DE4335515A1 - Opposed-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge - Google Patents

Opposed-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge

Info

Publication number
DE4335515A1
DE4335515A1 DE19934335515 DE4335515A DE4335515A1 DE 4335515 A1 DE4335515 A1 DE 4335515A1 DE 19934335515 DE19934335515 DE 19934335515 DE 4335515 A DE4335515 A DE 4335515A DE 4335515 A1 DE4335515 A1 DE 4335515A1
Authority
DE
Germany
Prior art keywords
piston
combustion engine
internal combustion
cylinder
stroke internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19934335515
Other languages
German (de)
Other versions
DE4335515C2 (en
Inventor
Otto C Pulch
Rudolf Pulch
Otto W Pulch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19934335515 priority Critical patent/DE4335515C2/en
Publication of DE4335515A1 publication Critical patent/DE4335515A1/en
Application granted granted Critical
Publication of DE4335515C2 publication Critical patent/DE4335515C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/14Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on different main shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/08Engines with oppositely-moving reciprocating working pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders

Abstract

Two-stroke engines are simple to construct and have a low weight. However, the charge cycle is difficult to monitor and measures within the engine against the production of pollutants are difficult to implement. The use of the opposed-piston principle with control times which can be changed during operation can vastly reduce the production of pollutants. In such a motor, it is possible to charge the cylinder with three strata (layers). An ignitable mixture with some of the air which has flowed in is formed above one piston by fuel injection, and a regulatable-quantity exhaust-gas residual stratum is located above the second piston. Air which serves to increase the air/fuel ratio lambda during combustion is located between said two layers. The combustion space forming between the two pistons has a geometrically minimised wall surface area for the heat dissipation. A suitable selection of materials reduces the heat dissipation in this high-temperature range still further, with the result that the thermal efficiency increases. The engine is suitable as a replacement for Otto engines, it being superior to the latter in terms of cost-effectiveness and pollutant emission.

Description

Es ist bekannt, daß Ottomotoren mit Schichtladung betrieben werden, um große Luftzahlen (λ < 1,1) zu erzielen und so durch motorische Maßnahmen den Schadstoffanteil im Abgas (HC, CO, CO₂ und NOx) zu reduzieren. Bei Vier­ taktmotoren werden auch variable Ventilsteuerzeiten für diese Aufgabe eingesetzt. Der Zweitaktmotor hat als generellen Nachteil die schwer über­ schaubare Vermischung von Abgas und Frischladung während des Ladungs­ wechsels. Regelorgane in der Abgasleitung beeinflussen vor allem über die Veränderung von Gasschwingungen die Gesamtladung des Zylinders.It is known that gasoline engines are operated with stratified charge in order to achieve large air ratios (λ <1.1) and thus reduce the amount of pollutants in the exhaust gas (HC, CO, CO₂ and NO x ) through engine measures. With four-stroke engines, variable valve timing is also used for this task. The general disadvantage of the two-stroke engine is the difficult to understand mixing of exhaust gas and fresh charge during the charge change. Control elements in the exhaust pipe influence the overall charge of the cylinder primarily by changing gas vibrations.

Der im Patentanspruch 1 angegebenen Erfindung liegt das Problem zugrunde, die Vorteile des Zweitaktmotors in Bezug auf geringe Reibungsverluste und niedrige Drehzahl (kein Leerhub wie der Viertaktmotor) mit einem gut steuer­ baren Ladungswechsel zu verbinden und damit die Schadstoff-Entstehung bei der Verbrennung zu vermindern.The invention specified in claim 1 is based on the problem the advantages of the two-stroke engine in terms of low friction losses and low speed (no idle stroke like the four-stroke engine) with a good steering connectable charge changes and thus contribute to the generation of pollutants to reduce the combustion.

Dieses Problem wird durch die in den Patentansprüchen 1 bis 8 aufgeführten Merkmale gelöst.This problem is solved by those listed in claims 1 to 8 Features resolved.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch motorische Maßnahmen die Zylinderladung in drei Schichten (A, B, C) aufgeteilt wird, deren Mengen regelbar und so aufeinander abstimmbar sind, daß in jedem Betriebszustand die bei der Verbrennung entstehenden Schadstoffe minimal sind. Erreicht wird dies mit einem Gegenkolben-Zweitaktmotor mit Gleichstrom­ spülung, bei dem eine Kurbelwelle gegenüber der anderen während des Betriebes verdrehbar ist (Δα), wodurch sich die Steuerzeiten ändern. Dies hat zur Folge, daß das Ausströmen der Abgase regelbar ist und damit auch die im Zylinder verbleibende Restmenge (A). Diese wiederum bestimmt die ein­ strömende Frischluftmenge. Bei vorgegebener optimaler Luftzahl kann die Zu­ messung von Kraftstoff so erfolgen, daß sich eine kraftstoffreiche, zündfähige Kraftstoff-Luft-Schicht (C) bildet und eine Luftschicht (B) erhalten bleibt. Damit ist über den gesamten Drehzahlbereich bei gleichbleibendem Verdichtungs­ verhältnis eine echte Qualitätsregelung für alle Lastzustände möglich. The advantages achieved with the invention are in particular that Motor measures divided the cylinder charge into three layers (A, B, C) becomes, whose quantities are adjustable and so coordinated that each Operating state, the pollutants arising during combustion are minimal are. This is achieved with a counter-piston two-stroke engine with direct current flushing, in which one crankshaft is opposite the other during the Operation is rotatable (Δα), which changes the timing. this has the consequence that the outflow of the exhaust gases is controllable and thus also in the Cylinder remaining amount (A). This in turn determines the one flowing fresh air volume. For a given optimal air ratio, the Zu Measure fuel so that there is a fuel-rich, ignitable Fuel-air layer (C) forms and an air layer (B) remains. In order to is over the entire speed range with constant compression a real quality control for all load conditions is possible.  

Werden zum Einbringen des Kraftstoffes mehrere Düsen (E) verwendet, dann wird die Zeit zur Gemischbildung entsprechend klein, und der Einspritzbeginn kann sehr spät erfolgen. Dadurch schwindet die Zeit für die stille Vorreaktion des Kraftstoffes, die für klopfende Verbrennung verantwortlich ist. Es können nieder­ oktanische, reaktionsschnelle und wasserstoffreiche Kraftstoffe, z. b. Destillat­ benzine, die zum größten Teil aus n-Hexan (C₆H₁₄) bestehen, verbrannt werden. Die Gemischbildung findet unmittelbar über dem heißen Kolbenboden mit einem Teil der Frischluftmenge statt, und das Gemisch wird vom Kolben zwangsweise zur Zündkerzenposition transportiert. Da die Spülluft in Richtung vieler kurzer Sekanten in den Zylinder eintritt, findet eine starke Rotation mit erwünschten lokalen Turbulenzen der Luftsäule im Zylinder statt, was die Gemischbildung und die Brenngeschwindigkeit verbessert. Bei reaktionsschnellen Kraftstoffen kann der Zündzeitpunkt in den oberen Totpunkt der Kolbenbewegung zurückverlegt werden, der steile Druckanstieg wandert in den Expansionshub und sorgt für ein günstiges Heizgesetz.If several nozzles (E) are used to introduce the fuel, then the time for mixture formation is correspondingly short, and the start of injection can be done very late. As a result, the time for the silent pre-reaction of the Fuel that is responsible for knocking combustion. It can get down octane, responsive and hydrogen-rich fuels, e.g. b. Distillate gasolines, which largely consist of n-hexane (C₆H₁₄), are burned. The mixture formation takes place immediately above the hot piston crown with a Part of the amount of fresh air takes place, and the mixture is forced by the piston transported to the spark plug position. Because the purge air in the direction of many short Secants entering the cylinder finds a strong rotation with desired ones local turbulence of the air column in the cylinder takes place, causing the mixture formation and the burning speed improved. With responsive fuels can the ignition timing is moved back to the top dead center of the piston movement the steep increase in pressure moves into the expansion stroke and ensures favorable heating law.

Der lange Zylinder eines Gegenkolbenmotors hat bereits (wegen der fehlenden Zylinderköpfe) eine geometrisch minimierte Wandfläche. Bei Einsatz einer isolierenden Wand (D) im Hochtemperaturbereich des Brennraumes wird die Wärmeabfuhr verringert, der thermische Wirkungsgrad steigt, der Kraftstoffver­ brauch sinkt und mit ihm die entstehende CO₂-Menge.The long cylinder of a counter-piston engine has already (because of the missing Cylinder heads) a geometrically minimized wall area. When using a insulating wall (D) in the high temperature area of the combustion chamber Reduced heat dissipation, thermal efficiency increases, fuel consumption need drops and with it the resulting amount of CO₂.

Eine vorteilhafte Ausgestaltung der Erfindung ist im Patentanspruch 5 enthalten. Die Verwendung von niederoktanischen, hochsiedenden Kraftstoffen ist ebenfalls möglich, wobei eine Vorwärmung des Kraftstoffes vorteilhaft ist für eine geringe Oberflächenspannung und damit bessere Zerstäubung durch die Düsen.An advantageous embodiment of the invention is contained in claim 5. The use of low octane, high boiling fuels is also possible, preheating the fuel is advantageous for a low Surface tension and therefore better atomization through the nozzles.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention is shown in the drawing and will described in more detail below.

Es zeigenShow it

Fig. 1 den Motor mit dem im Betrieb verstellbaren Winkel Δα, der Abgasrestschicht A, die durch die Verstellung Δα regelbar ist, der die Außenwand des Brennraumes bildenden Isolierschicht D und den am Umfang des Zylinders angeordneten Einspritzdüsen E, Fig. 1 shows the engine with the adjustable during operation angle Δα, the exhaust gas residual layer A, which can be regulated by the adjustment Δα, of the outer wall of the combustion chamber forming insulating layer D and arranged at the periphery of the cylinder injection nozzles E,

Fig. 2 den Motor bei fortgeschrittener Verdichtung mit abgeschlossenen Ein- und Auslaßkanälen, der Abgasrestschicht A und dem Einspritzvorgang durch die Einspritzdüsen E, Fig. 2 shows the motor in advanced compression with closed inlet and outlet passages, the exhaust gas residual layer A and the injection operation by the injectors E,

Fig. 3 den Motor im Zustand der fast vollendeten Verdichtung mit der Abgasrestschicht A, der zündfähigen Kraftstoff-Luft-Schicht C und der dazwischen liegenden Luftschicht B. Die eventuell die Oberteile der Kolben passierenden Bypassgase F verlassen den Zylinder in die Einlaß- und Auslaßkanäle hinein. Fig. 3 shows the engine in the state of almost complete compression with the exhaust gas residual layer A, the ignitable fuel-air layer C and the intermediate air layer B. The bypass gases F possibly passing through the upper parts of the pistons leave the cylinder into the inlet and outlet channels .

Claims (8)

1. Gegenkolben-Zweitakt-Verbrennungsmotor mit Fremdzündung, Kraftstoff- Direkteinspritzung in den Zylinder und Schichtladung, dadurch gekennzeichnet, daß die Zylinderladung aus drei Schichten besteht, einer kraftstoffreichen, zündfähigen Schicht, einer Luftschicht und einer Abgasrestschicht, deren Menge durch Veränderung der Steuerzeiten auf der Auslaßseite im Betrieb geregelt wird.1. Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge, characterized in that the cylinder charge consists of three layers, a fuel-rich, ignitable layer, an air layer and an exhaust gas layer, the amount by changing the timing on the Exhaust side is regulated in operation. 2. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Menge der Abgasrestschicht zur Mini­ mierung der Schadstoffe geregelt wird.2. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the amount of the residual gas layer to the mini regulation of the pollutants is regulated. 3. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Abgasrestmenge zusätzlich zur Ver­ änderung des Drehmomentes geregelt wird.3. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the amount of exhaust gas in addition to Ver change in torque is regulated. 4. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Abgasrestmenge, die als kolbennaher Teil des Kraftstoff-Luft-Gemisches unter Luftmangel verbrennt, während des Ladungswechsels und des Verdichtungshubes mit der Ladeluft in Ver­ bindung steht und einer Nachoxidation unterliegt.4. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the amount of exhaust gas, which as the piston near part of the fuel-air mixture burns with lack of air, during the Charge change and the compression stroke with the charge air in ver bond stands and is subject to post-oxidation. 5. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Kraftstoffeinspritzung über mehrere, am Umfang des Zylinders im Kolbenhub-Bereich verteilte Düsen erfolgt, so daß kurze Einspritzzeiten eine zündfähige Kraftstoff-Luft-Gemisch-Schicht ermöglichen und niederoktanische, reaktionsschnelle, wasserstoffreiche Kraftstoffe (z. B. n-Hexan C₆H₁₄) ohne Klopferscheinungen und mit geringem Schadstoffanteil verbrannt werden können.5. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the fuel injection over several, at Circumference of the cylinder in the piston stroke area distributed nozzles, so that short injection times an ignitable fuel-air mixture layer enable and low octane, responsive, hydrogen rich Fuels (e.g. n-hexane C₆H₁₄) without knocking and with little Contaminant content can be burned. 6. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Zylinderwand im Brennraum aus einer kreisringförmigen Scheibe mit niedriger Wärmeleitzahl besteht, damit der thermische Wirkungsgrad erhöht wird und der Brennstoffverbrauch sowie die CO₂-Bildung gesenkt wird. 6. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the cylinder wall in the combustion chamber from a circular disc with low thermal conductivity, so that thermal efficiency is increased and the fuel consumption as well CO₂ formation is reduced.   7. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Bildung einer zündfähigen Kraftstoff-Luft- Schicht unmittelbar über dem heißen Kolbenboden erfolgt, so daß die Verdampfungsbedingungen des Kraftstoffes erfüllt werden und die Gemisch- Schicht durch die Form des Kolbenbodens und die Kolbenbewegung zwangsweise an die Zündkerzenposition fließt.7. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that the formation of an ignitable fuel-air Layer takes place immediately above the hot piston crown, so that the Evaporation conditions of the fuel are met and the mixture Layer due to the shape of the piston crown and the piston movement forcibly flows to the spark plug position. 8. Gegenkolben-Zweitakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß keine Bypassgase aus der Verbrennung in die Kurbelgehäuse gelangen, da in dem Spalt zwischen Kolben und Zylinder vor dem Kolbenende ein Druckabbau in die jeweils nahe beieinander liegenden, am Umfang des Zylinders gleichmäßig verteilten Ansaug- und Auslaßkanäle erfolgt.8. counter-piston two-stroke internal combustion engine according to claim 1, characterized in that no bypass gases from the combustion in the Crankcase arrive because in the gap between the piston and cylinder a pressure decrease in the piston ends in the respectively close to each other, Suction and exhaust channels evenly distributed around the circumference of the cylinder he follows.
DE19934335515 1993-10-19 1993-10-19 Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge Expired - Fee Related DE4335515C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934335515 DE4335515C2 (en) 1993-10-19 1993-10-19 Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934335515 DE4335515C2 (en) 1993-10-19 1993-10-19 Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge

Publications (2)

Publication Number Publication Date
DE4335515A1 true DE4335515A1 (en) 1995-04-20
DE4335515C2 DE4335515C2 (en) 1996-07-04

Family

ID=6500442

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934335515 Expired - Fee Related DE4335515C2 (en) 1993-10-19 1993-10-19 Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge

Country Status (1)

Country Link
DE (1) DE4335515C2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516142A1 (en) * 1995-05-03 1996-11-07 Werner Kuttruf Two=stroke engine
DE19651175A1 (en) * 1996-12-10 1998-06-25 Otto C Pulch Counter=piston, two=stroke, internal combustion engine
WO1998049437A1 (en) * 1997-04-25 1998-11-05 Sinus Holding As Arrangement in a two cycle combustion engine with internal combustion
US7004120B2 (en) 2003-05-09 2006-02-28 Warren James C Opposed piston engine
CN101201010B (en) * 2007-10-17 2011-01-19 李青荣 Two-stroke combustion engine capable of evacuating exhaust gas
CN102230421A (en) * 2011-05-25 2011-11-02 中国兵器工业集团第七○研究所 Air inlet device with two air inlet channels for two-stroke engine
WO2013062921A1 (en) * 2011-10-27 2013-05-02 Achates Power, Inc. Fuel injection strategies in opposed-piston engines with multiple fuel injectors
US8800528B2 (en) 2010-04-27 2014-08-12 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US8820294B2 (en) 2010-08-16 2014-09-02 Achates Power, Inc. Fuel injection spray patterns for opposed-piston engines
US9211797B2 (en) 2013-11-07 2015-12-15 Achates Power, Inc. Combustion chamber construction with dual mixing regions for opposed-piston engines
US9309807B2 (en) 2011-05-18 2016-04-12 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US9512779B2 (en) 2010-04-27 2016-12-06 Achates Power, Inc. Swirl-conserving combustion chamber construction for opposed-piston engines
WO2017078998A1 (en) * 2015-11-04 2017-05-11 Achates Power, Inc. Compact ported cylinder construction for an opposed-piston engine
US9771861B2 (en) 2014-09-09 2017-09-26 Avl Powertrain Engineering, Inc. Opposed piston two-stroke engine with thermal barrier
US10180115B2 (en) 2010-04-27 2019-01-15 Achates Power, Inc. Piston crown bowls defining combustion chamber constructions in opposed-piston engines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016109055A1 (en) * 2016-05-17 2017-11-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free piston device and method for operating a free piston device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE420011C (en) * 1923-07-15 1925-10-13 Jakob Usinger Internal combustion engine with opposing pistons
DE906633C (en) * 1951-12-23 1954-03-15 Helmut Werner Boensch Mixture intake double piston two-stroke engine with air displacement
US2952250A (en) * 1957-10-10 1960-09-13 Citroen Sa Andre Fuel injection system for internal combustion engines
DE3248918T1 (en) * 1981-08-06 1983-10-06 Research Corp COMBUSTION ENGINE WITH EXHAUST GAS RECIRCULATION AND METHOD FOR OPERATING THE SAME
SU1139870A1 (en) * 1983-06-24 1985-02-15 Предприятие П/Я В-8748 Two-stroke combustion engine with compression ignition
SU1216394A1 (en) * 1984-02-29 1986-03-07 Предприятие П/Я В-2988 Internal combustion engine (its versions)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE420011C (en) * 1923-07-15 1925-10-13 Jakob Usinger Internal combustion engine with opposing pistons
DE906633C (en) * 1951-12-23 1954-03-15 Helmut Werner Boensch Mixture intake double piston two-stroke engine with air displacement
US2952250A (en) * 1957-10-10 1960-09-13 Citroen Sa Andre Fuel injection system for internal combustion engines
DE3248918T1 (en) * 1981-08-06 1983-10-06 Research Corp COMBUSTION ENGINE WITH EXHAUST GAS RECIRCULATION AND METHOD FOR OPERATING THE SAME
SU1139870A1 (en) * 1983-06-24 1985-02-15 Предприятие П/Я В-8748 Two-stroke combustion engine with compression ignition
SU1216394A1 (en) * 1984-02-29 1986-03-07 Предприятие П/Я В-2988 Internal combustion engine (its versions)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516142A1 (en) * 1995-05-03 1996-11-07 Werner Kuttruf Two=stroke engine
DE19651175A1 (en) * 1996-12-10 1998-06-25 Otto C Pulch Counter=piston, two=stroke, internal combustion engine
DE19651175C2 (en) * 1996-12-10 1999-12-30 Otto C Pulch Counter-piston two-stroke internal combustion engine with direct fuel injection into the cylinder and adjustable rotation and turbulence of the charge air
WO1998049437A1 (en) * 1997-04-25 1998-11-05 Sinus Holding As Arrangement in a two cycle combustion engine with internal combustion
US7004120B2 (en) 2003-05-09 2006-02-28 Warren James C Opposed piston engine
CN101201010B (en) * 2007-10-17 2011-01-19 李青荣 Two-stroke combustion engine capable of evacuating exhaust gas
US8800528B2 (en) 2010-04-27 2014-08-12 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US9512779B2 (en) 2010-04-27 2016-12-06 Achates Power, Inc. Swirl-conserving combustion chamber construction for opposed-piston engines
US9593627B2 (en) 2010-04-27 2017-03-14 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US10180115B2 (en) 2010-04-27 2019-01-15 Achates Power, Inc. Piston crown bowls defining combustion chamber constructions in opposed-piston engines
US8820294B2 (en) 2010-08-16 2014-09-02 Achates Power, Inc. Fuel injection spray patterns for opposed-piston engines
US9309807B2 (en) 2011-05-18 2016-04-12 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
CN102230421A (en) * 2011-05-25 2011-11-02 中国兵器工业集团第七○研究所 Air inlet device with two air inlet channels for two-stroke engine
WO2013062921A1 (en) * 2011-10-27 2013-05-02 Achates Power, Inc. Fuel injection strategies in opposed-piston engines with multiple fuel injectors
US10066545B2 (en) 2011-10-27 2018-09-04 Achates Power, Inc. Fuel injection strategies in opposed-piston engines with multiple fuel injectors
US10458327B2 (en) 2011-10-27 2019-10-29 Achates Power, Inc. Fuel injection strategies in opposed-piston engines with multiple fuel injectors
US9211797B2 (en) 2013-11-07 2015-12-15 Achates Power, Inc. Combustion chamber construction with dual mixing regions for opposed-piston engines
US9771861B2 (en) 2014-09-09 2017-09-26 Avl Powertrain Engineering, Inc. Opposed piston two-stroke engine with thermal barrier
US10422272B2 (en) 2015-11-04 2019-09-24 Achates Power, Inc. Compact ported cylinder construction for an opposed-piston engine
WO2017078998A1 (en) * 2015-11-04 2017-05-11 Achates Power, Inc. Compact ported cylinder construction for an opposed-piston engine

Also Published As

Publication number Publication date
DE4335515C2 (en) 1996-07-04

Similar Documents

Publication Publication Date Title
DE4335515C2 (en) Counter-piston two-stroke internal combustion engine with spark ignition, direct fuel injection into the cylinder and stratified charge
DE2921997C2 (en)
DE3400306C1 (en) Method for operating an externally ignited internal combustion engine of motor vehicles
DE3401362C2 (en)
DE2510005A1 (en) COMBUSTION ENGINE VALVE
DE2011560A1 (en) Piston engine with combustion at constant pressure
DE19843567C2 (en) Working method of an internal combustion engine and internal combustion engine
DE2607561A1 (en) MIXED COMPRESSING COMBUSTION MACHINE, IN PARTICULAR FOUR-STROKE MACHINE
DE2703316C3 (en) Combustion engine with compression and power cylinder
EP1075591B1 (en) Method for operating a four-stroke internal combustion engine
DE4109712A1 (en) INTERNAL COMBUSTION ENGINE WITH DOUBLE COMBUSTION CHAMBERS
DE3222081C2 (en) Ignition combustion process of a two-stroke internal combustion engine and two-stroke internal combustion engine
DE2628155A1 (en) IC engine with compression and combustion cylinders - has cylinder arranged side by side with common crank and heat insulation for combustion cylinder
EP0999357A3 (en) Method of operating a spark ignited fourstroke engine with indirect injection
DE2307284C3 (en) Four-stroke internal combustion engine with spark ignition with a pair of cylinders connected via a passage
DE2235004A1 (en) PROCESS FOR IMPROVING PERFORMANCE AND CONSUMPTION IN FREE-SUCTION, MIXED COMPRESSING, EXTERNAL IGNITION MACHINES WITH PARTICULARLY INTENSIVE EXHAUST GAS DETOXIFICATION THROUGH THE USE OF A EXTERNAL GENERATOR WITH A FUEL ENGINE
EP0972917A1 (en) Four stroke engine and method for operating such engine
DE337966C (en) Process for the utilization of heavy fuels in internal combustion engines
DE4120167C2 (en) Process for converting thermal energy into mechanical kinetic energy
DE10120486B4 (en) Method for operating a spark-ignited direct-injection internal combustion engine
DE4134404A1 (en) Heat to mechanical energy conversion engine - uses heat, to heat working gas in working cylinder chamber, without gas being combusted
DE539660C (en) Mixture-compressing internal combustion engine with self-ignition
DE19609630A1 (en) Reciprocating internal combustion piston engine
DE2337509A1 (en) Four stroke I.C. engine - has double piston and cylinder transfer channel
DE4304658A1 (en) Reciprocating piston internal combustion engine with applied ignition and with combustible mixture formation in a mixing chamber offset from the working chamber

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licenses declared
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee
8370 Indication of lapse of patent is to be deleted
8320 Willingness to grant licenses declared (paragraph 23)
8339 Ceased/non-payment of the annual fee