DE4107617A1 - Fibre union material with hollow fibres embedded in matrix - has fibres, sealed at ends, filled with gas or fluid which are heatable by heating wires inserted in them in matrix or by external source - Google Patents

Fibre union material with hollow fibres embedded in matrix - has fibres, sealed at ends, filled with gas or fluid which are heatable by heating wires inserted in them in matrix or by external source

Info

Publication number
DE4107617A1
DE4107617A1 DE19914107617 DE4107617A DE4107617A1 DE 4107617 A1 DE4107617 A1 DE 4107617A1 DE 19914107617 DE19914107617 DE 19914107617 DE 4107617 A DE4107617 A DE 4107617A DE 4107617 A1 DE4107617 A1 DE 4107617A1
Authority
DE
Germany
Prior art keywords
matrix
fibres
gas
fibre
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19914107617
Other languages
German (de)
Other versions
DE4107617C2 (en
Inventor
Werner Dipl Phys Zimmermann
Willi Dr Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19914107617 priority Critical patent/DE4107617C2/en
Publication of DE4107617A1 publication Critical patent/DE4107617A1/en
Application granted granted Critical
Publication of DE4107617C2 publication Critical patent/DE4107617C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0272Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using lost heating elements, i.e. heating means incorporated and remaining in the formed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/66Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler comprising hollow constituents, e.g. syntactic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Ropes Or Cables (AREA)

Abstract

The fibres are filled with a gas or fluid prior to be placed in the matrix, and sealed at their ends. By heating, either inductively with heating wires in the hollow fibres or in the matrix, or from an external source e.g, with hot air, the increase in temp. results in a rise in inner pressure in the fibres, whereby the inner pressure is in equilibrium with the mechanical tensions in the fibre walls. As the result of vol. expansion of the gas or fluid in the fibres, i.e, with a fibre 100cms long a length alteration of approx. 1mm occurs at a temp. rise of 1 deg. C., on account of the high elasticity module of the fibre high tensions occur. This in turn leads to the formation of a suitable matrix material with fibres in which there is increased rigidity. ADVANTAGE - A fibre union matrix which is cheap to produce, and has variable strength properties.

Description

Die Erfindung bezieht sich auf einen Faserverbundwerkstoff mit in eine Matrix eingebetteten Fasern.The invention relates to a fiber composite material in a Matrix embedded fibers.

Es gibt mehrere Anwendungsfälle, bei denen es vorteilhaft ist, daß Bau­ teile im Betrieb unterschiedliche Festigkeitseigenschaften aufweisen. Derartige Bauteile sind z. B. Federstäbe mit verschiedenem Schwingungs­ verhalten, Fahrwerke mit differierenden Dämpfungseigenschaften, thermo­ sensitive Aktuatoren. Bisher wurden diese Wirkungen meistens mit Hohl­ räume aufweisenden elastischen Bauteilen erzielt, die mit unterschied­ lichen Flüssigkeits- oder Gasdrücken beaufschlagt wurden. Dieses erfor­ dert komplizierte und teure Speicherbehälter, Ventile und Leitungen.There are several applications in which it is advantageous that construction parts have different strength properties during operation. Such components are such. B. spring bars with different vibrations behave, undercarriages with different damping properties, thermo sensitive actuators. So far, these effects have mostly been with hollow achieved elastic components with differences liquid or gas pressures have been applied. This need complicated and expensive storage tanks, valves and lines.

Der Erfindung liegt die Aufgabe zugrunde, einen Faserverbundwerkstoff der eingangs genannten Art zu schaffen, der in einfacher, billiger Weise mit variablen Festigkeitseigenschaften zu versehen ist.The invention has for its object a fiber composite material of the type mentioned at the outset, in a simple, inexpensive manner is to be provided with variable strength properties.

Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale ge­ löst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteran­ sprüchen gekennzeichnet.This object is ge by the features characterized in claim 1 solves. Advantageous embodiments of the invention are in the Unteran sayings marked.

Der große Vorteil der Erfindung besteht in seiner Einfachheit. In den Faserverbundwerkstoff, der zu einem Bauteil mit unterschiedlichen Fe­ stigkeitseigenschaften weiter verarbeitet wird, brauchen nur die Fasern vor dem Einlegen in die Matrix mit einem Gas oder einer Flüssigkeit ge­ füllt und an den Enden abgedichtet werden. Beim Erwärmen des Bauteils, entweder induktiv mit Heizdrähten in der Hohlfaser oder in der Matrix, oder von außen, z. B. mit warmer Luft, hat die Erhöhung der Temperatur eine Erhöhung des Innendruckes in der Hohlfaser zur Folge, wobei der In­ nendruck im Gleichgewicht mit den mechanischen Spannungen in den Faser­ wandungen steht. Damit läßt sich die Vorspannung der Hohlfaser bzw. die Steifigkeit des Bauteiles über die Temperatur regeln. Infolge der Volu­ menausdehnung des Gases oder der Flüssigkeit in der Hohlfaser, die z. B. bei einer Faser von 100 cm Länge bei einer Temperaturerhöhung um 1°C eine Längenänderung von ca. 1 mm bewirkt, werden aufgrund des hohen Elastizitätsmoduls der Faser hohe Vorspannungen erzielt. Der erhöhte Spannungszustand in der Faserwandung führt bei Einbettung der Faser in einen geeigneten Matrixwerkstoff zu einer erhöhten Steifigkeit des ge­ samten Faserverbundes bzw. des Bauteiles. Somit ist das elastische Ver­ halten eines erfindungsgemäß gestalteten Bauteiles durch Regelung der Temperatur steuerbar. Auch über die Auswahl des Hohlfaser-Werkstoffes und der Art der Füllung der Hohlfasern mit Gas oder Flüssigkeit kann das elastische Verhalten des Faserverbundwerkstoffes als Funktion der Tempe­ ratur in unterschiedlicher Weise bestimmt werden. So ist es zweckmäßig, bei Fasern mit hohem Elastizitätsmodul, z. B. Glas, eine Füllung mit Flüssigkeit, wie Öl, Alkohol oder Wasser, und bei Fasern mit niedrigem Elastizitätsmodul, z. B. Kunststoff, eine Füllung mit Gas, welches nicht diffundiert, wie Luft, vorzunehmen. Diese neue Art der Schaffung von Bauteilen mit variablen Festigkeitseigenschaften hat innerhalb des Ein­ satztemperaturbereiches ein gegenüber bekannten Systemen entgegengesetz­ tes elastisches Verhalten als Funktion der Temperatur zur Folge. Während bei bekannten Systemen die Steifigkeit mit zunehmender Temperatur ab­ nimmt, ist bei dem erfinderischen Faserverbundwerkstoff eine Zunahme der Steifigkeit und Festigkeit vorhanden.The great advantage of the invention is its simplicity. In the Fiber composite material that forms a component with different Fe only the fibers need to be processed with a gas or liquid prior to insertion into the matrix fills and seals at the ends. When heating the component, either inductively with heating wires in the hollow fiber or in the matrix, or from the outside, e.g. B. with warm air, has the increase in temperature an increase in the internal pressure in the hollow fiber, the In internal pressure in equilibrium with the mechanical stresses in the fiber walls stands. This allows the pretension of the hollow fiber or Control the rigidity of the component via the temperature. As a result of the Volu men expansion of the gas or liquid in the hollow fiber, the z. B. with a fiber of 100 cm length with a temperature increase of 1 ° C  a change in length of approx. 1 mm is due to the high The elastic modulus of the fiber achieves high pretensions. The heightened The state of tension in the fiber wall leads when the fiber is embedded in a suitable matrix material to increase the rigidity of the ge Entire fiber composite or the component. Thus, the elastic Ver hold a component designed according to the invention by controlling the Temperature controllable. Also about the selection of the hollow fiber material and the type of filling of the hollow fibers with gas or liquid can do that elastic behavior of the fiber composite material as a function of temperature rature can be determined in different ways. So it is useful for fibers with a high modulus of elasticity, e.g. B. glass, a filling with Liquid, such as oil, alcohol, or water, and low fiber fibers Young's modulus, e.g. B. plastic, a filling with gas, which is not diffuses, like air. This new way of creating Components with variable strength properties have within the one set temperature range contrary to known systems elastic behavior as a function of temperature. While in known systems the stiffness decreases with increasing temperature takes, is an increase in the inventive fiber composite material Stiffness and strength present.

Die Erfindung wird nachstehend anhand eines in der Zeichnung dargestell­ ten Ausführungsbeispieles näher erläutert. Es zeigen in stark vergrößer­ tem Maßstab:The invention is illustrated below with reference to a in the drawing th embodiment explained. It shows in greatly enlarged tem scale:

Fig. 1 eine in eine Matrix eingebettete Hohlfaser; Fig. 1 is a embedded in a matrix of hollow fiber;

Fig. 2 eine Hohlfaser wie Fig. 1 mit einem Heizdraht; Fig. 2 is a hollow fiber as shown in Figure 1 with a heater wire.

Fig. 3 einen Querschnitt durch einen Faserverbundwerkstoff aus Matrix, Hohlfasern und Heizdrähten und Fig. 3 shows a cross section through a fiber composite material made of matrix, hollow fibers and heating wires and

Fig. 4 einen Schnitt IV-IV durch die Fig. 3. Fig. 4 shows a section IV-IV through the FIG. 3.

Die Fig. 1 zeigt eine in eine Matrix 1 eingebettete Hohlfaser 2, die an ihren Enden 3, 4 abgedichtet und mit einem nicht diffundierenden Gas 5, z. B. Luft, gefüllt ist. Fig. 1 shows a embedded in a matrix 1 hollow fiber 2 , which is sealed at its ends 3 , 4 and with a non-diffusing gas 5 , z. B. air is filled.

Die Fig. 2 zeigt eine gleiche Hohlfaser 2 mit einem in der Mitte durch­ geführten Heizdraht 6. FIG. 2 shows an identical hollow fiber 2 with a heating wire 6 passed through in the middle.

In Fig. 3 ist der Querschnitt eines Faserverbundwerkstoffes 10 darge­ stellt. Dieser besteht aus der Matrix 1 und darin eingebetteten Hohlfa­ sern 2, die teilweise mit Heizdrähten 6 versehen sind. In die Matrix 1 sind weitere Heizdrähte 6 eingebettet.In Fig. 3 the cross section of a fiber composite material 10 is Darge. This consists of the matrix 1 and embedded Hohlfa sern 2 , some of which are provided with heating wires 6 . Further heating wires 6 are embedded in the matrix 1 .

Fig. 4 zeigt einen Schnitt IV-IV durch Fig. 3 mit einem Endstück des Fa­ serverbundwerkstoffes 10. Die Enden der Heizdrähte 6 werden in bekannter Weise an eine Stromquelle angeschlossen. Fig. 4 shows a section IV-IV through Fig. 3 with an end piece of Fa serverbundwerkstoffes 10th The ends of the heating wires 6 are connected to a power source in a known manner.

Bei dem hier dargestellten Ausführungsbeispiel, bei dem das in die Hohl­ fasern 2 eingefüllte Medium aus Gas 5 besteht, muß die Hohlfaser aus ei­ nem Material mit niedrigem Elastizitätsmodul, z. B. Kunststoff, bestehen. Wenn die Hohlfaser aus einem Material mit hohem Elastizitätsmodul, z. B. Glas, besteht, ist es erforderlich, als Füllung eine Flüssigkeit, wie Öl, Alkohol oder Wasser, zu verwenden.In the embodiment shown here, in which the medium filled in the hollow fibers 2 consists of gas 5 , the hollow fiber must be made of egg nem material with a low modulus of elasticity, for. B. plastic. If the hollow fiber is made of a material with a high modulus of elasticity, e.g. B. glass, it is necessary to use a liquid such as oil, alcohol or water as the filling.

Es liegt auch im Rahmen der Erfindung, anstelle von Heizdrähten 6 ein aus dem Faserverbundwerkstoff hergestelltes Bauteil zur Festigkeitserhö­ hung von außen, z. B. mit warmer Luft, zu beheizen.It is also within the scope of the invention, instead of heating wires 6, a component made of the fiber composite material for increasing the strength from outside, e.g. B. with warm air to heat.

Claims (6)

1. Faserverbundwerkstoff mit in eine Matrix eingebetteten Fasern, dadurch gekennzeichnet, daß als Fasern an den Enden abgedichtete und mit einem Gas (5) oder einer Flüssigkeit gefüllte Hohlfasern (2) verwen­ det sind, die aufheizbar sind.1. Fiber composite material with fibers embedded in a matrix, characterized in that as fibers sealed at the ends and filled with a gas ( 5 ) or a liquid hollow fibers ( 2 ) are used which are heatable. 2. Faserverbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß bei Hohlfasern (2) mit niedrigem Elastizitätsmodul die Füllung mit nicht diffundierendem Gas (5) erfolgt.2. Fiber composite material according to claim 1, characterized in that in the case of hollow fibers ( 2 ) with a low modulus of elasticity, the filling is carried out with non-diffusing gas ( 5 ). 3. Faserverbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß bei Hohlfasern mit hohem Elastizitätsmodul die Füllung mit Flüssig­ keit erfolgt.3. Fiber composite material according to claim 1, characterized in that that with hollow fibers with a high modulus of elasticity, the filling with liquid speed occurs. 4. Faserverbundwerkstoff nach den Ansprüchen 1 bis 3, dadurch ge­ kennzeichnet, daß in die Hohlfasern (2) ein Heizdraht (6) eingesetzt ist.4. Fiber composite material according to claims 1 to 3, characterized in that a heating wire ( 6 ) is inserted into the hollow fibers ( 2 ). 5. Faserverbundwerkstoff nach den Ansprüchen 1 bis 3, dadurch ge­ kennzeichnet, daß in der Matrix (1) Heizdrähte (6) eingebettet sind.5. Fiber composite material according to claims 1 to 3, characterized in that in the matrix ( 1 ) heating wires ( 6 ) are embedded. 6. Faserverbundwerkstoff nach den Ansprüchen 1 bis 3, dadurch gekenn­ zeichnet, daß ein aus dem Faserverbundwerkstoff hergestelltes Bauteil von außen beheizt ist.6. Fiber composite material according to claims 1 to 3, characterized records that a component made of the fiber composite material is heated from the outside.
DE19914107617 1991-03-09 1991-03-09 Fiber composite material Expired - Fee Related DE4107617C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914107617 DE4107617C2 (en) 1991-03-09 1991-03-09 Fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914107617 DE4107617C2 (en) 1991-03-09 1991-03-09 Fiber composite material

Publications (2)

Publication Number Publication Date
DE4107617A1 true DE4107617A1 (en) 1992-09-10
DE4107617C2 DE4107617C2 (en) 1995-01-12

Family

ID=6426887

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914107617 Expired - Fee Related DE4107617C2 (en) 1991-03-09 1991-03-09 Fiber composite material

Country Status (1)

Country Link
DE (1) DE4107617C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1068944A1 (en) * 1999-07-12 2001-01-17 British Aerospace Public Limited Company Method for manufacturing a filled hollow fibre composite material
WO2001003910A1 (en) * 1999-07-10 2001-01-18 Bae Systems Plc Method for manufacturing a filled hollow fibre composite material
WO2004033199A2 (en) * 2002-10-10 2004-04-22 Americhem, Inc. Beneficiated fiber, composite and method for its manufacture
US7638187B2 (en) 2003-10-10 2009-12-29 Americhem, Inc. Beneficiated fiber and composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198648A2 (en) * 1985-04-12 1986-10-22 Polyplastics Co. Ltd. Thermoplastic resin composition
US4837251A (en) * 1988-02-08 1989-06-06 Sundstrand Corporation Dimensionally-stable lightweight core for composite structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198648A2 (en) * 1985-04-12 1986-10-22 Polyplastics Co. Ltd. Thermoplastic resin composition
US4837251A (en) * 1988-02-08 1989-06-06 Sundstrand Corporation Dimensionally-stable lightweight core for composite structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003910A1 (en) * 1999-07-10 2001-01-18 Bae Systems Plc Method for manufacturing a filled hollow fibre composite material
US6478913B1 (en) 1999-07-10 2002-11-12 Bae Systems Plc Method for manufacturing a filled hollow fibre composite material
AU764873B2 (en) * 1999-07-10 2003-09-04 Bae Systems Plc Method for manufacturing a filled hollow fibre composite material
EP1068944A1 (en) * 1999-07-12 2001-01-17 British Aerospace Public Limited Company Method for manufacturing a filled hollow fibre composite material
WO2004033199A2 (en) * 2002-10-10 2004-04-22 Americhem, Inc. Beneficiated fiber, composite and method for its manufacture
WO2004033199A3 (en) * 2002-10-10 2004-06-10 Americhem Inc Beneficiated fiber, composite and method for its manufacture
US7175907B2 (en) 2002-10-10 2007-02-13 Americhem Inc. Beneficiated fiber and composite
US7638187B2 (en) 2003-10-10 2009-12-29 Americhem, Inc. Beneficiated fiber and composite

Also Published As

Publication number Publication date
DE4107617C2 (en) 1995-01-12

Similar Documents

Publication Publication Date Title
DE69814832T2 (en) TUNED SILENCER
CH627275A5 (en)
DE3000198A1 (en) DEVICE FOR MEASURING THE VALUE OF A FLUID VARIABLE
DE4020860C2 (en) Method of manufacturing a heat accumulator
EP2674096B1 (en) Optical instrument
DE701817C (en) Damping device
DE4107617A1 (en) Fibre union material with hollow fibres embedded in matrix - has fibres, sealed at ends, filled with gas or fluid which are heatable by heating wires inserted in them in matrix or by external source
DE102015214460A1 (en) Elastic suspension handlebar for a vehicle
DE102006046416B4 (en) Device for temperature compensation of an optical system
DE3047308A1 (en) Optical fibre acoustic sensor - with optical fibre spiral embedded in low elasticity modules block
EP2217985B1 (en) Thermostatic valve actuator
DE1809190C3 (en) Ballpoint pen for water-soluble ink
EP1116016A1 (en) Pressure sensor
DE102008002191A1 (en) temperature sensor
DE3313031C2 (en)
DE19601342C2 (en) Mass flow meter
DE3106766A1 (en) Hydraulic shock absorber for a motor vehicle
DE102009026990A1 (en) Valve for a door closer
DE2531848C2 (en)
DD275171A3 (en) VIBRATION-IMMEDIATE MEASURING SENSOR
DE4028405A1 (en) PRINTING ELEMENT
CH648486A5 (en) Heated injection syringe
DE102005031033A1 (en) Profile element for windows, doors, facades, separation walls and the like comprises heat storage elements provided with a storage medium with a raised specific thermal coefficient and/or a raised phase transition point
WO2012028223A1 (en) Closure element with pressure equalization element
DE3243995C2 (en)

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT, 80804 M

8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee