EP1116016A1 - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
EP1116016A1
EP1116016A1 EP00958139A EP00958139A EP1116016A1 EP 1116016 A1 EP1116016 A1 EP 1116016A1 EP 00958139 A EP00958139 A EP 00958139A EP 00958139 A EP00958139 A EP 00958139A EP 1116016 A1 EP1116016 A1 EP 1116016A1
Authority
EP
European Patent Office
Prior art keywords
sensor
channel
pressure sensor
section
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00958139A
Other languages
German (de)
French (fr)
Inventor
Thomas Lenzing
Uwe Konzelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1116016A1 publication Critical patent/EP1116016A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/24Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid specially adapted for measuring pressure in inlet or exhaust ducts of internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general

Definitions

  • the invention relates to a pressure sensor, in particular for an internal combustion engine, which has a sensor surface and a sensor channel connecting the sensor surface to the interior of a medium channel, according to the preamble of claim 1.
  • a pressure sensor which has a plastic housing with a nozzle-shaped pressure connection and which in the installed state on the intake pipe is essentially flush with an inner wall of the intake pipe of the internal combustion engine or protrudes only a few millimeters therefrom.
  • pressure sensors attached directly to the intake pipe, however, there is a risk of the pressure connection icing up, so that the pressure sensor may fail due to icing.
  • the sensor membrane With such icing of the sensor channel or the fluid contained therein or liquid components of the fluid, the sensor membrane can be subjected to such a high pressure that it breaks.
  • the pressure sensor according to the invention with the characterizing features of claim 1 has the advantage over the prior art that icing of the pressure sensor is reliably excluded.
  • the freezing fluid located directly in front of the sensor membrane e.g. a Bingha fluid or a Smartfluid from Bayer and possibly a highly viscous fluid
  • the size of the viscosity is partly strongly temperature-dependent. If instead of the Bingham 'see fluid such a highly viscous medium is used to protect against freezing, then in the vicinity of the freezing point of the flow medium in the suction pipe it has to increase its viscosity about a thousandfold compared to the usual temperatures. As a result, the highly silicic medium then behaves similarly to the Bingham 1 see medium, it becomes hard and blocks the sensor channel, so that a further increase in pressure up to the destruction of the membrane is prevented. (Highly viscous media are, for example, glucose syrup or Luviskol) Below the deformation threshold there is a Newtonian flow behavior, while the fluid used behaves like a solid above this deformation threshold.
  • the freezing of the medium or the liquid contained in the medium achieves a pressure in the free section of the sensor channel that corresponds to the deformation threshold value of the freezing protection fluid used, this solidifies and protects the sensor membrane against a further increase in pressure. In this way, it is avoided in the pressure sensor according to the invention that the freezing of the medium or the liquid contained in the medium in the pressure channel destroys the sensor membrane without significantly increasing the flow resistance in the medium channel or intake pipe of an internal combustion engine.
  • the selection of the anti-freeze fluid depends on the freezing temperature of the flow medium or the liquid contained in the flow medium.
  • a section of a medium channel 12 for example an intake pipe of an internal combustion engine, is shown cut up to its central axis 12 '.
  • the wall 13 of the medium channel hereinafter referred to only as the intake pipe 12, has a sensor channel 14 which extends essentially at right angles to the central axis 12 'and penetrates the wall 13 radially.
  • a pressure sensor 10 is attached to the outside of the intake pipe 12 on the wall 13 and engages with a sensor section 11 in the sensor channel 14.
  • the sensor section 11 is provided with a membrane 11 'in the region of its free end.
  • the sensor channel 14 essentially has two sections, namely a free section 16 facing the interior of the intake pipe 12 and a section 18 on the pressure sensor side.
  • the diameter of the pressure sensor section 18 of the sensor channel 14 is larger than the diameter of the free section 16, so that the cross section of the pressure sensor-side section 18 is larger than the cross section of the free section 16.
  • a cavern-like space facing the pressure sensor is formed in the interior of the wall 13 of the suction pipe 12 around the sensor channel 14, which is filled with a freeze-securing fluid 20.
  • the sensor section 11 with the membrane 11 ' is surrounded at its free end by the anti-freeze fluid 20.
  • the free section 16 of the sensor channel 14 is not filled with the freeze-securing fluid, so that the free section 16 forms a connection between the pressure sensor-side section 18 of the sensor channel 14 filled with the freeze-securing fluid 20 and the interior of the intake pipe 12.
  • the sensor channel is designed at least in sections as a capillary, the capillary forces and the capillary diameter being calculated according to the equations generally known to the person skilled in the art.
  • the sensor channel 14 with its section 18 containing the freezing fluid 20 can also be formed in an attachment of the pressure sensor 10, which can be inserted into an opening in the wall 13 of the intake pipe 12.
  • the static pressure of the flowing medium acts on the free surface facing the free section 16 of the sensor channel 14 of the anti-freeze fluid 20 and is transferred to the membrane 11 'via the anti-freeze fluid 20, the anti-freeze fluid behaving like a Newtonian fluid.
  • the pressure increase thereby caused has an effect on the anti-freeze fluid 20 such that the anti-freeze fluid 20 solidifies and increases it Pressure forces on the wall of the pressure sensor section 18 of the sensor channel 14 is supported and thus not transmitted to the membrane 11 '.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention relates to a pressure sensor for an internal combustion engine, comprising an induction pipe which has a sensor surface (11') and a sensor duct (14) which connects the sensor surface (11') to the interior of the induction pipe (12). The sensor duct (14) has a section (18) which is filled with an anti-freeze fluid (20).

Description

DRUCKSENSOR PRESSURE SENSOR
Die Erfindung betrifft einen Drucksensor, insbesondere für eine Brennkraftmaschine, der eine Sensorfläche und einen die Sensorfläche mit dem Inneren eines Mediumkanals verbindenden Sensorkanal aufweist, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a pressure sensor, in particular for an internal combustion engine, which has a sensor surface and a sensor channel connecting the sensor surface to the interior of a medium channel, according to the preamble of claim 1.
STAND DER TECHNIKSTATE OF THE ART
Aus der DE-OS 43 17 312 ist ein Drucksensor bekannt, der ein Kunststoffgehäuse mit einem stutzenförmigen Druckanschluß besitzt und der im eingebauten Zustand am Ansaugrohr im wesentlichen bündig mit einer Innenwandung des Ansaugrohrs der Brennkraftmaschine abschließt oder von dieser nur wenige Millimeter absteht. Bei derartigen, direkt am Ansaugrohr ange- brachten Drucksensoren besteht jedoch die Gefahr einer Vereisung des Druckanschlusses, so daß es vereisungsbedingt zum Ausfall des Drucksensors kommen kann. Bei einer solchen Vereisung des Sensorkanals bzw. des darin enthaltenen Fluides oder von flüssigen Bestandteilen des Fluides kann die Sensormembran mit einem so hohen Druck beaufschlagt werden, daß sie bricht .From DE-OS 43 17 312 a pressure sensor is known which has a plastic housing with a nozzle-shaped pressure connection and which in the installed state on the intake pipe is essentially flush with an inner wall of the intake pipe of the internal combustion engine or protrudes only a few millimeters therefrom. With such pressure sensors attached directly to the intake pipe, however, there is a risk of the pressure connection icing up, so that the pressure sensor may fail due to icing. With such icing of the sensor channel or the fluid contained therein or liquid components of the fluid, the sensor membrane can be subjected to such a high pressure that it breaks.
Aus der DE 195 17 676 AI ist ein Drucksensor bekannt, bei dem zur Verhinderung einer derartigen Vereisung ein Schlauch vorgesehen ist, der den in der Ansaugrohrwandung vorgesehenen Sensorkanal bis etwa zur Mitte des Ansaugrohres hin verlängert. Diese Ausgestaltung erhöht allerdings den Strömungswi- derstand im Ansaugrohr.From DE 195 17 676 AI a pressure sensor is known, in which a hose is provided to prevent such icing, which extends the sensor channel provided in the intake pipe wall up to approximately the middle of the intake pipe. However, this configuration increases the flow resistance in the intake pipe.
VORTEILE DER ERFINDUNGADVANTAGES OF THE INVENTION
Der erfindungsgemäße Drucksensor mit den kennzeichnenden Merkmalen des Anspruchs 1 hat gegenüber dem Stand der Technik den Vorteil, daß eine Vereisung des Drucksensors zuverlässig ausgeschlossen ist. Das unmittelbar vor der Sensormembran angeordnete Einfriersicherungsfluid (z.B. ein Bingha ' sches Fluid oder ein Smartfluid der Firma Bayer sowie gegebenenfalls ein hochviskoses Fluid) besitzt sich bei einem bestimmten Grad an mechanischer Deformation abrupt verändernde Fließeigenschaften .The pressure sensor according to the invention with the characterizing features of claim 1 has the advantage over the prior art that icing of the pressure sensor is reliably excluded. The freezing fluid located directly in front of the sensor membrane (e.g. a Bingha fluid or a Smartfluid from Bayer and possibly a highly viscous fluid) has abruptly changing flow properties with a certain degree of mechanical deformation.
Bei hochviskosen Medien ist die Größe der Viskosität z.T. stark temperaturabhängig. Wird anstelle des Bingham' sehen Fluides ein derart hochviskoses Medium zum Schutz vor Einfrierung verwendet, so muß dieses in der Nähe des Gefrierpunktes des Strömungsmediums im Ansaugrohr im Vergleich zu sonst üblichen Temperaturen seine Viskosität etwa vertausendfachen. Hierdurch verhält sich das hochsikose Medium dann ähnlich wie das Bingham1 sehe Medium, es wird hart und blok- kiert den Sensorkanal, so daß eine weitere Drucksteigerung bis hin zur Zerstörung der Membran verhindert wird. (Stark hochviskose Medien sind z.B. Glukosesirup oder Luviskol) Unterhalb des Deformations-Schwellenwertes liegt ein new- ton'sches Fließverhalten vor, während sich das verwendete Fluid oberhalb dieses Deformations-Schwellenwertes wie ein Festkörper verhält. Wird also durch das Einfrieren des Mediums bzw. der im Medium enthaltenen Flüssigkeit im freien Abschnitt des Sensorkanals ein Druck erreicht, der dem Deformations-Schwellenwert des eingesetzen Einfriersicherungsfluides entspricht, so verfestigt sich dieses und schützt die Sensor- membran vor einer weiteren Drucksteigerung. Auf diese Weise wird beim erfindungsgemäßen Drucksensor vermieden, daß durch Einfrieren des Mediums bzw. der im Medium enthaltenen Flüssigkeit im Druckkanal die Sensormembran zerstört wird, ohne den Strömungswiderstand im Mediumkanal bzw. Ansaugrohr einer Brennkraftmaschine wesentlich zu erhöhen.In the case of highly viscous media, the size of the viscosity is partly strongly temperature-dependent. If instead of the Bingham 'see fluid such a highly viscous medium is used to protect against freezing, then in the vicinity of the freezing point of the flow medium in the suction pipe it has to increase its viscosity about a thousandfold compared to the usual temperatures. As a result, the highly silicic medium then behaves similarly to the Bingham 1 see medium, it becomes hard and blocks the sensor channel, so that a further increase in pressure up to the destruction of the membrane is prevented. (Highly viscous media are, for example, glucose syrup or Luviskol) Below the deformation threshold there is a Newtonian flow behavior, while the fluid used behaves like a solid above this deformation threshold. If the freezing of the medium or the liquid contained in the medium achieves a pressure in the free section of the sensor channel that corresponds to the deformation threshold value of the freezing protection fluid used, this solidifies and protects the sensor membrane against a further increase in pressure. In this way, it is avoided in the pressure sensor according to the invention that the freezing of the medium or the liquid contained in the medium in the pressure channel destroys the sensor membrane without significantly increasing the flow resistance in the medium channel or intake pipe of an internal combustion engine.
Die Auswahl des Einfriersicherungsfluides ist dabei jeweils von der Gefriertemperatur des Strömungsmediums bzw. der im Strömungsmedium enthaltenen Flüssigkeit abhängig.The selection of the anti-freeze fluid depends on the freezing temperature of the flow medium or the liquid contained in the flow medium.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Drucksensors möglich.Advantageous further developments and improvements of the pressure sensor specified in claim 1 are possible through the measures listed in the subclaims.
ZEICHNUNGDRAWING
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt die einzige Figur einen teilweise geschnittenen Mediumkanal, beispielsweise ein Ansaugrohr mit einem erfindungsgemäßen Drucksensor. BESCHREIBUNG DES AUSFÜHRUNGSBEISPIELSAn embodiment of the invention is shown in simplified form in the drawing and explained in more detail in the following description. The sole figure shows a partially cut medium channel, for example an intake pipe with a pressure sensor according to the invention. DESCRIPTION OF THE EMBODIMENT
In der Figur ist ein Ausschnitt eines Mediumkanals 12, beispielsweise eines Ansaugrohrs einer Brennkraftmaschine bis zu dessen Mittelachse 12' geschnitten dargestellt. Die Wandung 13 des im folgenden nur noch als Ansaugrohr 12 bezeichneten Mediumkanals weist einen sich im wesentlichen rechtwinklig zur Mittelachse 12' erstreckenden Sensorkanal 14 auf, der die Wandung 13 radial durchdringt .In the figure, a section of a medium channel 12, for example an intake pipe of an internal combustion engine, is shown cut up to its central axis 12 '. The wall 13 of the medium channel, hereinafter referred to only as the intake pipe 12, has a sensor channel 14 which extends essentially at right angles to the central axis 12 'and penetrates the wall 13 radially.
Ein Drucksensor 10 ist an der Außenseite des Ansaugrohrs 12 an der Wandung 13 angebracht und greift mit einem Sensorabschnitt 11 in den Sensorkanal 14 ein. Der Sensorabschnitt 11 ist im Bereich seines freien Endes mit einer Membran 11' ver- sehen.A pressure sensor 10 is attached to the outside of the intake pipe 12 on the wall 13 and engages with a sensor section 11 in the sensor channel 14. The sensor section 11 is provided with a membrane 11 'in the region of its free end.
Der Sensorkanal 14 weist im wesentlichen zwei Abschnitte auf, nämlich einen dem Inneren des Ansaugrohrs 12 zugewandten freien Abschnitt 16 und einen drucksensorseitigen Abschnitt 18. Der Durchmesser des drucksensorseitigen Abschnitts 18 des Sensorkanals 14 ist größer als der Durchmesser des freien Abschnitts 16, so daß der Querschnitt des drucksensorseitigen Abschnitts 18 größer ist als der Querschnitt des freien Abschnitts 16. Auf diese Weise ist ein dem Drucksensor zuge- wandter kavernenartiger Raum in Inneren der Wandung 13 des Ansaugrohrs 12 um den Sensorkanal 14 herum ausgebildet, der mit einem Einfriersicherungsfluid 20 gefüllt ist. Dabei ist der Sensorabschnitt 11 mit der Membran 11 ' an seinem freien Ende vom Einfriersicherungsfluid 20 umgeben. Der freie Ab- schnitt 16 des Sensorkanals 14 ist nicht mit dem Einfriersicherungsfluid gefüllt, so daß der freie Abschnitt 16 eine Verbindung zwischen dem mit dem Einfriersicherungsfluid 20 gefüllten drucksensorseitigen Abschnitt 18 des Sensorkanals 14 und dem Inneren des Ansaugrohrs 12 bildet . Der Sensorkanal ist zumindest abschnittsweise als Kapillare ausgebildet, wobei die Berechnung der Kapillarkräfte und des Kapillardurchmessers nach den dem Fachmann allgemein bekannten Gleichungen erfolgt .The sensor channel 14 essentially has two sections, namely a free section 16 facing the interior of the intake pipe 12 and a section 18 on the pressure sensor side. The diameter of the pressure sensor section 18 of the sensor channel 14 is larger than the diameter of the free section 16, so that the cross section of the pressure sensor-side section 18 is larger than the cross section of the free section 16. In this way, a cavern-like space facing the pressure sensor is formed in the interior of the wall 13 of the suction pipe 12 around the sensor channel 14, which is filled with a freeze-securing fluid 20. The sensor section 11 with the membrane 11 'is surrounded at its free end by the anti-freeze fluid 20. The free section 16 of the sensor channel 14 is not filled with the freeze-securing fluid, so that the free section 16 forms a connection between the pressure sensor-side section 18 of the sensor channel 14 filled with the freeze-securing fluid 20 and the interior of the intake pipe 12. The sensor channel is designed at least in sections as a capillary, the capillary forces and the capillary diameter being calculated according to the equations generally known to the person skilled in the art.
Alternativ zu dieser Ausführungsform kann der Sensorkanal 14 mit seinem das Einfriersicherungsfluid 20 enthaltenden Abschnitt 18 auch in einem Ansatz des Drucksensors 10 ausgebildet sein, der in eine Öffnung in der Wandung 13 des Ansaug- rohrs 12 einsetzbar ist.As an alternative to this embodiment, the sensor channel 14 with its section 18 containing the freezing fluid 20 can also be formed in an attachment of the pressure sensor 10, which can be inserted into an opening in the wall 13 of the intake pipe 12.
Im Normalzustand des durch das Ansaugrohr 12 strömenden Mediums, das heißt wenn das im Medium enthaltene Fluid eine Temperatur oberhalb seines Gefrierpunktes bzw. seines Festpunk- tes aufweist, wirkt der statische Druck des strömenden Mediums auf die den freien Abschnitt 16 des Sensorkanals 14 zugewandte freie Fläche des Einfriersicherungsfluids 20 und wird über das Einfriersicherungsfluid 20 auf die Membran 11 ' übertragen, wobei sich das Einfriersicherungsfluid wie ein New- ton'sches Fluid verhält. Kommt es hingegen im freien Abschnitt 16 des Sensorkanals 14 zu einem Gefrieren des in dem durch das Ansaugrohr 12 strömenden Medium enthaltenen Fluids, so wirkt sich die hierdurch bewirkte Druckerhöhung derart auf das Einfriersicherungsfluid 20 aus, daß sich das Einfriersi- cherungsfluid 20 verfestigt und die erhöhten Druckkräfte an der Wandung des drucksensorseitigen Abschnitts 18 des Sensorkanals 14 abstützt und somit nicht auf die Membran 11 ' überträgt . In the normal state of the medium flowing through the suction pipe 12, that is to say when the fluid contained in the medium has a temperature above its freezing point or its fixed point, the static pressure of the flowing medium acts on the free surface facing the free section 16 of the sensor channel 14 of the anti-freeze fluid 20 and is transferred to the membrane 11 'via the anti-freeze fluid 20, the anti-freeze fluid behaving like a Newtonian fluid. However, if the fluid contained in the medium flowing through the suction pipe 12 freezes in the free section 16 of the sensor channel 14, the pressure increase thereby caused has an effect on the anti-freeze fluid 20 such that the anti-freeze fluid 20 solidifies and increases it Pressure forces on the wall of the pressure sensor section 18 of the sensor channel 14 is supported and thus not transmitted to the membrane 11 '.

Claims

Patentansprüche claims
1. Drucksensor, insbesondere für eine Brennkraftmaschine mit einem Ansaugrohr, der eine Sensorfläche (11') und einen die Sensorfläche (11') mit dem Inneren eines Mediumkanals (12) verbindenden Sensorkanal (14) aufweist, dadurch gekennzeichnet, daß der Sensorkanal (14) einen Abschnitt (18) aufweist, der mit einem Einfriersicherungsfluid (20) gefüllt ist.1. Pressure sensor, in particular for an internal combustion engine with an intake pipe, which has a sensor surface (11 ') and a sensor surface (11') with the interior of a medium channel (12) connecting sensor channel (14), characterized in that the sensor channel (14 ) has a section (18) which is filled with a freezing fluid (20).
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, daß der Sensorkanal (14) zwischen dem mit einem Einfriersicherungsfluid gefüllten drucksensorseitigen Abschnitt (18) und dem Inneren des Mediumkanals (12) einen freien Abschnitt (16) aufweist.2. Pressure sensor according to claim 1, characterized in that the sensor channel (14) has a free section (16) between the pressure sensor-side section (18) filled with a freezing fluid and the interior of the medium channel (12).
Drucksensor nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß der Sensorkanal (14) in einer Wandung (13) des Mediumkanals (12) ausgebildet ist.Pressure sensor according to claim 1 or 2, characterized in that the sensor channel (14) is formed in a wall (13) of the medium channel (12).
4. Drucksensor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der drucksensorseitige Abschnitt (18) des Sensorkanals (14) als Raum ausgebildet ist, dessen Querschnitt größer ist als der Querschnitt des freien Abschnitts (16) des Sensorkanals (14) .4. Pressure sensor according to claim 1, 2 or 3, characterized in that the pressure sensor-side section (18) of the sensor channel (14) is designed as a space, the cross section of which is larger than the cross section of the free section (16) of the sensor channel (14).
5. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Sensorkanal (14) zumindest abschnittsweise als Kapillare ausgebildet ist. 5. Pressure sensor according to one of the preceding claims, characterized in that the sensor channel (14) is formed at least in sections as a capillary.
EP00958139A 1999-07-24 2000-07-15 Pressure sensor Withdrawn EP1116016A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934832A DE19934832A1 (en) 1999-07-24 1999-07-24 Pressure sensor for IC engine air intake pipe has anti-freeze fluid in section of sensor channel coupling pressure sensor to air intake pipe closest to sensor surface
DE19934832 1999-07-24
PCT/DE2000/002318 WO2001007884A1 (en) 1999-07-24 2000-07-15 Pressure sensor

Publications (1)

Publication Number Publication Date
EP1116016A1 true EP1116016A1 (en) 2001-07-18

Family

ID=7915963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958139A Withdrawn EP1116016A1 (en) 1999-07-24 2000-07-15 Pressure sensor

Country Status (5)

Country Link
EP (1) EP1116016A1 (en)
JP (1) JP2003505689A (en)
KR (1) KR20010075075A (en)
DE (1) DE19934832A1 (en)
WO (1) WO2001007884A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542997B1 (en) 2003-08-07 2006-01-20 삼성에스디아이 주식회사 FPD and Method of fabricating the same
DE10349143B4 (en) * 2003-10-17 2006-05-24 Daimlerchrysler Ag dosing
JP4792427B2 (en) 2007-06-15 2011-10-12 トヨタ自動車株式会社 Piping waterproof connection structure
US20090017337A1 (en) * 2007-07-10 2009-01-15 Dirk Wexel Freeze tolerant pressure sensor
DE102008026611B4 (en) * 2008-06-03 2013-01-24 Continental Automotive Gmbh Pressure sensor assembly
KR200457853Y1 (en) * 2010-01-23 2012-01-10 김외출 Device for drooping a branch of fruit-tree
US8347737B2 (en) * 2011-01-10 2013-01-08 GM Global Technology Operations LLC Pressure sensor for use in fuel cell systems
CN102998047A (en) * 2011-09-19 2013-03-27 洪河 Radial corrugated pipe diaphragm-freezing-preventive pressure gauge with fluorescent indications on dial scales
DE102017217684A1 (en) * 2017-10-05 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Intake tract for an internal combustion engine of a motor vehicle
CN111707407A (en) * 2020-05-28 2020-09-25 延长油田股份有限公司定边采油厂 Anti-spraying and anti-freezing protection device for pressure gauge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246642A (en) * 1985-04-24 1986-11-01 Nippon Denso Co Ltd Pressure sensor
DE19517676B4 (en) * 1995-05-13 2008-01-31 Robert Bosch Gmbh Pressure sensor for an internal combustion engine with an intake pipe
US5792958A (en) * 1997-01-21 1998-08-11 Honeywell Inc. Pressure sensor with a compressible insert to prevent damage from freezing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0107884A1 *

Also Published As

Publication number Publication date
DE19934832A1 (en) 2001-01-25
WO2001007884A1 (en) 2001-02-01
KR20010075075A (en) 2001-08-09
JP2003505689A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
EP2069739B1 (en) Sensor plug for combined pressure- and temperature measurement
EP1510239B1 (en) Liquid filter device
DE102016008442A1 (en) tank valve
DE3148454A1 (en) ALARM VALVE DEVICE
DE102015209919A1 (en) Valve for abnormal fluid
EP1116016A1 (en) Pressure sensor
EP1134467B1 (en) Valve installation in a refrigeration system
EP2209987B1 (en) Liquid-conducting hollow cross-section
EP1285247A1 (en) Frost-resistant pressure sensor
DE1963709A1 (en) Device for preventing or reducing pressure surges in pipeline networks
WO2009130125A1 (en) Heat exchanger, particularly oil cooler
DE3632655C2 (en)
DE2113602A1 (en) Shut-off element with pressure-relieved closure element
DE102012009998B4 (en) Filter device for storing the water content in a liquid
DE102019103119A1 (en) Overflow valve for closing and opening a fluid line system
DE102016115360B4 (en) Overflow valve for at least partially closing and opening a fluid line system
DE102017213885A1 (en) Pressure medium unit, in particular for adjusting and / or regulating a brake pressure in an electronic slip-controllable vehicle brake system and hat-shaped filter element
DE102014106639B4 (en) Pressure relief valve
DE102013004867B4 (en) Filter device with an annular filter element
DE102017100560B4 (en) Shut-off valve, valve gauge unit, metering device and use of a shut-off valve
DE10257124A1 (en) Pressure and differential pressure measuring device with overload protection
DE102014014730A1 (en) contamination indicator
DE102022213195A1 (en) Sensor and measuring device with a sensor
DE102020119022A1 (en) Thermally activated pressure relief device
EP1248091B1 (en) Safety device for flow system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010801

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060201