DE3844376A1 - Wind power installation - Google Patents

Wind power installation

Info

Publication number
DE3844376A1
DE3844376A1 DE3844376A DE3844376A DE3844376A1 DE 3844376 A1 DE3844376 A1 DE 3844376A1 DE 3844376 A DE3844376 A DE 3844376A DE 3844376 A DE3844376 A DE 3844376A DE 3844376 A1 DE3844376 A1 DE 3844376A1
Authority
DE
Germany
Prior art keywords
turbine
air
wind
wind power
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3844376A
Other languages
German (de)
Inventor
Joern Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE3844376A priority Critical patent/DE3844376A1/en
Publication of DE3844376A1 publication Critical patent/DE3844376A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The wind power installation according to the invention is provided, e.g., for mounting on the roofs of buildings, and is used to generate electrical energy (power). The air channels (e.g. 9) which lead the air to the turbine wheels (rotors) (3) and lead it away from them again are shaped in such a way that the air flowing through them is accelerated centripetally and virtually tangentially into the turbine wheels (3). The leading-away of the air, is also performed axially from the turbine via the axial outlet opening (23), above which a plate (22) is mounted. The upper cover of the housing (25) is cambered concavely relative to this plate, and the air channels (e.g. 9) are designed in such a way that the air is accelerated in the direction of the turbine wheels (3) and the cross-section of the air channels (e.g. 9) decreases in the direction of the turbine wheels (3), as a result of which the efficiency is decisively increased. The installation can be set up on site using materials (e.g. expanded metal sprayed with concrete) which are known in the building trade. The number of the movable parts and the costs are relatively low. <IMAGE>

Description

Windkraftanlagen zur Montage auf Gebäudedächern mit einem orstfest montierten Generator (1), der von strö­ mender Luft, die über einen Einlaß mit Leitschaufeln zu einer Turbine strömt, angetrieben wird, wobei die Turbinenwelle beidseitig gelagert ist, sind z. B. aus meiner Patentanmeldung DE 38 29 112 bekannt. Das Ge­ häuse der Windkraftanlage ist dabei in die Windrich­ tung durch den Luftstrom drehbar, gelagert. -Wind turbines for mounting on building roofs with a fixedly mounted generator ( 1 ), which is driven by streaming air that flows through an inlet with guide vanes to a turbine, the turbine shaft being supported on both sides, for. B. known from my patent application DE 38 29 112. The Ge housing of the wind turbine is rotatable in the wind direction by the air flow, stored. -

Bei der erfindungsgemäßen Konstruktion, ist die Zahl der beweglichen Teile dadurch reduziert worden, daß die Windkraftanlage über ebenfalls ortsfeste, d. h. direkt oder indirekt unbeweglich mit dem Fundament verbundene Ein/Auslässe (5, 6, 7, 8) verfügt, die, je nach Windrichtung, mal Ein- oder mal Auslässe für die Luft sein können. Die Windkraftanlage ist zur optimalen Ausnutzung der Möglichkeiten zur Ausnutzung des durch das Gebäude bedingten Druckgra­ dienten (Luv-Lee) und der Strömungsenergie der um das Gebäude strömenden Luft, in ihrer Grundfläche (26) so groß wie die zur Verfügung stehende Dachfläche auszulegen. Eine Platte (22), die etwas größer als die Windkraftanlage ist, wird über der eigentlichen Windkraftmaschine horizontal mit einem von der Größe der Anlage und des Hauses abhängendem Abstand über der oberen Abdeckung (25) der Anlage als Witterungs­ schutz und zur Verbesserung der Strömungseffekte an­ zubringen. Zur weiteren Erhöhung des Druckgradienten zwischen dem Ein/(Auslaß) (5-8) und dem axialen Auslaß (23) Turbingengehäuse (2) ist die obere Abdeckung (25) so konkav zu wölben, daß der größte Abstand zwischen der Platte (22) und der oberen Abdeckung (25) am axialen Auslaß (23) aus dem Turbinengehäuse (2) erreicht wird. Die den Luftstrom zum Turbinengehäuse (3) bzw. davon in radi­ aler Richtung wieder ableitenden Luftkanäle (9, 10, 11, 12, 13, 14) sind seitlich durch Leitschaufeln (15-21) begrenzt, die die Luftgeschwindigkeit der einströ­ menden Luft erhöht. Leitschaufeln dieser Art sind aus der Strömungslehre gut bekannt und müssen empirisch ausgelegt werden. Die zentripetale Verringerung des durchströmten Querschnittes der Luftkanäle (9-14) bis hin zum Turbineneinlaß (z. B. 4) sorgt zusätzlich für eine Erhöhung der Luftgeschwindigkeit. Die Luft strömt durch den Turbineneinlaß (z. B. 4) in das Tur­ binengehäuse (2) und zwar entsprechend den verlänger­ ten Mittenachsen (m) der Luftkanäle (9-14) ungefähr tan­ gential zum imaginären Drehkreis durch die geometri­ schen Mittelpunkte der Turbinenschaufeln des Turbi­ nenläufers (3) die um die Turbinenwelle (24) verlaufen. Die die Schaufeln des Turbinenläufers (3) beaufschla­ gende Luft strömt aufgrund des Luftdruckgradienten, der sich zwischen dem Einlaß und dem Auslaß aufbaut, einerseits aus dem axialen Auslaß (23), andererseits aus dem radialen Auslaß, der den jeweils auf der Lee- Seite liegenden Ein/Auslässen (5, 6, 7, 8) entspricht, und dreht dabei den Turbinenläufer (3), der mit dem Generator (1) fest mechanisch gekoppelt ist, wobei aufgrund der erreichten relativ hohen Turbinendreh­ zahl eine direkte Kopplung mit dem Generator (1) ohne wirkungsgradverschlechterndes Getriebe möglich ist. Bei entsprechend niedrigen Außentemperaturen ist na­ türlich auch die erfindungsgemäße Windkraftanlage von Vereisung bedroht. Gegenüber freistehenden Windkraft­ anlagen besitzt die, auf dem Gebäudedach montierte Anlage noch den Vorteil, durch die Abwärme des Hauses relativ zur Umgebung aufgeheizt zu werden. Die Ver­ eisung kann also bis zur Temperaturen knapp unter 0°C weitgehend aufgehalten werden. Sollten die Tempera­ turen jedoch so niedrig sein, daß eine Vereisung der Turbine dennoch zu befürchten steht, ein Betrieb der­ selben aber erwünscht ist, so kann die Turbine entwe­ der mit herkömmlichen, die Vereisung verhindernden Mitteln, die z. B. aus dem Flugzeugbau bekannt sind, wie die Aufheizung besonders gefährdeter Teile, ge­ schützt werden, oder es erfolgt eine Aufheizung der Turbine durch die Durchleitung der warmen Heizungsab­ gase bzw. der Abluft der Klimaanlage oder sonstiger, z. B. von Industrie- oder Gewerbebetrieben erzeugter, heißer oder warmer Abgase durch die Turbine, wie es in einer Ausführung der erfindungsgemäßen Konstruk­ tion vorgesehen ist, in der eine Verbindungsleitung (28) vom Schornstein des betreffenden Gebäudes bis zum Turbinengehäuse (2) führt. Bei höheren Tempera­ turen ist diese Verbindungsleitung (28) durch eine Schornsteinklappe (27) verschlossen; bei niedrigen Temperaturen wird diese Klappe z. B. über einen Elek­ tromotor thermostatisch gesteuert, geöffnet, wobei der Abgasanteil der in die Turbine eingeleitet wird, über diese Schornsteinklappe (27) so geregelt wird, daß, z. B. schädliche Unterdrücke in der betreffenden Anlagen vermieden werden. Druckabhängige mechanische Steuerungen sind bekannt. Die Ableitung des evtl. entstehenden Kondensates stellt auch kein Problem dar. Es sind hierzu höchstens einige Bohrungen im Turbinengehäuse (2) auf dessen Unterseite vorzusehen. Das Gehäuse (29) der Windkraftanlage wird in Segment­ bauweise erstellt und ist selbsttragend. Hierdurch ist eine leichtgewichtige kastenkonstruktionsartige Konstruktion möglich. Die Segmente entsprechen den Luftkanälen (z. B. 11) und bestehen aus den Leitschau­ feln (17, 18) und dem entsprechenden Teil der oberen Abdeckung (25) und der Grundfläche (26) der Windkraft­ anlage. Das Gehäuse (29) der Windkraftanlage kann aus Metall- oder aus Kunststoff hergestellt werden, oder auch mit, in der Bauwirtschaft bekannten Materi­ alien bauseitig erstellt werden, wobei auch eine Verwendung vorgefertigter Bauelemente (Segmente z. B.) in Frage kommt. Die reduzierte Zahl der beweglichen Teile und der beweglichen Massen auf ein Minimum, nämlich praktisch nur auf Turbine und Generator, bzw. mit der Turbine verbundene Pumpenanlage, ermöglicht eine relativ leichte Konstruktion des Fundamentes der Gesamtanlage. Die vertikale Turbinenwelle (24), der in der Konstruktion an sich bekannten Turbine, ist in einer Ausführung der erfindungsgemäßen Konstruktion mechanisch direkt, z. B. mit dem Läuferrad einer Pumpe verbunden. Die vertikale Turbinenwelle (24) gestattet diese direkte Verbindung ohne Kraftumlenkung; das hö­ here Drehzahlniveau und der bessere Massenausgleich gegenüber, z. B. einer Propellerkonstruktion macht ein Getriebe entbehrlich. Hierdurch werden die Herstel­ lungskosten gering gehalten und ein hoher Wirkungs­ grad der Anlage ist garantiert.In the construction according to the invention, the number of moving parts has been reduced in that the wind turbine also has fixed inlets / outlets ( 5, 6, 7, 8 ), which are connected directly or indirectly immovably to the foundation and which, depending on the wind direction , can sometimes be inlets or outlets for the air. For optimal use of the possibilities for utilizing the pressure graduation caused by the building (Luv-Lee) and the flow energy of the air flowing around the building, the surface area ( 26 ) of the wind turbine should be as large as the available roof area. A plate ( 22 ), which is slightly larger than the wind turbine, is horizontal over the actual wind turbine with a distance depending on the size of the system and the house above the top cover ( 25 ) of the system as weather protection and to improve the flow effects bring to. To further increase the pressure gradient between the inlet / (outlet) ( 5-8 ) and the axial outlet ( 23 ) of the turbine housing ( 2 ), the upper cover ( 25 ) must be curved so that the greatest distance between the plate ( 22 ) and the upper cover ( 25 ) is reached at the axial outlet ( 23 ) from the turbine housing ( 2 ). The air flow to the turbine housing ( 3 ) or from it in the radial direction deriving air channels ( 9, 10, 11, 12, 13, 14 ) are laterally limited by guide vanes ( 15-21 ), which increases the air velocity of the incoming air . Guide vanes of this type are well known from fluid mechanics and must be designed empirically. The centripetal reduction in the cross-section of the air channels ( 9-14 ) through to the turbine inlet (e.g. 4 ) additionally increases the air speed. The air flows through the turbine inlet (z. B. 4 ) in the Tur binengehäuse ( 2 ) and that corresponding to the elongated center axes (m) of the air channels ( 9-14 ) approximately tan gential to the imaginary turning circle through the geometric center points of the turbine blades of the turbine rotor ( 3 ) which run around the turbine shaft ( 24 ). Due to the air pressure gradient that builds up between the inlet and the outlet, the blades of the turbine runner ( 3 ) act on the one hand from the axial outlet ( 23 ), on the other hand from the radial outlet, which is located on the lee side Inlets / outlets ( 5, 6, 7, 8 ) corresponds to and rotates the turbine rotor ( 3 ), which is mechanically coupled to the generator ( 1 ), whereby due to the relatively high turbine speed achieved, a direct coupling to the generator ( 1 ) is possible without reducing the efficiency. If the outside temperature is correspondingly low, the wind turbine according to the invention is of course also at risk of icing. Compared to free-standing wind turbines, the system installed on the building roof has the advantage of being heated up by the waste heat of the house relative to the surroundings. The icing can therefore be largely stopped up to temperatures just below 0 ° C. However, should the temperatures be so low that icing of the turbine is still to be feared, but operation of the same is desirable, the turbine can either use conventional anti-icing agents, e.g. B. are known from aircraft construction, such as the heating of particularly vulnerable parts, be protected, or there is a heating of the turbine by passing the warm Heizab gases or the exhaust air of the air conditioning system or other, z. B. generated by industrial or commercial, hot or warm exhaust gases from the turbine, as is provided in an embodiment of the construction according to the invention, in which a connecting line ( 28 ) leads from the chimney of the building in question to the turbine housing ( 2 ). At higher temperatures, this connecting line ( 28 ) is closed by a chimney flap ( 27 ); at low temperatures this flap is z. B. thermostatically controlled by an elec tric motor, opened, the proportion of exhaust gas which is introduced into the turbine via this chimney flap ( 27 ) is regulated so that, for. B. harmful negative pressures in the systems concerned can be avoided. Pressure-dependent mechanical controls are known. The drainage of the condensate that may arise is also not a problem. A maximum of a few holes in the turbine housing ( 2 ) must be provided on the underside thereof. The housing ( 29 ) of the wind turbine is constructed in segments and is self-supporting. This enables a lightweight, box-type construction. The segments correspond to the air ducts (e.g. 11 ) and consist of the guide vanes ( 17, 18 ) and the corresponding part of the upper cover ( 25 ) and the base area ( 26 ) of the wind power plant. The housing ( 29 ) of the wind turbine can be made of metal or plastic, or can be created on-site with materials known in the construction industry, with the use of prefabricated components (segments, for example) also being considered. The reduced number of moving parts and moving masses to a minimum, namely practically only on the turbine and generator, or pump system connected to the turbine, enables a relatively light construction of the foundation of the overall system. The vertical turbine shaft ( 24 ), the turbine known per se in the construction, is mechanically direct in one embodiment of the construction according to the invention, e.g. B. connected to the impeller of a pump. The vertical turbine shaft ( 24 ) allows this direct connection without force redirection; the higher speed level and the better mass balance compared to e.g. B. a propeller design makes a transmission unnecessary. As a result, the manufacturing costs are kept low and a high efficiency of the system is guaranteed.

Claims (7)

1. Windkraftanlage, vorzugsweise zur Montage auf Ge­ bäudedächern mit einem ortsfest montierten Genera­ tor, der von einer ebenfalls ortsfesten, beidseitig gelagerten Turbine direkt antreibbar ist, und einem Luft-Einlaß mit mehreren Leitschaufeln, dadurch gekennzeichnet, daß jeweils mindestens ein Einlaß/Auslaß (5, 6, 7, 8) für jede Gebäudeseite vorgesehen ist, die Grundfläche der Windkraftanlage (26) ungefähr dem Grundriß des Daches des Gebäudes entspricht, und von diesen Einlässen/Auslässen (5, 6, 7, 8) jeweils Luftkanäle (9, 10, 11, 12, 13, 14) zum ent­ sprechenden Einlaß (4) in das Turbinengehäuse (2) führen, und die Luftkanäle (9, 10, 11, 12, 13, 14) mit Leitschaufeln (15, 16, 17, 18, 19, 20, 21) so gestaltet sind, daß die durch sie strömende Luft zentripetal beschleunigt wird, und die Luftkanäle (9, 10, 11, 12, 13, 14) jeweils mit Ein/Auslaß, und die Leitschau­ feln (15, 16, 17, 18, 19, 20, 21) ortsfest mit dem Funda­ ment, bzw. ortsfest mit dem Dach des betreffenden Gebäudes verbunden ist.1. Wind turbine, preferably for mounting on Ge building roofs with a fixed mounted generator, which can be driven directly by a stationary, bilaterally mounted turbine, and an air inlet with several guide vanes, characterized in that at least one inlet / outlet ( 5, 6, 7, 8 ) is provided for each side of the building, the base area of the wind turbine ( 26 ) corresponds approximately to the floor plan of the roof of the building, and air inlets ( 9, 6, 7, 8 ) of these inlets / outlets ( 5, 6, 7 ) 10, 11, 12, 13, 14 ) lead to the corresponding inlet ( 4 ) in the turbine housing ( 2 ), and the air channels ( 9, 10, 11, 12, 13, 14 ) with guide vanes ( 15, 16, 17, 18, 19, 20, 21 ) are designed so that the air flowing through them is centripetal accelerated, and the air channels ( 9, 10, 11, 12, 13, 14 ) each with inlet / outlet, and the guide vents ( 15 , 16, 17, 18, 19, 20, 21 ) stationary with the foundation, or stationary with is connected to the roof of the building in question. 2. Windkraftanlage gemäß dem Hauptanspruch, dadurch gekennzeichnet, daß die Ein/Auslässe (5, 6, 7, 8) der Luftkanäle (9, 10, 11, 12, 13, 14) mit den entsprechenden Leitschaufeln (15, 16, 17, 18, 19, 20, 21), die Turbineneinlässe (z. B. 4), das Turbinengehäuse (2) und der Turbinenläufer (3) so gestaltet sind, daß sie, abhängig von der Windrichtung, sowohl die einströmende Luft zum Turbinenläufer (3) leiten, als auch die, aus dem Turbinengehäuse (2) strömende Luft teilweise ab­ leiten, und der restliche Teil der eingeströmten Luft in axialer Richtung aus dem Turbinengehäuse (2) strömen kann und eine, in ihren äußeren Um­ rissen etwas größer als die Grundfläche (26) der Windkraftanlage gestaltete, horizontale Platte (22) über der oberen Abdeckung (25) der Windkraftanlage befestigt ist, die konkav zur Platte (22) darüber ge­ formt, mit dem größten Abstand zur Platte (22) am axi­ alen Auslaß (23) zur Erzeugung eines maximalen Druck­ gefälles zwischen den Ein/Auslässen (5, 6, 7, 8) und und dem axialen Auslaß (23) der Turbine angeordnet ist, und sich die Luftkanäle (9, 10, 11, 12, 13, 14) zentripetal zum Turbineneinlaß (z. B. 4) hin, stark in ihrem durchströmten Querschnitt verkleinern und die Luftkanäle (9, 10, 11, 12, 13, 14) und die Turbineneinlässe (z. B. 4) so geformt sind, daß die Luft in etwa tangential in den Turbinenläufer (3) eintreten kann, also die imaginär verlängerten Mittelachsen (m) der Luftkanäle (9, 10, 11, 12, 13, 14) ungefähr tangential zum imaginären Drehkreis der geometrischen Mittelpunkte der Turbinenschaufeln um die Turbinenwelle (24) verlaufen. 2. Wind power plant according to the main claim, characterized in that the inlets / outlets ( 5, 6, 7, 8 ) of the air ducts ( 9, 10, 11, 12, 13, 14 ) with the corresponding guide blades ( 15, 16, 17, 18, 19, 20, 21 ), the turbine inlets (e.g. 4 ), the turbine housing ( 2 ) and the turbine rotor ( 3 ) are designed in such a way that, depending on the wind direction, they both the inflowing air to the turbine rotor ( 3 ) lead, as well as the air flowing out of the turbine housing ( 2 ) partially, and the remaining part of the incoming air can flow in the axial direction out of the turbine housing ( 2 ) and one, in its outer order, slightly larger than the base ( 26 ) designed the wind turbine, horizontal plate ( 22 ) above the upper cover ( 25 ) of the wind turbine, which is concave to the plate ( 22 ) ge above, with the greatest distance to the plate ( 22 ) at the axial outlet ( 23rd ) to generate maximum pressure it is arranged between the inlets / outlets ( 5, 6, 7, 8 ) and the axial outlet ( 23 ) of the turbine, and the air ducts ( 9, 10, 11, 12, 13, 14 ) are centripetal to the turbine inlet (e.g. . B. 4 ) down, greatly reduce in their cross-section and the air channels ( 9, 10, 11, 12, 13, 14 ) and the turbine inlets (z. B. 4 ) are shaped so that the air is approximately tangential in the Turbine rotor ( 3 ) can occur, i.e. the imaginary elongated central axes (m) of the air channels ( 9, 10, 11, 12, 13, 14 ) run approximately tangentially to the imaginary rotating circle of the geometric center points of the turbine blades around the turbine shaft ( 24 ). 3. Windkraftanlage nach den Ansprüchen 1-2, da­ durch gekennzeichnet, daß die Zahl der beweglichen Teile und die bewegten Massen der Windkraftanlage trotz großer luft­ führender Ein/Auslässe (5, 6, 7, 8) durch die orts­ feste Montage der Luftkanäle (9-14), der Leitschau­ feln (15-21) und des Turbinengehäuses (2) relativ gering sind und relativ geringe zusätzliche Bela­ stungen für das Fundament der Windkraftanlage auftreten, und bei freitragender Bauweise auf Stüt­ zen die Windkraftanlage zusätzlich durch die Über­ dachung der gesamten Fläche als Witterungsschutz für das Abstellen von Fahrzeugen genutzt werden kann.3. Wind power plant according to claims 1-2, characterized in that the number of moving parts and the moving masses of the wind power plant despite large air-carrying inlets / outlets ( 5, 6, 7, 8 ) by the fixed mounting of the air channels ( 9-14 ), the guide vanes ( 15-21 ) and the turbine housing ( 2 ) are relatively low and relatively low additional loads occur for the foundation of the wind turbine, and in the case of cantilevered construction on supports the wind turbine is additionally covered by the roof entire area can be used as weather protection for parking vehicles. 4. Windkraftanlage nach den Ansprüchen 1-3, dadurch gekennzeichnet, daß über eine Verbindungsleitung (28) und eine Schorn­ steinklappe (27) die Heizungsabgase, bzw. die Ab­ luft der Klimaanlage in die Turbine einleitbar sind, und diese Schornsteinklappe (27) luftmengen- und temperaturabhängig gesteuert ist.4. Wind turbine according to claims 1-3, characterized in that via a connecting line ( 28 ) and a chimney flap ( 27 ), the heating gases, or the air from the air conditioning system can be introduced into the turbine, and this chimney flap ( 27 ) air volumes - And is controlled depending on the temperature. 5. Windkraftanlage nach den Ansprüchen 1-4, dadurch gekennzeichnet, daß das Gehäuse (29) der Windkraftanlage selbsttragend, selbsttragend in Segmentbauweise erstellbar ist, und die Segmente jeweils einem Luftkanal (z. B. 11) mit den Leitschaufeln (z. B. 17, 18) und den zugehöri­ gen Teilen der oberen Abdeckung (25) und der Grund­ fläche (26) der Windkraftanlage entsprechen.5. Wind power plant according to claims 1-4, characterized in that the housing ( 29 ) of the wind power plant is self-supporting, self-supporting in segment design, and the segments each have an air channel (z. B. 11 ) with the guide vanes (z. B. 17, 18 ) and the associated parts of the upper cover ( 25 ) and the base surface ( 26 ) of the wind turbine correspond. 6. Windkraftanlage nach den Ansprüchen 1-5, dadurch gekennzeichnet, daß die Turbinenwelle (24) direkt mechanisch mit einer Pumpenwelle (30) ohne Getriebe, Kraftumleitung o. ä., gekoppelt ist.6. Wind power plant according to claims 1-5, characterized in that the turbine shaft ( 24 ) is directly mechanically coupled to a pump shaft ( 30 ) without a gear, power diversion or the like. 7. Windkraftanlage nach den Ansprüchen 1-6, dadurch gekennzeichnet, daß das Gehäuse (30) der Windkraftanlage mit aus der Bauwirtschaft bekannten Materialien bauseitig erstellt werden kann, wobei auch eine Verwendung vorgefertigter Bauelemente (Segmente z. B.) in Frage kommt.7. Wind power plant according to claims 1-6, characterized in that the housing ( 30 ) of the wind power plant can be created on-site with materials known from the construction industry, with the use of prefabricated components (segments, for example) also being suitable.
DE3844376A 1988-12-30 1988-12-30 Wind power installation Withdrawn DE3844376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3844376A DE3844376A1 (en) 1988-12-30 1988-12-30 Wind power installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3844376A DE3844376A1 (en) 1988-12-30 1988-12-30 Wind power installation

Publications (1)

Publication Number Publication Date
DE3844376A1 true DE3844376A1 (en) 1990-07-05

Family

ID=6370570

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3844376A Withdrawn DE3844376A1 (en) 1988-12-30 1988-12-30 Wind power installation

Country Status (1)

Country Link
DE (1) DE3844376A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394016A (en) * 1993-04-22 1995-02-28 Hickey; John J. Solar and wind energy generating system for a high rise building
DE19506946C1 (en) * 1995-02-28 1996-05-15 Heubuch Josef Combined wind-power generator and ventilator unit e.g. for building
WO1996038668A1 (en) * 1995-05-30 1996-12-05 Lämpötaito Oy Procedure and apparatus for increasing wind power density and recovering wind energy
DE19648632A1 (en) * 1996-10-17 1998-04-23 Burger Helmut Wind power system for converting wind energy into electric energy in horizontal and vertical arrangement
NL1005233C2 (en) * 1997-02-10 1998-08-11 Spiral Ventures B V Air-current-receiving and processing equipment
WO1999004163A1 (en) * 1997-07-15 1999-01-28 Andrew Joseph Schembri Funnel wind generator
US6041596A (en) * 1998-03-23 2000-03-28 Royer; George R. Building structure for utilization of wind power
DE19946389A1 (en) * 1999-09-28 2001-03-29 Viktor Otte Wind energy converter (WEK) with vertical rotor axis and combination flow profiles
DE20104727U1 (en) 2001-03-19 2001-12-13 Eger, Wilhelm, 72379 Hechingen Wind energy wheel
WO2003072938A1 (en) * 2002-02-22 2003-09-04 Josef Zeitler Power generation system
WO2003091569A1 (en) * 2002-04-24 2003-11-06 Addix, Horst, Albert-Johann Wind power plant with vertical rotors
US6877948B2 (en) * 2001-07-10 2005-04-12 Alan B. Cutcher Wind turbine generator
WO2006059062A1 (en) * 2004-12-02 2006-06-08 Raymond Keith Jackson Wind energy conversion apparatus built into building
CN100366894C (en) * 2002-12-30 2008-02-06 约瑟普;路易斯;戈麦斯;高马 Improved wind force recovering device
DE102007035928A1 (en) * 2007-07-31 2009-02-12 Franz Schmidbauer Electrical energy producing equipment i.e. radiator wind-power plant, has horizontal wind wheel shifted in rotation by acceleration of wind on inclined roof and by additional acceleration of wind by wind deflectors
AT503894B1 (en) * 2006-06-27 2009-02-15 Wunderl Johann VERTICAL WIND TURBINE
DE202012002160U1 (en) 2012-02-29 2012-05-10 Immo Mielke Arrangement of wind turbines (WKM) in air ducts, which are stored in the roof of a building
EP2516847A1 (en) * 2009-12-21 2012-10-31 Pierre Lecanu Wind turbine set up on the last floor of a residence, in particular in an urban area
ES2564052A1 (en) * 2016-01-08 2016-03-17 Dumitru BICA Self-contained energy module (Machine-translation by Google Translate, not legally binding)
GB2534351A (en) * 2014-12-29 2016-07-27 Greer Kieran New wind turbine design based on tapering funnels

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394016A (en) * 1993-04-22 1995-02-28 Hickey; John J. Solar and wind energy generating system for a high rise building
DE19506946C1 (en) * 1995-02-28 1996-05-15 Heubuch Josef Combined wind-power generator and ventilator unit e.g. for building
WO1996038668A1 (en) * 1995-05-30 1996-12-05 Lämpötaito Oy Procedure and apparatus for increasing wind power density and recovering wind energy
DE19648632A1 (en) * 1996-10-17 1998-04-23 Burger Helmut Wind power system for converting wind energy into electric energy in horizontal and vertical arrangement
NL1005233C2 (en) * 1997-02-10 1998-08-11 Spiral Ventures B V Air-current-receiving and processing equipment
WO1999004163A1 (en) * 1997-07-15 1999-01-28 Andrew Joseph Schembri Funnel wind generator
US6041596A (en) * 1998-03-23 2000-03-28 Royer; George R. Building structure for utilization of wind power
DE19946389A1 (en) * 1999-09-28 2001-03-29 Viktor Otte Wind energy converter (WEK) with vertical rotor axis and combination flow profiles
DE20104727U1 (en) 2001-03-19 2001-12-13 Eger, Wilhelm, 72379 Hechingen Wind energy wheel
US6877948B2 (en) * 2001-07-10 2005-04-12 Alan B. Cutcher Wind turbine generator
WO2003072938A1 (en) * 2002-02-22 2003-09-04 Josef Zeitler Power generation system
WO2003091569A1 (en) * 2002-04-24 2003-11-06 Addix, Horst, Albert-Johann Wind power plant with vertical rotors
CN100366894C (en) * 2002-12-30 2008-02-06 约瑟普;路易斯;戈麦斯;高马 Improved wind force recovering device
WO2006059062A1 (en) * 2004-12-02 2006-06-08 Raymond Keith Jackson Wind energy conversion apparatus built into building
AT503894B1 (en) * 2006-06-27 2009-02-15 Wunderl Johann VERTICAL WIND TURBINE
DE102007035928A1 (en) * 2007-07-31 2009-02-12 Franz Schmidbauer Electrical energy producing equipment i.e. radiator wind-power plant, has horizontal wind wheel shifted in rotation by acceleration of wind on inclined roof and by additional acceleration of wind by wind deflectors
EP2516847A1 (en) * 2009-12-21 2012-10-31 Pierre Lecanu Wind turbine set up on the last floor of a residence, in particular in an urban area
DE202012002160U1 (en) 2012-02-29 2012-05-10 Immo Mielke Arrangement of wind turbines (WKM) in air ducts, which are stored in the roof of a building
GB2534351A (en) * 2014-12-29 2016-07-27 Greer Kieran New wind turbine design based on tapering funnels
ES2564052A1 (en) * 2016-01-08 2016-03-17 Dumitru BICA Self-contained energy module (Machine-translation by Google Translate, not legally binding)
WO2017118773A1 (en) * 2016-01-08 2017-07-13 Bica Dumitru Autonomous energy module

Similar Documents

Publication Publication Date Title
DE3844376A1 (en) Wind power installation
EP1466089B1 (en) Flow pipe comprising a water turbine having a variable cross-section
WO2015078829A1 (en) Thermal power plant
DE2914957A1 (en) Wind-driven wheel coupled to generator or pump - enclosed by housing with variable air intake and outlet slots
DE112017004377T5 (en) Wind turbine installation
DE102009015669A1 (en) Small wind turbine
DE102011108512B4 (en) Wind turbine
DE2847672C2 (en) Rotor for converting wind power into electrical and mechanical energy
DE19903846C2 (en) Module with a jacket turbine
DE4034383A1 (en) Wind turbine functioning in accordance with turbine theory - achieves spin-free flow behind running equipment
DE2521588A1 (en) Wind driven power unit with vertical air riser tube - has additional impeller on top with two or more contrarotating rotors
DE102018127869B4 (en) Device for generating electrical energy and corresponding method
WO2002014689A1 (en) Wind power station having a chimney effect
EP0131872B1 (en) Heater for small spaces
DE19905818C2 (en) Gas turbine power plant
DE4413558C1 (en) Rotary body machine for production of mechanical and/or electrical energy
DE60113826T2 (en) Turbocharger with vane ring coupling
DE202023002231U1 (en) Energy conversion plant
AT510956B1 (en) WIND TURBINE
DE2644819A1 (en) Wind powered electricity generator - has stiffened construction to withstand storm conditions and weather protection for electrical generator
DE3904806A1 (en) Heat pump
BE1012633A6 (en) Rotary Wind Turbine
DE10322919A1 (en) Wind turbine system has turbines, preferably arranged in pairs and contra-rotating in horizontally rotatable frame, turbine blades forming acceleration grid in shape, position as in reaction turbine
DE102013007489B4 (en) System for removing exhaust gas flow rates, comprising at least one line
EP2971759B1 (en) Pressure producing device to collect energy from solar and/or wind sources

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee