben, wird das Ende des optischen Wellenleiters optisch poliert, und das Licht wird mittels einer Linse mit großer numerischer Apertur (NA) konvergiert und vom optisch polierten Ende des optischen Wellenleiters her in das Innere des optischen Wellenleiters eingegeben. Wenn jedoch Licht auf diese Weise in einen optischen Wellenleiter eingegeben wird, muß das Ende des optischen Wellenleiters mit hoher Genauigkeit poliert werden, und die optischen Achsen der Linse und des optischen Wellenleiters müssen genau ausgerichtet werden.
  • Im Gegensatz zu diesem Verfahren werden in großem Umfang andere Verfahren verwendet, bei denen Licht mittels eines Gitterkopplers in einen optischen Wellenleiter eingegeben oder von diesem emittiert wird, wobei der Gitterkoppler wegen seiner geringen Größe und seines dünnen Aufbaus leicht integriert werden kann.
  • Ein Gitterkoppler wird dadurch hergestellt, daß an der Oberseite eines optischen Wellenleiters ein Gitter angebracht wird. Das Gitter verfügt über verschiedene Konfigurationen wie über mehrere gerade Linien mit demselben Abstand, mehrere gekrümmte Linien, deren Abstand sich allmählich ändert, und dergleichen.
  • Fig. 5a ist eine Draufsicht, die einen herkömmlichen Gitterkoppler zeigt, und Fig. 5b ist ein Schnitt durch denselben. Der Gitterkoppler wird dadurch hergestellt, daß an der Oberseite eines optischen Wellenleiters 42, der an der Oberseite eines kristallinen Substrats 41 aus LiNbO&sub3; oder einem anderen Material hergestellt ist, ein Gitter ausgebildet wird. Der optische Wellenleiter 42 wird in der Mitte des Substrats von einer Seite zur anderen Seite und über seine Länge mit gleichmäßiger Breite und Dicke ausgebildet. Das Gitter 43 besteht aus mehreren plattenähnlichen, transparenten Elementen gleicher Länge, die den optischen Wellenleiter 42 rechtwinklig zu seiner Länge schneiden. Wenn Licht auf das Gitter 43 gestrahlt wird, tritt es durch das Gitter 43 in den optischen Wellenleiter 42 ein und breitet sich in diesem aus. Das sich im optischen Wellenleiter 42 ausbreitende, geführte Licht wird vom Gitter 43 zur Außenseite des Wellenleiters 42 emittiert.
  • Wenn sich das im optischen Wellenleiter 42 ausbreitende, geführte Licht 21 bei einem derartigen herkömmlichen Gitterkoppier vom Gitter 43 emittiert wird, gilt folgendes für den Kopplungswirkungsgrad.
  • Das sich im Gitterkoppler ausbreitende Licht wird durch die Ausbreitung allmählich abgeschwächt. Wenn z die Koordinate der Ausbreitungsrichtung im Gitterkoppler für das im optischen Wellenleiter 42 geführte Licht 21 bezeichnet, wird die Intensität des vom Gitterkoppler emittierten Lichts durch die Differentialgleichung gemäß der folgenden Gleichung 1 erhalten:
  • dPO/dz = -ηPO (1),
  • wobei η der Kopplungskoeffizient des Gitterkopplers ist.
  • Aus der Gleichung 1 ergibt sich folgendes:
  • PO exp(-ηz) (2).
  • Demgemäß ist die Intensitätsverteilung des emittierten Lichts durch eine Exponentialfunktion repräsentiert, wie in Fig. 5b angezeigt.
  • Auf diese Weise wird das Licht, das sich im optischen Wellenleiter 42 ausgebreitet hat, mit exponentieller Intensitätsverteilung vom Gitterkoppler emittiert. Da ein Gitter jedoch ein optisch umkehrbares Element ist, wird, wenn das in das Gitter eintretende Licht diese Art einer exponentiellen Intensitätsverteilung aufweist, die Intensität des Lichts, das sich im optischen Wellenleiter 42 ausbreitet, konstant, so daß der Kopplungswirkungsgrad des optischen Gitterkopplers deutlich verbessert ist.
  • In der Realität ist es jedoch schwierig, dem in den Gitterkoppler eintretenden Licht oder dem Licht, das sich im optischen Wellenleiter ausbreitet, die oben erläuterte exponentielle Intensitätsverteilung zu verleihen, und normalerweise hat es eine symmetrische Intensitätsverteilung wie die eines Halbleiterlaserstrahls. Daher ist der Kopplungswirkungsgrad von Gitterkopplern auf ungefähr 80 % beschränkt.
  • Patent Abstracts of Japan, Vol 12, Nr. 334 (S. P-756) [3181] & JP-A-63 96606, auf denen die Oberbegriffe der Ansprüche 1 und 2 beruhen, offenbaren einen Gitterkoppier, bei dem sich die Dicke des Wellenleiters linear ändert. Dieser Gitterkoppler wirkt als Linse, und ein sich im Gitterkoppler ausbreitender Lichtstrahl wird auf einen Punkt über demselben fokussiert.
  • Gemäß einer ersten Erscheinungsform der Erfindung ist ein Gitterkoppler mit folgendem geschaffen: einem integrierten optischen Wellenleiter und einem auf diesem optischen Wellenleiter ausgebildeten Gitter zum optischen Ein- oder Auskoppeln von Lichtstrahlen in den bzw. aus dem optischen Wellenleiter, dadurch gekennzeichnet, daß der Querschnitt des sich dem Gitter entlang erstreckenden optischen Wellenleiters in seiner Breite so verjüngt ist, daß er in der Ausbreitungsrichtung von darin geführtem Licht schmaler wird, um aus dem Gitter ausgekoppelt zu werden, wobei der breitere Teil des sich verjüngenden Wellenleiterquerschnitts am Ende des Gitters liegt, an dem das geführte Licht eintritt, und der schmalere Teil am anderen Ende des Gitters liegt; und die Breitenänderung des sich verjüngenden Wellenleiter-Querschnitts auf solche Weise ausgewählt ist, daß der Kopplungkoeffizient des Gitters allmählich und linear ausgehend vom breiteren zum schmaleren Teil des sich verjüngenden Querschnitts hin ansteigt, wodurch die Intensität des vom Gitter emittierten Lichts eine Normalverteilung zeigt.
  • Gemäß einer zweiten Erscheinungsform der Erfindung ist ein Gitterkoppler mit folgendem geschaffen: einem integrierten optischen Wellenleiter und einem auf diesem optischen Wellenleiter ausgebildeten Gitter zum optischen Ein- oder Auskoppeln von Lichtstrahlen in den bzw. aus dem optischen Wellenleiter, wobei der Querschnitt des sich dem Gitter entlang erstreckenden optischen Wellenleiters in seiner Dicke so verjüngt ist, daß er in der Ausbreitungsrichtung von darin geführtem Licht dünner wird, um aus dem Gitter ausgekoppelt zu werden, wobei der dickere Teil des sich verjüngenden Wellenleiterquerschnitts am Ende des Gitters liegt, an dem das geführte Licht eintritt, und der dünnere Teil am anderen Ende des Gitters liegt; dadurch gekennzeichnet, daß die Dikkenänderung des sich verjüngenden Wellenleiter-Querschnitts auf solche Weise ausgewählt ist, daß der Kopplungskoeffizient des Gitters allmählich und linear ausgehend vom dickeren zum dünneren Teil des sich verjüngenden Querschnitts hin ansteigt, wodurch die Intensität des vom Gitter emittierten Lichts eine Normalverteilung zeigt.
  • Bei einer bevorzugten Ausführungsform besteht das Gitter aus mehreren plattenähnlichen Streuemrichtungen gleicher Länge besteht, die den optischen Wellenleiter rechtwinklig zu seiner Länge schneiden.
  • Demgemäß ermöglicht es die hier beschriebene Erfindung, das Ziel des Schaffens eines Gitterkopplers zu erreichen, bei dem die Intensitätsverteilung von Lichtstrahlen innerhalb oder außerhalb des optischen Wellenleiters mit der Kopplungswirkungsgradverteilung des Gitterkopplers übereinstimmt, wodurch der Kopplungswirkungsgrad desselben stark verbessert werden kann.
  • Die Erfindung kann vom Fachmann unter Bezugnahme auf die beigefügten Zeichnungen besser verstanden werden, und ihre zahlreichen Aufgaben und Vorteile werden daraus ersichtlich.
  • Fig. 1a ist eine Draufsicht, die einen erfindungsgemäßen Gitterkoppler zeigt.
  • Fig. 1b ist eine Schnittansicht, die den Gitterkoppier von Fig. 1a zeigt.
  • Fig. 2 ist ein Kurvenbild, das die Beziehung zwischen dem effektiven Brechungsindex des optischen Wellenleiters und dem Kopplungskoeffizient des Gitterkopplers von Fig. 1a zeigt.
  • Fig. 3a und 3b sind eine Draufsicht bzw. eine Schnittansicht, die einen anderen erfindungsgemäßen Gitterkoppler zeigen.
  • Fig. 4 ist ein schematisches Diagramm&sub1; das einen Herstellprozeß für den Gitterkoppier von Fig. 3a veranschaulicht.
  • Fig. 5a und 5b sind eine Draufsicht bzw. eine Schnittansicht, die einen herkömmlichen Gitterkoppler zeigen.
  • Die Fig. 1a und 1b zeigen einen erfindungsgemäßen Gitterkoppier mit einem Gitter 13 einer Länge d&sub0;, der in der Längsrichtung eines streifenähnlichen optischen Wellenleiters 12 auf diesem ausgebildet ist, wobei der optische Wellenleiter 12 auf einem Substrat 11 aus z. B. LiNbO&sub3; hergestellt ist. Der optische Wellenleiter 12 wird normalerweise durch ein Protonenaustauschverfahren mit gleichmäßiger Dicke ausgebildet.
  • Das Gitter 13 ist auf dem optischen Wellenleiter 12 positioniert. Die Breite des optischen Wellenleiters 12 ist einheitlich, mit Ausnahme derjenigen im Abschnitt, auf dem das Gitter 13 liegt, wo sich die Breite allmählich verjüngt.
  • Das Gitter 13, das auf dem sich verjüngenden Teil des optischen Wellenleiters 12 liegt, besteht aus mehreren plattenähnlichen Streuemrichtungen gleicher Länge, wobei diese plattenähnlichen Streuemrichtungen den optischen Wellenleiter 12 rechtwinklig zu seiner Länge schneiden.
  • Der optische Wellenleiter 12 wird dadurch hergestellt, daß ein Elektronenstrahlresist wie Polymethylmethacrylat auf das Substrat 11 aufgetragen wird, ein Maskenmuster mit der oben angegebenen Form mittels Elektronenstrahlbelichtung aufgezeichnet wird, der Resist belichtet wird und ein normales protonenaustauschverfahren verwendet wird. Das Gitter 13 wird dadurch hergestellt, daß ein transparenter Film wie ein solcher aus Si&sub3;N&sub4; auf dem Substrat 11 abgeschieden wird, auf dem der optische Wellenleiter 12 ausgebildet wurde, ein Elektronenstrahlresist auf dem transparenten Film aufgetragen wird, das Gittermuster unter Verwendung eines Elektronenstrahl-Belichtungsverfahrens gezeichnet wird, und das Muster unter Verwendung eines Ätzmittels, wie gepufferter HF, geätzt wird. Die Länge des Gitterkopplers beträgt vorzugsweise ungefähr 500 µm, um eine Aberration durch die Elektronenstrahl-Belichtungsvorrichtung zu vermeiden.
  • Durch die Änderung der Breite des optischen Wellenleiters 12 ändert sich der Kopplungskoeffizient des Gitterkopplers. Fig. 2 ist ein Kurvenbild, das die Beziehung zwischen dem effektiven Brechungsindex des optischen Wellenleiters und dem Kopplungskoeffizient des Gitterkopplers zeigt. Der effektive Brechungsindex ist ungefähr proportional zur Breite des optischen Wellenleiters. Die Breite des Abschnitts des optischen Wellenleiters 12 unter dem Gitter 13 ist bei diesem Beispiel so eingestellt, daß der Kopplungskoeffizient ein Ende zum schmalsten Teil des optischen Wellenleiters unter dem Gitter 13 hin am höchsten ist und der Kopplungskoeffizient sich linear ändert. Wie es aus dem Kurvenbild von Fig. 2 erkennbar ist, wird der effektive Brechungsindex im schmalsten Abschnitt des optischen Wellenleiters 12, der der Sperrpunkt ist, an dem sich kein geführtes Licht mehr ausbreitet, dem Brechungsindex des Substrats gleich. Der Kopplungskoeffizient nimmt monoton ab, wenn der effektive Brechungsindex mit zunehmender Breite des optischen Wellenleiters 12 größer wird. Bei diesem Beispiel ist die Breite des optischen Wellenleiters 12 so verjüngt, daß der schmalste Abschnitt der Breite des optischen Wellenleiters, wo der Kopplungskoeffizient am höchsten ist, an einem Ende des Gitters 13 liegt, und der breiteste Abschnitt desselben am anderen Ende in der Ausbreitungsrichtung des geführten Lichts liegt.
  • Wenn Licht in das Gitter 13 des Gitterkopplers mit dem obenangegebenen Aufbau eintritt, wird das Licht durch dieses Gitter 13 gebeugt und in den optischen Wellenleiter 12 gerichtet, wo es sich ausbreitet. Das sich im optischen Wellenleiter 12 ausbreitende Licht wird durch das Gitter 13 gebeugt, von dem es emittiert wird.
  • Die Emission des geführten Lichts 21, das sich im optischen Wellenleiter 12 ausgebreitet hat, aus dem Gitterkoppler zur Außenseite desselben wird wie folgt beschrieben: wenn die Intensität des emittierten Lichts 22 den Wert P&sub0; hat, der Kopplungskoeffizient des Gitterkopplers η ist und die Koordinate der Ausbreitungsrichtung des geführten Lichts z ist, ist die Intensität PO des emittierten Lichts durch die folgende Differentialgleichung 3 gegeben.
  • dP&sub0;/dz = - η(z)P&sub0; (3).
  • Der Kopplungskoeffizient 71 des Gitterkopplers ist eine lineare Funktion von z&sub1; so daß folgendes gilt:
  • ex /-z²/&sub2;) (4)
  • wobei die Intensität P&sub0; des emittierten Lichts eine Normalverteilung zeigt (siehe Fig. 1b).
  • Auf diese Weise zeigt die Intensität des emittierten Lichts, wenn der Kopplungskoeffizient des Gitterkopplers sich mit gleichmäßiger Rate in der Ausbreitungsrichtung des geführten Lichts ändert, Normalverteilung hinsichtlich des geführten Lichts mit gleichmäßiger Intensität, so daß die Verteilung des Kopplungswirkungsgrad des Gitterkopplers eine Normalverteilung wird. Demgemäß erreicht der Gitterkoppler dieselbe Kopplungswirkungsgrad-Verteilung wie die von Licht mit einer Normalverteilung der Intensität, wie dies bei einem Laserstrahl der Fall ist, und solange der Gitterkoppier in der Ausbreitungsrichtung des optischen Wellenleiters ausreichend lang ist, ist schwächung des Lichts verringert, obwohl der Gesamtkopplungskoeffizient niedrig ist. Im Ergebnis erreicht der Gitterkoppler eine optische Kopplung mit hohem Wirkungsgrad zwischen den Lichtstrahlen innerhalb und außerhalb des optischen Wellenleiters.
  • Die Fig. 3a und 3b zeigen einen anderen erfindungsgemäßen Gitterkoppler, bei dem der Kopplungswirkungsgrad des Gitterkopplers dadurch geändert wird, daß die Breite des optischen Wellenleiters konstant gehalten wird, aber die Dicke desselben unter der Fläche, in der das Gitter 13 ausgebildet ist, variiert wird. In diesem Fall wird die Änderung des Kopplungskoeffizients des Gitterkopplers in Beziehung zur Änderung der Dicke des optischen Wellenleiters 12 vorab betrachtet, und die Dicke des optischen Wellenleiters 12 wird so eingestellt, daß der Kopplungskoeffizient unter einem Ende des Gitters 13 am höchsten ist und unter dem anderen Ende des Gitters 13 am niedrigsten ist, wobei sich die Dicke dazwischen linear ändert. Auf diese Weise ist die Dicke des optischen Wellenleiters 12 in der Dickenrichtung so verjüngt, daß der dünnste Abschnitt des optischen Wellenleiters 12 an einem Ende des Gitters 13 liegt und sein dickster Abschnitt am anderen Ende in der Ausbreitungsrichtung des geführten Lichts liegt. Andere Konfigurationen stimmen mit denen des in Fig. 1 dargestellten, funktionierenden Beispiels überein.
  • Die Dicke des optischen Wellenleiters 12 kann dadurch geändert werden, daß die Protonenaustauschzeit geändert wird, da die Dicke proportional zur Quadratwurzel der Protonenaustauschzeit ist. Um die Dicke des optischen Wellenleiters 12 durch Ändern der Protonenaustauschzeit zu ändern, kann das Substrat 11, wie es in Fig. 4 dargestellt ist, senkrecht in der Protonenaustauschlösung 31 aufgehängt werden und dann allmählich aus dieser herausgehoben werden.
  • Obwohl die vorstehend angegebenen Beispiele nur ein Verfahren offenbaren, bei dem der optische Wellenleiter durch Protonenaustausch auf einem LiNbO&sub3;-Substrat ausgebildet wurde und das Gitter aus einem auf diesen optischen Wellenleiter auflaminierten Si&sub3;N&sub4;-Film bestand, ist die Erfindung auf ein Verfahren anwendbar, bei dem der optische Wellenleiter dadurch ausgebildet wird, daß ein ITO-Film, ein Elektronenstrahlresist oder ein anderer transparenter Film einer geeigneten Ätztechnik unterzogen wird.
  • Darüber hinaus kann als Substrat LiTaO&sub3; (Lithiumtantalat), KTiOPO&sub4; (KTP) usw. verwendet werden, in denen ein optischer Wellenleiter leicht durch Protonenaustausch bei niedriger Temperatur von ungefähr 200ºC hergestellt werden kann.
  • Es ist zu beachten, daß dem Fachmann andere Modifizierungen erkennbar sind und von ihm leicht ausgeführt werden können, ohne vom Schutzbereich der Erfindung abzuweichen. Demgemäß soll der Schutzbereich der Erfindung nicht auf die hier dargelegte Beschreibung begrenzt sein, sondern er soll durch die beigefügten Ansprüche begrenzt sein.

Claims (3)

1. Gitterkoppier mit einem integrierten optischen Wellenleiter (12) und einem auf diesem optischen Wellenleiter ausgebildeten Gitter (13) zum optischen Ein- oder Auskoppeln von Lichtstrahlen in den bzw. aus dem optischen Wellenleiter, dadurch gekennzeichnet, daß
- der Querschnitt des sich dem Gitter entlang erstreckenden optischen Wellenleiters in seiner Breite so verjüngt ist, daß er in der Ausbreitungsrichtung von darin geführtem Licht schmaler wird, um aus dem Gitter ausgekoppelt zu werden, wobei der breitere Teil des sich verjüngenden Wellenleiterquerschnitts am Ende des Gitters liegt, an dem das geführte Licht eintritt, und der schmalere Teil am anderen Ende des Gitters liegt; und
- die Breitenänderung des sich verjüngenden Wellenleiter- Querschnitts auf solche Weise ausgewählt ist, daß der Kopplungskoeffizient des Gitters allmählich und linear ausgehend vom breiteren zum schmaleren Teil des sich verjüngenden Querschnitts hin ansteigt, wodurch die Intensität des vom Gitter emittierten Lichts eine Normalverteilung zeigt.
2. Gitterkoppler mit einem integrierten optischen Wellenleiter (12) und einem auf diesem optischen Wellenleiter ausgebildeten Gitter (13) zum optischen Ein- oder Auskoppeln von Lichtstrahlen in den bzw. aus dem optischen Wellenleiter, wobei
- der Querschnitt des sich dem Gitter entlang erstreckenden optischen Wellenleiters in seiner Dicke so verjüngt ist, daß er in der Ausbreitungsrichtung von darin geführtem Licht dünner wird, um aus dem Gitter ausgekoppelt zu werden, wobei der dickere Teil des sich verjüngenden Wellenleiterquerschnitts am Ende des Gitters liegt, an dem das geführte Licht eintritt, und der dünnere Teil am anderen Ende des Gitters liegt;
dadurch gekennzeichnet, daß die Dickenänderung des sich ver jüngenden Wellenleiter-Querschnitts auf solche Weise ausgewählt ist, daß der Kopplungkoeffizient des Gitters allmählich und linear ausgehend vom dickeren zum dünneren Teil des sich verjüngenden Querschnitts hin ansteigt, wodurch die Intensität des vom Gitter emittierten Lichts eine Normalverteilung zeigt.
3. Gitterkoppier nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Gitter aus mehreren plattenähnlichen Streuemrichtungen gleicher Länge besteht, die den optischen Wellenleiter rechtwinklig zu seiner Länge schneiden.
DE69026850T 1989-02-17 1990-02-16 Gitterkoppler Expired - Fee Related DE69026850T2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3868689 1989-02-17

Publications (2)

Publication Number Publication Date
DE69026850D1 DE69026850D1 (de) 1996-06-13
DE69026850T2 true DE69026850T2 (de) 1996-10-10

Family

ID=12532178

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69026850T Expired - Fee Related DE69026850T2 (de) 1989-02-17 1990-02-16 Gitterkoppler

Country Status (3)

Country Link
US (1) US5033812B1 (de)
EP (1) EP0383627B1 (de)
DE (1) DE69026850T2 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077816A (en) * 1989-12-26 1991-12-31 United Technologies Corporation Fiber embedded grating frequency standard optical communication devices
JP2689178B2 (ja) * 1990-06-06 1997-12-10 富士写真フイルム株式会社 光導波路素子
US5142596A (en) * 1990-07-24 1992-08-25 Matsushita Electric Industrial Co., Ltd. Tapered light wave guide and wavelength converting element using the same
US5208882A (en) * 1991-11-14 1993-05-04 Eastman Kodak Company Hybrid thin film optical waveguide structure having a grating coupler and a tapered waveguide film
US5619369A (en) * 1992-07-16 1997-04-08 Matsushita Electric Industrial Co., Ltd. Diffracting device having distributed bragg reflector and wavelength changing device having optical waveguide with periodically inverted-polarization layers
GB2280968B (en) * 1993-08-12 1996-07-31 Northern Telecom Ltd Chirped optical fibre filter
US5577141A (en) * 1995-03-10 1996-11-19 Lucent Technologies Inc. Two-dimensional segmentation mode tapering for integrated optic waveguides
AUPO761497A0 (en) 1997-06-27 1997-07-24 University Of Sydney, The Narrow transmission bandpass filters utilising bragg grating assisted mode conversion
US6285813B1 (en) 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
WO2000054377A1 (en) 1999-03-08 2000-09-14 Optigain, Inc. Side-pumped fiber laser
US6788847B2 (en) * 2001-04-05 2004-09-07 Luxtera, Inc. Photonic input/output port
US6574383B1 (en) 2001-04-30 2003-06-03 Massachusetts Institute Of Technology Input light coupler using a pattern of dielectric contrast distributed in at least two dimensions
US6594422B2 (en) 2001-05-02 2003-07-15 Motorola, Inc. Opto-coupling device structure and method therefor
US6633716B2 (en) 2001-05-02 2003-10-14 Motorola, Inc. Optical device and method therefor
US8898106B2 (en) * 2001-08-01 2014-11-25 T-System, Inc. Method for entering, recording, distributing and reporting data
US8909595B2 (en) 2001-08-01 2014-12-09 T-System, Inc. Method for entering, recording, distributing and reporting data
US7082235B2 (en) * 2001-09-10 2006-07-25 California Institute Of Technology Structure and method for coupling light between dissimilar waveguides
US6917727B2 (en) * 2001-09-10 2005-07-12 California Institute Of Technology Strip loaded waveguide integrated with electronics components
WO2003023476A1 (en) * 2001-09-10 2003-03-20 California Institute Of Technology Tuning the index of a waveguide structure
JP3878012B2 (ja) * 2001-12-21 2007-02-07 日本電信電話株式会社 光導波回路
US6904198B2 (en) 2002-01-22 2005-06-07 Douglas Raymond Dykaar Device for coupling light into the fiber
US7010208B1 (en) 2002-06-24 2006-03-07 Luxtera, Inc. CMOS process silicon waveguides
US6993236B1 (en) 2002-06-24 2006-01-31 Luxtera, Inc. Polysilicon and silicon dioxide light scatterers for silicon waveguides on five layer substrates
US7260289B1 (en) 2003-02-11 2007-08-21 Luxtera, Inc. Optical waveguide grating coupler with varying scatter cross sections
US7184625B2 (en) * 2003-02-11 2007-02-27 Luxtera, Inc Optical waveguide grating coupler incorporating reflective optical elements and anti-reflection elements
US7245803B2 (en) * 2003-02-11 2007-07-17 Luxtera, Inc. Optical waveguide grating coupler
US7006732B2 (en) * 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
US7773836B2 (en) 2005-12-14 2010-08-10 Luxtera, Inc. Integrated transceiver with lightpipe coupler
US7373048B2 (en) * 2004-02-18 2008-05-13 Trustees Of Princeton University Polarization insensitive semiconductor optical amplifier
US7315679B2 (en) * 2004-06-07 2008-01-01 California Institute Of Technology Segmented waveguide structures
US7826688B1 (en) 2005-10-21 2010-11-02 Luxtera, Inc. Enhancing the sensitivity of resonant optical modulating and switching devices
CN102305959B (zh) * 2011-09-05 2013-09-11 上海交通大学 具有光栅结构的聚光系统
US8900899B2 (en) * 2012-07-02 2014-12-02 Payam Rabiei Method for production of optical waveguides and coupling and devices made from the same
US10514509B2 (en) * 2013-01-10 2019-12-24 The Regents Of The University Of Colorado, A Body Corporate Method and apparatus for optical waveguide-to-semiconductor coupling and optical vias for monolithically integrated electronic and photonic circuits
US9239432B2 (en) * 2013-03-14 2016-01-19 Micron Technology, Inc. Photonics grating coupler and method of manufacture
CA2907710C (en) 2013-03-22 2019-04-16 Canadian Microelectronics Corporation Wafer-level fiber to coupler connector
US9791622B2 (en) * 2013-09-12 2017-10-17 Oclaro Japan, Inc. Optical semiconductor resonator, optical semiconductor device, and optical module
EP3040750A1 (de) * 2014-12-29 2016-07-06 IMEC vzw Vorrichtung und Verfahren zur Durchführung objektfreier Abbildung
US10564362B2 (en) * 2014-12-29 2020-02-18 Imec Vzw Light coupler with microstructures asymmetrically distributed along longitudinal axis
EP4220256A1 (de) 2015-03-16 2023-08-02 Pacific Biosciences of California, Inc. Analytisches system mit integrierten vorrichtungen und systemen zur optischen freiraumkopplung
US10983275B2 (en) 2016-03-21 2021-04-20 The Regents Of The University Of Colorado, A Body Corporate Method and apparatus for optical waveguide-to-semiconductor coupling for integrated photonic circuits
US11385410B2 (en) * 2017-06-26 2022-07-12 The Trustees Of Columbia University In The City Of New York Millimeter scale long grating coupler
US10746925B2 (en) 2018-01-23 2020-08-18 Globalfoundries Inc. Silicon nitride grating couplers
US10746907B2 (en) 2018-04-04 2020-08-18 Globalfoundries Inc. Grating couplers with cladding layer(s)
US10585219B2 (en) 2018-06-05 2020-03-10 Globalfoundries Inc. Grating couplers with multiple configurations
US10185092B1 (en) 2018-07-11 2019-01-22 Globalfoundries Inc. Hybrid grating couplers that overlap via an interconnect structure having a metallization layer
US10551562B1 (en) 2018-07-20 2020-02-04 Honeywell International Inc. Anti-reflective and resonant waveguide grating to free-space couplers
US11169426B2 (en) * 2019-03-19 2021-11-09 Analog Devices, Inc. Liquid crystal waveguide with sub-aperture light coupling
US11378743B1 (en) * 2021-01-12 2022-07-05 Globalfoundries U.S. Inc. Optical components in the back-end-of-line stack of a photonics chip using plural cores vertically stacked
US11536908B2 (en) 2021-02-11 2022-12-27 Honeywell International Inc. Multilayer waveguide grating coupler
US11754784B2 (en) * 2021-09-08 2023-09-12 Cisco Technology, Inc. Grating coupler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007149A1 (de) * 1985-05-29 1986-12-04 Kurt Tiefenthaler Optischer sensor zum selektiven nachweis von substanzen und zum nachweis von brechzahländerungen in messubstanzen
US4696536A (en) * 1985-07-01 1987-09-29 The United States Of America As Represented By The Secretary Of The Navy Integrated optical wavelength demultiplexer
JPS6396606A (ja) * 1986-10-14 1988-04-27 Matsushita Electric Ind Co Ltd 導波路型レンズ装置
JPS6490427A (en) * 1987-09-30 1989-04-06 Sharp Kk Light wavelength converter
JP2624279B2 (ja) * 1988-01-20 1997-06-25 キヤノン株式会社 スラブ導波光出射半導体レーザー

Also Published As

Publication number Publication date
EP0383627A2 (de) 1990-08-22
US5033812B1 (en) 1993-10-12
EP0383627B1 (de) 1996-05-08
DE69026850D1 (de) 1996-06-13
EP0383627A3 (de) 1991-12-18
US5033812A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
DE69026850T2 (de) Gitterkoppler
DE69501404T2 (de) Protonenaustausch-Polarisator mit Ortsfilter zum Verbessern des Polarisationsverhältnisses
DE2750322C3 (de) Optische Vorrichtung zur Einkopplung der aus einem Halbleiterlaser austretenden Strahlung in eine optische Faser
DE69323958T2 (de) Optische Wellenleiter-Anordnung und Herstellungsmethode
DE3007180C2 (de) Optischer Verteiler
DE3877597T2 (de) Verbindung von optischen fasern.
EP0282878B1 (de) Anordnung für ein integriert-optisches Spektrometer und Verfahren zur Herstellung eines solchen Spektrometers
DE69618434T2 (de) Gekrümmter optischer Wellenleiter und Verfahren zu dessen Herstellung
DE3851254T2 (de) Optisches Element.
DE68914240T2 (de) Optischer Wellenleiter und Generator zur Erzeugung der zweiten Harmonischen.
DE3851409T2 (de) Optischer Wellenlängenkonverter.
DE60118264T2 (de) Polarisationsunabhängige optische Wellenleiterschaltung
DE68913782T2 (de) Polarisationsunabhängiger optischer Wellenleiterschalter.
DE69523701T2 (de) Optischer Wellenlangenfilter mit Seitebandenunterdrückung
DE3687920T2 (de) Elektrooptischer welleneleitermodulator.
EP0583679A1 (de) Anordnung zur Umwandlung einer optischen Welle relativ kleineren Querschnitts in eine optische Welle relativ grösseren Querschnitts
DE3923185A1 (de) Monomoden-koppler
DE2529073A1 (de) Koppelelement
DE69032140T2 (de) Verfahren zur Herstellung eines Beugungsgitters für optische Elemente
DE3443863C2 (de)
DE3885845T2 (de) Vorrichtung zur Änderung der Lichtwellenlänge.
DE69014493T2 (de) Faseroptischer Kuppler.
DE69126240T2 (de) Lichtwellenlängenwandler
DE2331497A1 (de) Anordnung zum einkoppeln von laserstrahlen in optische fasern
DE3829540C2 (de) Gebogener Wellenleiter für eine integrierte optische Schaltung

Legal Events

Date Code Title Description
8328 Change in the person/name/address of the agent

Free format text: PATENTANWAELTE MUELLER & HOFFMANN, 81667 MUENCHEN

8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee