DE4216085A1 - IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit - Google Patents

IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit

Info

Publication number
DE4216085A1
DE4216085A1 DE4216085A DE4216085A DE4216085A1 DE 4216085 A1 DE4216085 A1 DE 4216085A1 DE 4216085 A DE4216085 A DE 4216085A DE 4216085 A DE4216085 A DE 4216085A DE 4216085 A1 DE4216085 A1 DE 4216085A1
Authority
DE
Germany
Prior art keywords
signal
infrared
circuit
gas
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4216085A
Other languages
German (de)
Inventor
Wolfgang Dipl Ing Merkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE4216085A priority Critical patent/DE4216085A1/en
Publication of DE4216085A1 publication Critical patent/DE4216085A1/en
Priority to DE4315453A priority patent/DE4315453A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/068Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling parameters other than temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J2001/161Ratio method, i.e. Im/Ir
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1218Correction signals for pressure variations

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An infrared gas analyser for continuous measurement of the concn. of a multiple atom, non-elementary gas contains an infrared source (1), an arrangement for generating an alternating infrared beam, an absorption cuvette (6) for the gas being analysed, an interference filter, a radiation receiver (7) and an evaluation circuit. The receiver signal corresp. to the gas concn. is fed to a quotient circuit (13) with a signal from an amplifier (12) corresp. to the power of the source and the ambient temp. The result is added (15) to a reference signal and the sum is displayed. ADVANTAGE - Radiation source can be operated at higher clocking frequencies and radiation power max. can be reached in shorter time.

Description

Die Erfindung betrifft einen Infrarot-Gasanalysator zur konti­ nuierlichen Bestimmung der Konzentration eines mehratomigen nichtelementaren Gases gemäß dem Oberbegriff des Anspruchs 1. The invention relates to an infrared gas analyzer for continuous Nuclear determination of the concentration of a multi-atomic non-elementary gas according to the preamble of claim 1.

Ein bekannter Gasanalysator (DE 35 06 372 A1) ist als Einstrahl­ photometer ausgebildet. Nachteilig ist hier, daß bei Änderungen der Umgebungstemperatur die Leistung der Strahlungsquelle nicht konstant ist, sie hängt von der Umgebungstemperatur und der Temperatur des Strahlers ab. Änderungen der Strahlungsleistung haben Änderungen des Ausgangssignals des Strahlungsempfängers zur Folge. Abhilfe kann nur, wie bei anderen Verfahren, mit einer Thermostatisierung durch Beheizung von Strahlungsquelle, Gasküvette und Strahlungsempfänger geschaffen werden. Dies ist jedoch bei Handmeßgeräten aus energetischen und Gewichtsgründen nur nachteilig realisierbar. A known gas analyzer (DE 35 06 372 A1) is a single beam trained photometer. The disadvantage here is that with changes the power of the radiation source does not depend on the ambient temperature is constant, it depends on the ambient temperature and the Temperature of the heater. Changes in radiant power have changes in the output signal of the radiation receiver result. The only remedy, as with other procedures, is with thermostatting by heating the radiation source, Gas cuvette and radiation receiver are created. This is however, in the case of handheld measuring devices for energy and weight reasons can only be realized disadvantageously.

In der erfindungsgemäß gelösten Aufgabe nach Anspruch 1 wird die Änderung der Strahlungsquellen­ leistung durch die Umgebungstemperatur und die Änderung des Ausgangssignals des Strahlungsempfängers durch die Umgebungs­ temperatur durch ein Signal, das den Zustand der Strahlungsquelle und des Strahlungsempfängers beschreibt mit dem Empfängersignal in einer Quotientenschaltung ausgewertet. Vorteilhaft ist hier­ bei auch, daß das Driften des Empfängersignals durch den Anheiz­ vorgang der Strahlungsquelle bei Inbetriebnahme durch das kon­ tinuierliche Korrigieren in der Quotientenschaltung unterdrückt wird. Bei Verwendung einer getakteten Strahlungsquelle und einem pyroelektrischem Empfänger nach Anspruch 2, 12, 13 bietet eine Vor­ heizung der Strahlungsquelle den Vorteil, daß die Strahlungs­ quelle mit einer höheren Frequenz getaktet werden kann, weil sich ein Strahlungsleistungsmaximum so in kürzerer Zeit erreichen läßt.In the object according to the invention, the change in the radiation sources performance by the ambient temperature and the change in Output signal of the radiation receiver through the environment temperature by a signal indicating the state of the radiation source and the radiation receiver describes with the receiver signal evaluated in a quotient circuit. It is advantageous here at also that the drifting of the receiver signal by the heating process of the radiation source during commissioning by the con Continuous correction in the quotient circuit suppressed becomes. When using a clocked radiation source and a pyroelectric receiver according to claim 2, 12, 13 offers a pre Heating the radiation source has the advantage that the radiation source can be clocked at a higher frequency because achieve a radiation power maximum in a shorter time leaves.

Die Erfindung wird nachstehend an Hand einer in der Zeichnung dar­ gestellten Ausführungsform erläutert:The invention is illustrated below with reference to a in the drawing embodiment explained:

Ein Modulator (2) oder ein mechanischer Zerhacker erzeugen im Zusammenwirken mit der Strahlungsquelle (1) eine Infrarotwechsel­ lichtstrahlung, die durch eine Gasküvette (6), welche von dem zu analysierendem Gas durchströmt wird, mit den optischen Fenstern (4), (5) und durch ein Interferenzfilter (7), dessen Durchlaßbe­ reich mit einer der spezifischen Absorptionsmaxima des Gases, dessen Konzentration gemessen werden soll, übereinstimmt, auf einen Empfanger (8), der ein von der Gaskonzentration abhängiges Signal liefert. An einem Widerstand (3), der mit der Strahlungs­ quelle (1) in Reihe geschaltet ist, wird ein Signal gewonnen, das der Leistung der Strahlungsquelle proportional ist. Das Signal des Empfängers (8) wird über einen Verstärker (9), einen Gleich­ richter (10) und einen Tiefpass (17) zusammen mit dem Signal vom Widerstand (3) über einen Verstärker (12) und eine Abtast-Halte­ schaltung (11) der Quotientenschaltung (13) zugeführt. Das Aus­ gangssignal der Quotientenschaltung (13) wird einem Spannungs­ teiler (14) zugeführt und dessen Abgriffssignal mit einem Bezugs­ signal (16) einem Adierer (15) zugeführt, an dessen Ausgang die Meßwertanzeige (18) liegt. Mit dem Spannungsteiler (14) läßt sich der Nullpunkt (Gaskonzentration Null) der Meßanordnung ein­ stellen.A modulator ( 2 ) or a mechanical chopper, in cooperation with the radiation source ( 1 ), generate infrared radiation, which is transmitted through a gas cell ( 6 ), through which the gas to be analyzed flows, with the optical windows ( 4 ), ( 5 ) and through an interference filter ( 7 ), the range of which corresponds to one of the specific absorption maxima of the gas, the concentration of which is to be measured, on a receiver ( 8 ) which supplies a signal which is dependent on the gas concentration. At a resistor ( 3 ) which is connected in series with the radiation source ( 1 ), a signal is obtained which is proportional to the power of the radiation source. The signal of the receiver ( 8 ) is via an amplifier ( 9 ), a rectifier ( 10 ) and a low pass ( 17 ) together with the signal from the resistor ( 3 ) via an amplifier ( 12 ) and a sample and hold circuit ( 11th ) supplied to the quotient circuit ( 13 ). The output signal from the quotient circuit ( 13 ) is fed to a voltage divider ( 14 ) and its tap signal with a reference signal ( 16 ) is fed to an adder ( 15 ), at the output of which the measured value display ( 18 ) is located. With the voltage divider ( 14 ), the zero point (zero gas concentration) of the measuring arrangement can be set.

Claims (12)

1. Infrarot-Gasanalysator zur kontinuierlichen Bestimmung der Konzentration eines mehratomigen nichtelementaren Gases mit
  • - einer Infrarotstrahlungsquelle
  • - mit Mitteln zur Erzeugung einer Infrarotwechselichtstrahlung
  • - einer Absorptionsküvette zur Aufnahme des zu analysierenden Gases
  • - einem Interferenzfilter
  • - einem Strahlungsempfänger
  • - einer Auswerteschaltung dadurch gekennzeichnet, daß das durch die Gaskonzentration in der Absorptionsküvette (6) erzeugte Signal des Strahlungs­ empfängers (7) mit einem, die Strahlungsquellenleistung und die Umgebungstemperatur des Strahlers (1) kennzeichnenden, Signal aus einem Verstärker (12) einer Quotientenschaltung (13) zuge­ führt wird und der Quotient der beiden Signale mit einem Bezugs­ signal (16) einer Additionsschaltung (15) zugeführt wird, an deren Ausgang die Meßwertanzeige (18) angeschlossen ist.
1. Infrared gas analyzer for the continuous determination of the concentration of a multi-atom non-elementary gas with
  • - an infrared radiation source
  • - With means for generating infrared alternating radiation
  • - An absorption cell to hold the gas to be analyzed
  • - an interference filter
  • - a radiation receiver
  • - An evaluation circuit characterized in that the signal of the radiation receiver ( 7 ) generated by the gas concentration in the absorption cuvette ( 6 ) with a signal characterizing the radiation source power and the ambient temperature of the radiator ( 1 ), from an amplifier ( 12 ) of a quotient circuit ( 13 ) is supplied and the quotient of the two signals with a reference signal ( 16 ) is fed to an addition circuit ( 15 ), to the output of which the measured value display ( 18 ) is connected.
2. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß die Strahlungsquelle (1) elektrisch durch einen Modulator (2) getaktet ist.2. Infrared gas analyzer according to claim 1, characterized in that the radiation source ( 1 ) is clocked electrically by a modulator ( 2 ). 3. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß die Strahlungsquelle durch mechanische Mittel periodisch abgedeckt wird.3. Infrared gas analyzer according to claim 1, characterized in that the radiation source periodically by mechanical means is covered. 4. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß das die Strahlungsleistung und die Umgebungstemperatur kennzeichnende Signal an einem Widerstand (3) der mit der Infra­ rotstrahlungsquelle (1) in Reihe geschaltet ist, gewonnen wird.4. Infrared gas analyzer according to claim 1, characterized in that the radiation power and the ambient temperature characterizing signal at a resistor ( 3 ) which is connected in series with the infrared radiation source ( 1 ) is obtained. 5. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß das Signal am Widerstand (3) über eine Abtast-Halteschaltung (11) und einem Verstärker (12) der Quotientenschaltung (13) zugeführt wird. 5. Infrared gas analyzer according to claim 1, characterized in that the signal at the resistor ( 3 ) via a sample and hold circuit ( 11 ) and an amplifier ( 12 ) of the quotient circuit ( 13 ) is supplied. 6. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß das Signal des Strahlungsempfängers (8) über einen Verstärker (9), einen Gleichrichter (10) und ein Tiefpassfilter (17) der Quotientenschaltung (13) zugeführt wird.6. Infrared gas analyzer according to claim 1, characterized in that the signal of the radiation receiver ( 8 ) via an amplifier ( 9 ), a rectifier ( 10 ) and a low-pass filter ( 17 ) of the quotient circuit ( 13 ) is supplied. 7. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß das Ausgangssignal der Quotientenschaltung (13) über einen Spannungsteiler (14) der Additionsschaltung (15) zugeführt wird.7. Infrared gas analyzer according to claim 1, characterized in that the output signal of the quotient circuit ( 13 ) via a voltage divider ( 14 ) of the addition circuit ( 15 ) is supplied. 8. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß bei einer elektrischen Taktung der Strahlungsquelle (1) diese vorgeheizt wird, so daß sich die elektrisch erzeugte Infrarotwechselstrahlung zwischen zwei Leistungspegeln bewegt.8. Infrared gas analyzer according to claim 1, characterized in that with an electrical clocking of the radiation source ( 1 ) it is preheated so that the electrically generated infrared alternating radiation moves between two power levels. 9. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß mit einem Drucksensor (19) der Gasdruck in der Gasküvette (6) erfaßt wird und das Drucksignal über den Verstärker (20) mit dem Ausgangssignal der Additionsschaltung (15) einer Quotien­ tenschaltung (25) zugeführt wird, an deren Ausgang die Meßwert­ anzeige (24) liegt.9. Infrared gas analyzer according to claim 1, characterized in that with a pressure sensor ( 19 ), the gas pressure in the gas cuvette ( 6 ) is detected and the pressure signal via the amplifier ( 20 ) with the output signal of the addition circuit ( 15 ) a quotation circuit ( 25 ) is at the output of the measured value display ( 24 ). 10. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß ein Temperatursensor (21) die Temperatur des Gases in der Gasküvette (6) erfaßt und das Temperatursignal über den Verstärker (22) mit dem Ausgangssignal der Additionsschaltung (15) einer Quotientenschaltung (25) zugeführt wird an deren Ausgang die Meß­ wertanzeige (24) liegt.10. Infrared gas analyzer according to claim 1, characterized in that a temperature sensor ( 21 ) detects the temperature of the gas in the gas cell ( 6 ) and the temperature signal via the amplifier ( 22 ) with the output signal of the addition circuit ( 15 ) is fed to a quotient circuit ( 25 ) at the output of the measured value display ( 24 ). 11. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß das verstärkte Signal des Temperatursensors (21) in Addition mit dem Verstärkersignal des Drucksensors (19) mit dem Ausgangssignal des Addierers (15) in einer Quotienten­ schaltung (25) ausgewertet wird, an deren Ausgang die Meßwert­ anzeige (24) liegt. 11. Infrared gas analyzer according to claim 1, characterized in that the amplified signal of the temperature sensor ( 21 ) in addition to the amplifier signal of the pressure sensor ( 19 ) with the output signal of the adder ( 15 ) in a quotient circuit ( 25 ) is evaluated, at the output of which Measured value display ( 24 ) is. 12. Infrarotgasanalysator nach Anspruch 1 dadurch gekennzeichnet, daß die von der Strahlungsquelle (1) ausgehende Infrarotstrahlung ein zweites oder mehrere Filter (23) passieren muß.12. Infrared gas analyzer according to claim 1, characterized in that the infrared radiation emanating from the radiation source ( 1 ) must pass through a second or more filters ( 23 ).
DE4216085A 1992-05-15 1992-05-15 IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit Withdrawn DE4216085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4216085A DE4216085A1 (en) 1992-05-15 1992-05-15 IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit
DE4315453A DE4315453A1 (en) 1992-05-15 1993-05-10 Infrared gas analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4216085A DE4216085A1 (en) 1992-05-15 1992-05-15 IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit

Publications (1)

Publication Number Publication Date
DE4216085A1 true DE4216085A1 (en) 1992-12-10

Family

ID=6458962

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4216085A Withdrawn DE4216085A1 (en) 1992-05-15 1992-05-15 IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit

Country Status (1)

Country Link
DE (1) DE4216085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9315508U1 (en) * 1993-10-13 1994-03-31 Palocz-Andresen, Michael, Dr.-Ing., 20459 Hamburg Infrared absorption gas analyzer with separate optical cuvette
EP0708316A3 (en) * 1994-10-19 1996-12-18 Hekatron Gmbh Device for generating broadband radiation
WO2012059744A1 (en) * 2010-11-01 2012-05-10 Gas Sensing Solutions Ltd. Apparatus and method for generating light pulses from leds in optical absorption gas sensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9315508U1 (en) * 1993-10-13 1994-03-31 Palocz-Andresen, Michael, Dr.-Ing., 20459 Hamburg Infrared absorption gas analyzer with separate optical cuvette
EP0708316A3 (en) * 1994-10-19 1996-12-18 Hekatron Gmbh Device for generating broadband radiation
WO2012059744A1 (en) * 2010-11-01 2012-05-10 Gas Sensing Solutions Ltd. Apparatus and method for generating light pulses from leds in optical absorption gas sensors
US9410886B2 (en) 2010-11-01 2016-08-09 Gas Sensing Solutions Ltd. Apparatus and method for generating light pulses from LEDs in optical absorption gas sensors

Similar Documents

Publication Publication Date Title
DE4433336A1 (en) Method and device for determining the concentration of a substance, preferably a fluid, particularly preferably a gas
DE4122572A1 (en) METHOD FOR OPERATING A LASER DIODE
DE4216085A1 (en) IR gas analyser for continuously measuring multiple atom, non-elementary gas - uses alternating IR beam, absorption cuvette, interference filter, radiation receiver and evaluation circuit
DE2255088B2 (en) Two-beam infrared gas analyzerOT
EP0370033A1 (en) Process and device for microwave analysis
EP1163503B1 (en) Gas detector and method of operating a gas detector
AU654068B2 (en) Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy
US4377342A (en) Zeeman atomic absorption spectrophotometer
DE102004006677A1 (en) Infrared gas sensor and method for gas concentration measurement with this sensor
DE4225532A1 (en) IR gas analyser for multi-atomic, non-elementary gas - suppresses receiver drift caused by heating radiation source using continuous correction in multiplier
EP0087077A2 (en) Measuring device for optical gas analysis
DE4307190A1 (en) Infrared gas analyser
EP1063518B1 (en) Device for analyzing a gas sample with infrared absorption
DE68923966T2 (en) CIRCUIT TO CONTROL THE SET POINT IN AN INFRARED GAS ANALYZER.
DE2803369C2 (en) Measuring device for determining the proportion of water vapor in a gas mixture by means of infrared absorption gas analysis
EP0073467A2 (en) A data compression system for a photometer
DE2710669C3 (en) Method and device for pyrometric measurement of the graphite furnace temperature in a graphite furnace
DE2806145C3 (en) Process for the exact acquisition of the measured values in flame absorption and emission photometers with the use of an electrical control on a constant display for the compensation of a device drift
DE4225996A1 (en) IR gas analyser for multi-atomic, non-elementary gas - corrects for variations in intensities of different wavelengths with variations source temp. variation
DD159367B3 (en) MODULATION DEVICE IN A NON DISPERSIVE ANALYSIS DEVICE
DE4028408C2 (en) Process for non-contact temperature measurement
DE3633916C2 (en)
Catterick Continuous internal standardisation with a sequential inductively coupled argon plasma system
JPS5821149A (en) Stabilizing circuit of crest value for x-ray analyzing apparatus
Ratzlaff et al. Computer-controlled dual wavelength spectrophotometer

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
8122 Nonbinding interest in granting licences declared
AG Has addition no.

Ref country code: DE

Ref document number: 4315453

Format of ref document f/p: P

8139 Disposal/non-payment of the annual fee