DE4230087A1 - Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring path - Google Patents
Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring pathInfo
- Publication number
- DE4230087A1 DE4230087A1 DE19924230087 DE4230087A DE4230087A1 DE 4230087 A1 DE4230087 A1 DE 4230087A1 DE 19924230087 DE19924230087 DE 19924230087 DE 4230087 A DE4230087 A DE 4230087A DE 4230087 A1 DE4230087 A1 DE 4230087A1
- Authority
- DE
- Germany
- Prior art keywords
- optical
- etched
- integrated
- tongues
- micromechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 239000012528 membrane Substances 0.000 title claims abstract description 8
- 239000000126 substance Substances 0.000 title claims description 8
- 239000013307 optical fiber Substances 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract 3
- 210000002105 tongue Anatomy 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims description 2
- 239000012876 carrier material Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 3
- 238000003491 array Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 7
- 238000007667 floating Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000033310 detection of chemical stimulus Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/688—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
- G01F1/6882—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element making use of temperature dependence of acoustic properties, e.g. propagation speed of surface acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/093—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7779—Measurement method of reaction-produced change in sensor interferometric
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
- G01N2201/0873—Using optically integrated constructions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3616—Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
- G02B6/3624—Fibre head, e.g. fibre probe termination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3648—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
- G02B6/3652—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Fluid Mechanics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Die Sensoren bilden als Kombination eines oder mehrerer integrierter optisch/mikromechanischer Bauelemente ein sensitives Element zur Erfassung von physikalisch/chemischer Größen.The sensors form a combination of one or more integrated optical / micromechanical components a sensitive element for the detection of physical / chemical quantities.
Die Vorrichtungen bestehen aus wenigstens einem Lichtwellenleiter bzw. optischen Bauelementen, integriert auf dünnen mikromechanischen Strukturen in Silizium. Die auf diese Weise entstandenen Sensoren sind kompatibel mit der CMOS-Technologie und können auch als Sensorarrays erweitert werden.The devices consist of at least one optical waveguide or optical Components integrated on thin micromechanical structures in silicon. The on sensors created in this way are compatible with CMOS technology and can also be expanded as sensor arrays.
Desweiteren sind die Sensoren dadurch gekennzeichnet, daß infolge der hochempfindlichen freigeätzten Mikrostrukturen in Silizium und störfesten integrierten Lichtwellenleiter Meßgrößen mit hoher Genauigkeit vorort ausgewertet und diese gegebenenfalls mit Hilfe der Fasertechnik über lange Strecken amplitudenunabhängig und störungsfrei übertragen werden. Furthermore, the sensors are characterized in that due to the highly sensitive etched microstructures in silicon and interference-free integrated optical fibers Measured variables are evaluated with high accuracy on site and, if necessary, with the help fiber technology over long distances regardless of amplitude and interference-free become.
Mikromechanische Strukturen als hochempfindliche Meßwertaufnehmer werden zur Ermittlung physikalisch/chemischer Größen sowohl im stationären (durch Messen der dauernden Verformung der Strukturen), als auch im dynamischen Zustand (durch Messen der Änderungen der Resonanzfrequenz von belasteten schwingenden Elementen) verwendet.Micromechanical structures as highly sensitive sensors are used Determination of physical / chemical quantities both in stationary (by measuring the permanent deformation of the structures), as well as in the dynamic state (by measuring changes in the resonance frequency of loaded vibrating elements).
Für verschiedene Meßverfahren sind insbesondere hochempfindliche Mikroresonatoren in Form von freischwebenden Membranen, Zungen und Mikrobrücken entwickelt worden. Bei derartigen Sensoren erfolgt die Detektion der zu messenden Größen kapazitiv, piezoelektrisch, piezoresistiv oder durch integrierte elektronische Bauelemente.Highly sensitive microresonators are in particular suitable for various measuring methods Form of free-floating membranes, tongues and micro bridges have been developed. At Such sensors detect the quantities to be measured capacitively, piezoelectric, piezoresistive or through integrated electronic components.
Das zur Zeit bekannte optische Auslesen von mikromechanischen Resonatoren erfolgt mittels einer von außen zugeführten Faser (Opt. Lett. 12, 129-131, 1987 und Sensors and Actuators A23, 1128-1131, 1990). Solche Vorrichtungen weisen den Nachteil auf, daß für jeden Sensor eine Lichtfaser justiert und in der vorgegebenen Stelle fixiert werden muß. Zur Auswertung des optischen Signals wird weiterhin eine hybride optische Schaltung nötig sein, was den Aufbau noch komplizierter und unwirtschaftlicher macht.The currently known optical readout of micromechanical resonators takes place using an externally supplied fiber (Opt. Lett. 12, 129-131, 1987 and Sensors and Actuators A23, 1128-1131, 1990). Such devices have the disadvantage that for each sensor has an optical fiber adjusted and fixed in the specified position. A hybrid optical circuit is still required to evaluate the optical signal be what makes the structure even more complicated and uneconomical.
Als weitere Meßsysteme im Sinne von optischen/mechanischen Sensoren werden auch optische Fasern eingesetzt. Varianten dieser Technik sind beispielsweise die faser-optischen Vorrichtungen zur Messung von Teilchen-Konzentration und -Größe (deutsches Patent, 1986, DE 36 09 957 A1), von Strömung, Schall und Beschleunigung (deutsches Patent, 1990, DE 32 31 383 C2), und von Durchfluß (deutsches Patent, 1990, DE 40 18 844 A1). Der Aufbau solcher Meßvorrichtungen erfordert komplizierte Justiereinheiten. Außerdem ist eine dynamische Messung in Form einer schwingenden Faser nicht bekannt, da die vom Hersteller vorgegebene Form der Faser nicht vorteilhaft ist und insofern die optischen Fasern als Schwingresonatoren keine Bedeutung erlangt haben.Other measuring systems in the sense of optical / mechanical sensors are also optical fibers used. Variants of this technique include fiber optics Devices for measuring particle concentration and size (German patent, 1986, DE 36 09 957 A1), of flow, sound and acceleration (German patent, 1990, DE 32 31 383 C2), and of flow (German patent, 1990, DE 40 18 844 A1). The structure such measuring devices require complicated adjustment units. Besides, one is dynamic measurement in the form of a vibrating fiber is not known, because of the Manufacturer given shape of the fiber is not advantageous and in this respect the optical Fibers have no significance as resonating resonators.
Integrierte optische Wellenleiter auf schwebenden mikromechanischen Bauelementen als Lichtablenker (Deflector) in US-Patent No. 4,508,038, 1989, beschrieben. Für Sensoranwendungen wurde ein ähnlicher Aufbau in british Patent No. GB 2146-120a auch dargestellt, dieser hat den Nachteil eines diskreten Aufbaus mit Justierproblemen. Die von S. Wu. u. H. J. Frankena in Integrated Photonics researsch, New Orleans 1992, S. 158-159, auch für Sensoranwendungen vorgeschlagene Strukturen in Form von Zungen und Brücken haben den Nachteil, daß das Licht über einen Film geführt wird, so daß die gesamte Breite des mikromechanischen Bauelementes Licht führt. Eine Entkopplung in Geometriewahl zwischen dem optischen und mikromechanischen Bauelement ist daher nicht gegeben. Auch eine Erweiterung zur optischen Schaltungen ist nur mit Streifenwellenleitern möglich. Integrated optical waveguides on floating micromechanical components as Light deflector in U.S. Patent No. 4,508,038, 1989. For Sensor applications have a similar design in British Patent No. GB 2146-120a too shown, this has the disadvantage of a discrete structure with adjustment problems. The of S. Wu. u. H. J. Frankena in Integrated Photonics researsch, New Orleans 1992, pp. 158-159, structures also proposed for sensor applications in the form of tongues and bridges have the disadvantage that the light is guided over a film, so that the entire width of the leads micromechanical component light. A decoupling in geometry selection there is therefore no relationship between the optical and micromechanical component. Also an extension to optical circuits is only possible with strip waveguides.
Bei den hier vorgeschlagenen Meßvorrichtungen handelt es sich um neue Sensorkonzepte, die auf eine Integration von Streifenwelleitern bzw. -Schaltungen auf mikromechanischen Membranen zur Bildung eines integrierten Meßelementes, beruhen. Diese Konfiguration bietet mehrere Vorteile in der Sensortechnik. Durch eine frei wählbare Dimensionierung der mikromechanischen Elemente lassen sich typische Resonanzfrequenzen von 100 KHz und mehr einstellen, solche Arbeitsfrequenzen ermöglichen eine hohe Meßstabilität selbst bei mechanischen Erschütterungen. Neben Gerade Streifen Wellenleitern werden auch andere optische Schaltungen wie Y-Verzweigungen, Interferometer und Optische Resonatoren ausgenutzt.The measuring devices proposed here are new sensor concepts, the integration of strip waveguides or circuits on micromechanical Membranes to form an integrated measuring element. This configuration offers several advantages in sensor technology. Thanks to a freely selectable dimensioning of the micromechanical elements, typical resonance frequencies of 100 kHz and set more, such working frequencies enable high measurement stability itself in the event of mechanical shocks. In addition to straight stripes, waveguides are also other optical circuits such as Y-branches, interferometers and optical ones Exploited resonators.
Die integrierten optisch/mikromechanischen Sensoren beinhalten eine oder mehrere geeignete Lichtquellen, optische Komponenten zur Bearbeitung und Auswertung der Lichtsignale und mikromechanische Bauteile zur Erfassung der Meßgrößen. Die Meßsignale sind frequenzcodiert und können amplitudenunabhängig entweder mit Hilfe integrierter CMOS-Schaltungen ausgewertet werden oder über lange Strecken mit optischen Fasern auch in elektrisch unzugängliche Gebiete übertragen werden.The integrated optical / micromechanical sensors contain one or more suitable light sources, optical components for processing and evaluating the Light signals and micromechanical components for recording the measured variables. The measurement signals are frequency-coded and can be either independent of the amplitude with the help of integrated CMOS circuits are evaluated or over long distances with optical fibers can also be transferred to electrically inaccessible areas.
Als mikromechanische Strukturen gelten alle auf der Basis der Siliziumtechnologie angefertigten Mikrostrukturen wie Zungen, Paddeln, Brücken, freischwebenden Membrane. Hierzu gehören auch tiefgeätzte Gruben, wodurch eine kurze Unterbrechung des Lichtwellenleiters erfolgt, aber dennoch eine Lichtüberkopplung von einem Teil zum anderen ermöglicht wird. Insbesondere für die Partikelmeßvorrichtung bilden diese eine grundlegende Anordnung. Als integrierte optische Wellenleiter und Strukturen sind alle optisch transparenten Materialien zu bezeichnen, die eine Lichtführung ermöglichen.Micromechanical structures are all based on silicon technology manufactured microstructures such as tongues, paddles, bridges, free-floating membrane. This also includes deep-etched pits, which means that the Optical fiber takes place, but nevertheless a light coupling from one part to the other others. In particular for the particle measuring device, these form one basic arrangement. As integrated optical waveguides and structures are all to designate optically transparent materials that allow light to be directed.
Die Technologie für die Integration von Streifen Lichtwellenleitern auf mikromechanischen freischwebenden Elementen (OPTO 7, 1990, S. 135-139, Micro System Technologies, 1991, S. 482-485, Sensors and Actuators A29, 1991, S. 219-223) wurde hier als Stand der Technik zugrunde gelegt.The technology for the integration of strips of optical fibers on micromechanical free-floating elements (OPTO 7, 1990, pp. 135-139, Micro System Technologies, 1991, Pp. 482-485, Sensors and Actuators A29, 1991, pp. 219-223) was used here as the status of Technology as a basis.
Bei der Meßvorrichtung Nr. I (Bild 1) handelt es sich um einen Partikel-Detektor, wobei dieser in minimaler Ausführung aus folgenden Teilen besteht: 1 Lichtquelle, 1 integrierter Streifenwellenleiter, 1 geätzte Nut, 1 Strömungs-Einlaß, 1 Lichtempfänger. The measuring device no. I ( Fig. 1) is a particle detector, whereby the minimal version consists of the following parts: 1 light source, 1 integrated strip waveguide, 1 etched groove, 1 flow inlet, 1 light receiver.
Die optischen Lichtwellenleiter (A) können in Form von Streifen mit monomode- bzw. multimode Verhalten oder Y-Verzweigung. Eine tiefgeätzte Nut (B) dient zur Unterbrechung des Lichtwellenleiters in zwei oder mehrere Teile. Das Licht soll von Teil (A1) im Teil (A2) des Lichtwellenleiters überkoppelt werden. Eine von der Rückseite geätzte Grube (C) soll den Durchlaß des zu analysierenden strömenden Mediums ermöglichen. Eine Oxid- oder Siliziummembrane mit durchgeätzten Löchern (D) zur Bestimmung der Mindest-Größe der zu messenden Partikeln und zum Filtern des strömenden Mediums.The optical fibers (A) can be in the form of strips with monomode or multimode behavior or Y-branching. A deep-etched groove (B) is used for Interruption of the optical fiber in two or more parts. The light should be from part (A1) are coupled in part (A2) of the optical waveguide. One from the back etched pit (C) is intended to allow the passage of the flowing medium to be analyzed enable. An oxide or silicon membrane with etched holes (D) for Determination of the minimum size of the particles to be measured and for filtering the flowing medium.
Eine horizontal erweiterte Version zeigt Bild 2 mit einer integrierten optischen Y- Verzweigung mit unterschiedlichen Schlitzgrößen.A horizontally expanded version is shown in Figure 2 with an integrated optical Y-branch with different slot sizes.
Eine vertikal erweiterte Version zeigt Bild 3 mit aufgestapelten und einzeln zusammenschraubbaren Filtern und Partikel-Detektoren. Figure 3 shows a vertically expanded version with stacked filters and particle detectors that can be screwed together.
Eine modifizierte Version zeigt Bild 4 zur Detektion von chemischen Stoffen durch Aufbringen eines geeigneten chemischen Indikators in die eingeätzte Nut.A modified version is shown in Figure 4 for the detection of chemical substances by applying a suitable chemical indicator in the etched groove.
Das Laserlicht wird im Ruhezustand von Wellenleiter (A1) im Wellenleiter (A2) ständig überkoppelt, beim Strömen einer Partikel durch die Nut 2 wird das Licht für eine kurze Dauer ausgeschaltet. Als Meßwerte ergeben sich quasidigitale Lichtpixel, die amplitudenunabhängig ausgewertet werden.The laser light is constantly in the idle state of the waveguide (A1) in the waveguide (A2) coupled, when a particle flows through the groove 2, the light for a short Duration switched off. The measured values are quasi-digital light pixels, which be evaluated regardless of amplitude.
Bei der Meßvorrichtung Nr. II (Bild 5) handelt es sich um einen integrierten optischen/mikromechanischen Resonator mit folgender minimaler Ausführung: 1 freigeätzte Zunge (C), 1 integrierter optischer Lichtwellenleiter (B) auf der Zunge, 1 tiefgeätzte Grube (D) in Silizium, 1 Unterbrechung des Lichtwellenleiters in zwei Teile (B) und (E) mit Gewährleistung einer Lichtüberkopplung.The measuring device no. II ( Figure 5) is an integrated optical / micromechanical resonator with the following minimal design: 1 etched-out tongue (C), 1 integrated optical fiber (B) on the tongue, 1 deep-etched pit (D) in Silicon, 1 interruption of the optical fiber in two parts (B) and (E) with ensuring light coupling.
In Bild 5 liegt die Anwendung vor als mechanischer Licht-Mikroschalter, -Modulator, optischer Analog/Digital Wandler und/oder durch eine geeignete Energiequelle als Mikroresonator angeregt wird.In Figure 5, the application is in the form of a mechanical light microswitch, modulator, optical analog / digital converter and / or is excited as a microresonator by a suitable energy source.
In Bild 6 liegt ein mikromechanischer/optischer Multiresonator vor mit gestaffelten Resonanzfrequenzen. Dies kann als optischer A/D-Wandler für Übertragung von mehreren Daten bei verschiedenen Trägerfrequenzen dienen. Eine Erweiterung des Multiresonators als Sensorarrays kann zusätzlich zu der Frequenzgewichtung auch durch eine Verjüngerung, Verbreiterung bzw. Erschwerung der Zungen erfolgen, die eine Anpassung auf verschiedenen chemisch/physikalischen Größen und damit auch eine selektive differentiale Messung ermöglichen. Figure 6 shows a micromechanical / optical multi-resonator with staggered resonance frequencies. This can serve as an optical A / D converter for the transmission of multiple data at different carrier frequencies. In addition to the frequency weighting, the multiresonator can also be expanded as a sensor array by tapering, widening or aggravating the tongues, which enable adaptation to different chemical / physical variables and thus also a selective differential measurement.
In Bild 7a liegt die Anwendung vor als Fabry-Perot-Resonator mit zwei verspiegelten Enden der freigeätzten Zungen. Die Licht Einspeisung des Fabry-Perot-Resonators kann direkt oder über Richtkoppler bzw. durch ein Streifenwellenleiter in Form von Taper erfolgen. Eine erweiterte Version mit einer Temperaturkompensation liegt in der Abb. 7b vor. Figure 7a shows the application as a Fabry-Perot resonator with two mirrored ends of the etched tongues. The light feed of the Fabry-Perot resonator can take place directly or via directional couplers or through a strip waveguide in the form of a taper. Fig. 7b shows an extended version with temperature compensation.
In Bild 8a liegt die Anwendung als Flußsensor vor, die Zunge wird in Flußrichtung des zu messenden Mediums angeordnet. Die erweiterte Version ergibt sich in der Abb. 8b, indem zwei benachbarte Zungen mit Heizquellen versehen werden. Eine Mediumströmung lateral zu der Zungen verursacht eine Wärmzirkulation die sich als Temperaturdifferenz auf die Zungenresonanz auswirkt. Die Meßanordnung liefert dadurch eine hohe Auflösung und arbeitet Offset unabhängig. Figure 8a shows the application as a flow sensor, the tongue is arranged in the flow direction of the medium to be measured. The extended version is shown in Fig. 8b, in that two adjacent tongues are provided with heating sources. A medium flow lateral to the tongues causes a heat circulation which affects the tongue resonance as a temperature difference. The measuring arrangement provides a high resolution and works offset independently.
In Bild 9 liegt die Anwendung vor als Mikroresonator mit einer Licht-Reflektivität unter Ausnutzung von mit Spiegelqualität freigeätzten Silizium-Kristallebenen. Figure 9 shows the application as a microresonator with a light reflectivity using silicon crystal planes etched free with mirror quality.
In Bild 10 liegt eine Zusammensetzung der Meßvorrichtung I vor, als Partikelmesser kombiniert mit der Meßvorrichtung II mit integriertem Flußsensor und Temperaturkompensator.In Figure 10 there is a composition of the measuring device I, as a particle meter combined with the measuring device II with an integrated flow sensor and temperature compensator.
Bei der Meßvorrichtung Nr. III (Bild 11) handelt es sich um optisches Auslesen eines mikromechanischen Brückenresonators mit folgender Mindest-Ausführung: 1 Mach- Zehnder-Interferometer (B) mit einem freigeätzten Arm in Form eines Brückenresonators (D), 1 Elektrode zur Anregung des Resonators (A), 1 tiefgeätzte Grube (C).The measuring device no. III ( Fig. 11) is an optical readout of a micromechanical bridge resonator with the following minimum design: 1 Mach-Zehnder interferometer (B) with an etched arm in the form of a bridge resonator (D), 1 electrode for excitation of the resonator (A), 1 deep-etched pit (C).
Der Brückenresonator wird zu der Resonanz angeregt. Infolge eines optischen/mechanischen Effektes verursachen die Schwingungen eine Phasendrehung des optischen Signals am Ausgang des Mach-Zehnder-Interferometers. Die Frequenz der Phasendrehung ist exakt gleich der Resonanzschwingung der Brücke und gibt sehr genau jede Resonanzänderung wieder, die als Maß für die zu messende Größe gilt.The bridge resonator is excited to resonate. As a result of one optical / mechanical effect, the vibrations cause a phase shift of the optical signal at the output of the Mach-Zehnder interferometer. The frequency of the Phase rotation is exactly the same as the resonance vibration of the bridge and gives very precisely every resonance change again, which is a measure of the quantity to be measured.
In Bild 12 liegt die Anwendung vor als Drucksensor mit mehreren Resonatoren, die an einem Arm des Mach-Zehnder-Interferometers angeordnet sind. Figure 12 shows the application as a pressure sensor with several resonators arranged on one arm of the Mach-Zehnder interferometer.
In Bild 13 liegt die Anwendung vor als Beschleunigungssensor mit einem oder mehreren Resonatoren auf jeder Seite der Masse (A). Figure 13 shows the application as an acceleration sensor with one or more resonators on each side of the mass (A).
In Bild 14 liegt die Anwendung vor, die die Struktur der Bilder 12 und 13 miteinander kombiniert, mit der Möglichkeit, die Strukturen mit einer integrierten CMOS-Schaltung auszuwerten. Figure 14 shows the application that combines the structure of Figures 12 and 13 with each other, with the possibility of evaluating the structures with an integrated CMOS circuit.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924230087 DE4230087A1 (en) | 1992-09-09 | 1992-09-09 | Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring path |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924230087 DE4230087A1 (en) | 1992-09-09 | 1992-09-09 | Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring path |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4230087A1 true DE4230087A1 (en) | 1994-03-10 |
Family
ID=6467557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19924230087 Ceased DE4230087A1 (en) | 1992-09-09 | 1992-09-09 | Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring path |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4230087A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0806687A1 (en) * | 1996-05-10 | 1997-11-12 | Commissariat A L'energie Atomique | Optomechanical device and applications to optical integrated sensors |
EP0692723A3 (en) * | 1994-07-08 | 1998-01-07 | ANT Nachrichtentechnik GmbH | Device for fixing micro-optical components |
WO2002046748A2 (en) * | 2000-12-06 | 2002-06-13 | Hrl Laboratories, Llc | Compact sensor using microcavity structures |
GB2466929A (en) * | 2009-01-09 | 2010-07-14 | Smart Fibres Ltd | Pressure sensor device comprising flexible diaphragm with integral optical sensor |
WO2012011052A1 (en) | 2010-07-22 | 2012-01-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Particle detector and method for manufacturing such a detector |
CN104713632A (en) * | 2013-12-01 | 2015-06-17 | 伍茂仁 | Flexible optical sensor module |
GB2558963A (en) * | 2017-01-18 | 2018-07-25 | Cirrus Logic Int Semiconductor Ltd | Flexible membrane |
FR3062209A1 (en) * | 2017-01-25 | 2018-07-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | OPTICAL DETECTOR OF PARTICLES |
CN108663113A (en) * | 2018-06-22 | 2018-10-16 | 西安交通大学 | A kind of optic fibre cantilev vibrating sensor and preparation method thereof |
US10317341B2 (en) | 2015-02-02 | 2019-06-11 | Lyten, Inc. | Mechanical deformation sensor based on plasmonic nanoparticles |
CN113140881A (en) * | 2021-04-07 | 2021-07-20 | 博微太赫兹信息科技有限公司 | 45-degree-rotation-angle millimeter wave differential line-to-SIW (substrate integrated waveguide) structure |
RU2795392C1 (en) * | 2022-10-10 | 2023-05-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Directional coupler in integrated optical circuit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0092505A1 (en) * | 1982-04-21 | 1983-10-26 | Asea Ab | Fibre-optical transducer |
GB2146120A (en) * | 1983-09-03 | 1985-04-11 | Gen Electric Co Plc | Photoacoustic force sensor |
DE3609957A1 (en) * | 1985-04-25 | 1986-10-30 | Bergakademie Freiberg, 09599 Freiberg | Method and device for process calibration of optical fibre sensors in multi-phase systems |
DE3701632A1 (en) * | 1987-01-21 | 1988-08-04 | Pfister Gmbh | Optical sensor |
US4865453A (en) * | 1987-04-07 | 1989-09-12 | Commissariat A L'energie Atomique | Displacement transducer in integrated optics |
DE3905508A1 (en) * | 1989-02-23 | 1990-08-30 | Messerschmitt Boelkow Blohm | Micromechanical component |
DE4018844A1 (en) * | 1989-06-22 | 1991-01-03 | Dow Chemical Co | FIBER OPTICAL FLOW MEASURING DEVICE |
-
1992
- 1992-09-09 DE DE19924230087 patent/DE4230087A1/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0092505A1 (en) * | 1982-04-21 | 1983-10-26 | Asea Ab | Fibre-optical transducer |
GB2146120A (en) * | 1983-09-03 | 1985-04-11 | Gen Electric Co Plc | Photoacoustic force sensor |
DE3609957A1 (en) * | 1985-04-25 | 1986-10-30 | Bergakademie Freiberg, 09599 Freiberg | Method and device for process calibration of optical fibre sensors in multi-phase systems |
DE3701632A1 (en) * | 1987-01-21 | 1988-08-04 | Pfister Gmbh | Optical sensor |
US4865453A (en) * | 1987-04-07 | 1989-09-12 | Commissariat A L'energie Atomique | Displacement transducer in integrated optics |
DE3905508A1 (en) * | 1989-02-23 | 1990-08-30 | Messerschmitt Boelkow Blohm | Micromechanical component |
DE4018844A1 (en) * | 1989-06-22 | 1991-01-03 | Dow Chemical Co | FIBER OPTICAL FLOW MEASURING DEVICE |
Non-Patent Citations (8)
Title |
---|
Integrated Photonics Research, New Orleans, 1992, S. 158-159 * |
Messen Prüfen Automatisieren, Dez. 1988, S. 619-621 * |
Miero System Technologies, 1991, S. 482-485 * |
Opt.Lett. 12, 1987, S. 129-131 * |
OPTO 7, 1990, S. 135-139 * |
Sensors and Actuators, A23, 1990, S. 1128-1131 * |
Sensors and Actuators, A29, 1991, S. 219-223 * |
Technisches Messen, 1991, 4, S. 140-145 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0692723A3 (en) * | 1994-07-08 | 1998-01-07 | ANT Nachrichtentechnik GmbH | Device for fixing micro-optical components |
EP0806687A1 (en) * | 1996-05-10 | 1997-11-12 | Commissariat A L'energie Atomique | Optomechanical device and applications to optical integrated sensors |
FR2748578A1 (en) * | 1996-05-10 | 1997-11-14 | Commissariat Energie Atomique | OPTOMECHANICAL DEVICE AND APPLICATION TO INTEGRATED OPTICAL SENSORS |
US5926591A (en) * | 1996-05-10 | 1999-07-20 | Commissariat A L'energie Atomique | Optomechanical acceleration sensor |
WO2002046748A2 (en) * | 2000-12-06 | 2002-06-13 | Hrl Laboratories, Llc | Compact sensor using microcavity structures |
WO2002046748A3 (en) * | 2000-12-06 | 2002-11-21 | Hrl Lab Llc | Compact sensor using microcavity structures |
US6777244B2 (en) | 2000-12-06 | 2004-08-17 | Hrl Laboratories, Llc | Compact sensor using microcavity structures |
GB2466929A (en) * | 2009-01-09 | 2010-07-14 | Smart Fibres Ltd | Pressure sensor device comprising flexible diaphragm with integral optical sensor |
WO2012011052A1 (en) | 2010-07-22 | 2012-01-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Particle detector and method for manufacturing such a detector |
FR2963101A1 (en) * | 2010-07-22 | 2012-01-27 | Commissariat Energie Atomique | PARTICULATE DETECTOR AND METHOD OF MAKING SAME |
US8867035B2 (en) | 2010-07-22 | 2014-10-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Particle detector and method for producing such a detector |
US9518909B2 (en) | 2010-07-22 | 2016-12-13 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Particle detector and method for producing such a detector |
EP2887026A3 (en) * | 2013-12-01 | 2015-09-30 | Mao-Jen Wu | Flexible optical sensor module |
CN104713632A (en) * | 2013-12-01 | 2015-06-17 | 伍茂仁 | Flexible optical sensor module |
US10317341B2 (en) | 2015-02-02 | 2019-06-11 | Lyten, Inc. | Mechanical deformation sensor based on plasmonic nanoparticles |
GB2558963A (en) * | 2017-01-18 | 2018-07-25 | Cirrus Logic Int Semiconductor Ltd | Flexible membrane |
WO2018134568A1 (en) * | 2017-01-18 | 2018-07-26 | Cirrus Logic International Semiconductor Limited | Optical mems microphone |
FR3062209A1 (en) * | 2017-01-25 | 2018-07-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | OPTICAL DETECTOR OF PARTICLES |
WO2018138223A1 (en) * | 2017-01-25 | 2018-08-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Optical detector of particles |
US11204308B2 (en) | 2017-01-25 | 2021-12-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Optical detector of particles |
CN108663113A (en) * | 2018-06-22 | 2018-10-16 | 西安交通大学 | A kind of optic fibre cantilev vibrating sensor and preparation method thereof |
CN113140881A (en) * | 2021-04-07 | 2021-07-20 | 博微太赫兹信息科技有限公司 | 45-degree-rotation-angle millimeter wave differential line-to-SIW (substrate integrated waveguide) structure |
CN113140881B (en) * | 2021-04-07 | 2021-12-10 | 博微太赫兹信息科技有限公司 | 45-degree-rotation-angle millimeter wave differential line-to-SIW (substrate integrated waveguide) structure |
RU2795392C1 (en) * | 2022-10-10 | 2023-05-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Directional coupler in integrated optical circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69724990T2 (en) | CHEMICAL SENSOR | |
EP0394219B1 (en) | Optical modulation and measurement process | |
DE69902023T2 (en) | EVIDENCE OF A SUBSTANCE BY REFRESHING CHANGE | |
EP2270478B1 (en) | Optical sensor and method for detecting molecules | |
DE3432989C2 (en) | ||
DE4230087A1 (en) | Integrated optical micro-mechanical sensor for measuring physical or chemical parameters - has strip waveguide applied to etched membrane acting as integrated measuring path | |
Zhao et al. | Electric field sensor based on photonic crystal cavity with liquid crystal infiltration | |
DE4128846C2 (en) | Integrated optical fabric sensor | |
EP1080365A1 (en) | Surface plasmon resonance sensor for the simultaneous measurement of a plurality of samples in fluid form | |
DE19621584A1 (en) | Optical sensor with integrated laser diode | |
EP2359099A1 (en) | Measuring device having an optical sensor | |
DE19514852A1 (en) | Method for measuring acceleration and vibration | |
WO2008110026A1 (en) | Integrated optical sensor | |
DE69414070T2 (en) | Differential pressure converter | |
DE3929340C2 (en) | ||
EP0604645B1 (en) | Fibre-optic sensor based on the fabry-perot principle | |
DE102004046685B3 (en) | Measuring cell and method for liquid analysis | |
CN103645158B (en) | A kind of tricyclic is without thermalization biology sensor | |
DE69102766T2 (en) | INTERFEROMETRIC SIGNAL ANALYSIS WITH MODULATION SWITCHING. | |
CN112665658B (en) | Optical fiber sensor for simultaneously measuring refractive index and temperature and preparation method | |
DE69521447T2 (en) | Transducer with vibrating element | |
EP0241766A2 (en) | Sensor device | |
DE69310742T2 (en) | OPTICAL STRETCH CONVERTER WITH SELF-EXCITATION | |
DE102019114698B3 (en) | Gas property measuring device | |
WO2019180161A1 (en) | Temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |