DE3638347A1 - Control surface system for controlling aircraft - Google Patents

Control surface system for controlling aircraft

Info

Publication number
DE3638347A1
DE3638347A1 DE19863638347 DE3638347A DE3638347A1 DE 3638347 A1 DE3638347 A1 DE 3638347A1 DE 19863638347 DE19863638347 DE 19863638347 DE 3638347 A DE3638347 A DE 3638347A DE 3638347 A1 DE3638347 A1 DE 3638347A1
Authority
DE
Germany
Prior art keywords
control surface
eta
rudder
incidence angle
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19863638347
Other languages
German (de)
Other versions
DE3638347C2 (en
Inventor
Andreas Heinrich
Georg Heinrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19863638347 priority Critical patent/DE3638347A1/en
Publication of DE3638347A1 publication Critical patent/DE3638347A1/en
Application granted granted Critical
Publication of DE3638347C2 publication Critical patent/DE3638347C2/de
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/08Stabilising surfaces mounted on, or supported by, wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

The control surfaces (3) and (4) are provided with a control surface incidence angle alpha R corresponding to any control surface rotation angle eta (see Figure 1) by deflecting the control surface rotation shaft (2) through the angle beta with respect to the aircraft X-axis. In the case of a control surface rotation angle of eta = 0@, the control surface incidence angle alpha R3 consists of the sum of the wing incidence angle alpha F and of the incidence angle of the control surface (3) with respect to the wing (1). As the control surface rotation angle eta becomes greater, the control surface incidence angle alpha R3 is reduced by the amount DELTA alpha 3 = tan beta x sin eta , the incidence angle alpha R4 of the control surface (4) at the same time increasing by a specific amount of DELTA alpha 4. The sum of the vertical components of the control surface loads Rz of the control surfaces (3) and (4) accordingly run from a maximum in the -Z direction at eta = 0@ to a maximum in the +Z direction at eta = 90@. In this "nose-up" flying attitude ( eta = 90@ and maximum wing incidence angle alpha Fmax or pull-out where n > 1), turning flight can also be initiated by control surface deflection, with an aileron effect. In this case, the control surface system on one side of the wing is rotated from eta = 90@ to eta = 0@. The maximum vertical control surface load Rz is in this case rotated from +Rz to -Rz. The lift asymmetry on the wing produces the required moment Mx. At the same time, when eta = 0@, in comparison with eta = 90@, the high induced drag on the control surface (4) - because of the reduction in the incidence angle alpha R4 - reduces, so that the total drag W of the control surface system at eta = ... Original abstract incomplete. <IMAGE>

Description

Die Erfindung betrifft ein Rudersystem zur Steuerung von Flugzeugen um zwei bzw. drei Achsen.The invention relates to a rudder system for control of aircraft around two or three axes.

Steuerung um zwei Achsen wird erreicht, wenn das Rudersystem in X-Richtung sich im Bereich des Schwer­ punktes (SP) befindet und die Aufgaben von konventio­ nellen Quer- und Seitenrudern wahrnimmt, jedoch die Steuerung um die Y-Achse von einem Höhenleitwerk be­ wirkt wird. Steuerung um drei Achsen wird erreicht, wenn sich das Rudersystem in einem Abstand a hinter dem Schwerpunkt (SP) befindet, wie bei einem stark ge­ pfeilten Flügel, einem Delta-Flügel oder bei Enten­ konfiguration, (Flugzeug mit Canardleitwerk).Control around two axes is achieved when the rudder system in the X direction is in the area of the center of gravity (SP) and performs the tasks of conventional ailerons and rudders, but the control around the Y axis is effected by an elevator . Control around three axes is achieved when the rudder system is at a distance a behind the center of gravity (SP) , such as with a strongly arrowed wing, a delta wing or with a duck configuration (aircraft with a canard stabilizer).

Es ist bekannt, daß zur Steuerung der Flugzeuge um drei Achsen, Querruder, Höhenruder und Seitenruder dienen. Kombinationen von Seiten- und Höhenruder wurden im "V-Leitwerk" realisiert. Querruder sind (zumindest bei qualitativ hochwertigen Flugzeugen) im äußeren Flügelbereich untergebracht.It is known to control the aircraft around three axes, ailerons, elevator and rudder serve. Combinations of rudder and elevator were implemented in the "V-tail". Are ailerons (at least for high quality aircraft) housed in the outer wing area.

Dieser konventionellen Ruderkonfiguration sind folgende Nachteile gemeinsam:This are conventional rudder configuration the following disadvantages in common:

  • 1. Störung der optimalen Strömungsverhältnisse am äußeren Flügel durch Querrudereinbau.1. Disruption of the optimal flow conditions on the outer wing by aileron installation.
  • 2. Leistungsverlust durch Abminderung des c α -Beiwer­ tes infolge der Flügelschränkung wegen Strömungsab­ reißgefahr im Querruderbereich. 2. Loss of performance due to a reduction in the c α value due to the wing restriction due to the risk of tearing in the aileron area.
  • 3. Verwindung des Flügels bei großer Flügel­ streckung.3. Twisting of the wing with large wing stretching.
  • 4. Negatives Wendemoment bei Querruderausschlag.4. Negative turning moment with aileron deflection.
  • 5. Großes Seitenleitwerk bei großer Flügelspannweite.5. Large vertical tail with large wing span.

Der Erfindung liegt die Aufgabe zugrunde, die Flug­ zeugleistung durch geringes Zellengewicht, einfache Bauweise, bei gleichzeitig besserem aerodynamischen Konzept zu steigern und die Sicherheit durch die Redundanz der Rudersysteme zu erhöhen.The invention has for its object the flight low cell weight, simple Construction, with better aerodynamic at the same time Increase concept and security through the To increase the redundancy of the rudder systems.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß wegen des Winkels β der Ruderdrehachse (2) zur Flugzeug-X-Achse, bei Änderung des Ruderdrehwinkels eine Anstellwinkeländerung Δα an den Rudern (3) und (4) erfolgt.According to the invention, this object is achieved by that because of the angleβ the rudder axis of rotation (2nd) to Plane-X-Axis when changing the rudder angle   a change in the angle of attackΔα at the oars (3rd) and (4th) he follows.

Die mit der Erfindung erzielbaren Vorteile sind folgende:The advantages that can be achieved with the invention are the following:

  • 1. Entlastung des Flügels beim Abfangen (n < 1) durch die Ruderlast, die den Abfangvorgang einleitet (Fig. 2b).1. Relief of the wing during interception (n <1) by the rudder load, which initiates the interception process ( Fig. 2b).
  • 2. Verringerung des Flügeltorsionsmomentes bei Quer­ ruderwirkung, dadurch, daß die Querruderlast nicht wie üblich am Querruder und somit im Abstand zur ela­ stischen Drehachse entsteht, sondern am Ruder (3) etwa im Abstand O zur elastischen Drehachse. Besonders vorteilhaft ist es, daß durch die Änderung der Ein­ baulage des Rudersystems in X-Richtung, das maximale Flügeltorsionsmoment beeinflußt werden kann.2. Reduction of the wing torsional moment at aileron action, in that the aileron load does not arise as usual on the aileron and thus at a distance from the elastic axis of rotation, but at the rudder ( 3 ) approximately at a distance O to the elastic axis of rotation. It is particularly advantageous that the maximum wing torsional moment can be influenced by changing the installation position of the rudder system in the X direction.
  • 3. Positives - anstatt negatives Wendemoment entsteht im Kurvenflug, da beim Ruderausschlag η (Fig. 2c) sich der induzierte Widerstand am Ruder (4), mit gerin­ gerer Streckung, schneller vergrößert als der indu­ zierte Widerstand am Ruder (3) (größere Streckung) abnimmt.3. Positive - instead of negative turning moment arises when cornering, because with the rudder deflection η ( Fig. 2c) the induced resistance at the rudder ( 4 ), with less stretch, increases faster than the induced resistance at the rudder ( 3 ) (greater stretch ) decreases.
  • 4. Durch das positive Wendemoment ist gerade bei Flügeln mit großer Spannweite ein kleines Ruder (4) ausreichend.4. Due to the positive turning moment, a small rudder ( 4 ) is sufficient, especially for wings with a large wingspan.
  • 5. Verringerung des induzierten Widerstandes am Flügel auf Grund vergrößerter Spannweite durch Ruder (3).5. Reduction of the induced drag on the wing due to increased span by rudder ( 3 ).
  • 6. Keine Erhöhung des effektiven Flügelanstellwinkels durch Querruderausschlag. Deshalb keine Abreißgefahr der Strömung bei α max im äußeren Flügelbereich und somit keine Flügelschränkung erforderlich.6. No increase in the effective wing angle by aileron deflection. Therefore, there is no risk of the flow breaking off at α max in the outer wing area and therefore no wing restriction required.
  • 7. Selbständige Stabilisierung (ohne Trimmung) des Flugzeuges um die Y-Achse aufgrund der Windfahnen­ stabilität des Rudersystems, bei der jeweils gewähl­ ten Fluggeschwindigkeit, je nach Flügelklappen­ stellung und Canardklappenstellung und Moment des Motorschubes um die Y-Achse.7. Independent stabilization (without trimming) of the aircraft around the Y axis due to the stability of the rudder system due to the wind vane stability, at the selected flight speed, depending on the wing flap position and canard flap position and the moment of engine thrust around the Y axis.
  • 8. Ausreichende Manövrierfähigkeit mit einem Ruder­ system an einer Flügelseite bei Ausfall des gegen­ überliegenden Systems. 8. Adequate maneuverability with an oar system on one wing side in the event of failure of the counter overlying system.  
  • 9. Konstruktive und fertigungstechnische Verein­ fachung:
    • a. durch Zusammenlegen der Funktionen von Quer-, Höhen- und Seitenruderwirkung auf ein Rudersystem,
    • b. Ansteuerung der Ruder mit Seilen anstatt Druck­ elementen, (Rohr) wegen des rückführenden Ruder­ momentes möglich.
    9. Design and manufacturing simplification:
    • a. by combining the functions of aileron, elevator and rudder action on a rudder system,
    • b. Control of the rudder with cables instead of pressure elements, (tube) possible due to the returning rudder torque.
  • 10. Auftriebshilfen (Klappen) können über die ganze Flügelspannweite angebracht werden.10. Buoyancy aids (flaps) can all over Wingspan can be attached.

Die Vorteile der Pos. 1, 7 und 9a gelten bei Drei­ achsensteuerung.The advantages of items 1, 7 and 9a apply to three axis control.

Die Vorteile der Pos. 2 bis 8 und 10 gelten für die Zwei- und Dreiachsensteuerung.The advantages of items 2 to 8 and 10 apply to the Two and three axis control.

Claims (3)

1. Rudersystem zur Steuerung von Flugzeugen um zwei bzw. drei Achsen, das im Bereich der Flügelenden (1) ange­ ordnet ist, dadurch gekennzeichnet, daß die Ruderausschläge Δα durch Drehen des Rudersystems um die Ruderachse (2) - um einen Winkel η - erzeugt werden, wobei die Ruderachse (2) den Winkel β zur Flug­ zeug-x-Achse einnimmt.1. rudder system for controlling aircraft around two or three axes, which is arranged in the area of the wing ends ( 1 ), characterized in that the rudder deflections Δα by rotating the rudder system around the rudder axis ( 2 ) - generated by an angle η - are, with the rudder shaft (2) the angle β of air zeug- x axis occupies. 2. Rudersystem nach Anspruch 1, dadurch gekenn­ zeichnet, daß zwei Ruder, Ruder (3) und Ruder (4) in etwa senkrecht zueinander angeordnet sind, wobei zusätzlich das Ruder (4) um die Ruderlängs­ achse (5) den Ruderausschlagwinkel ± ε erzeugen kann.2. Rudder system according to claim 1, characterized in that two rudders, rudder ( 3 ) and rudder ( 4 ) are arranged approximately perpendicular to each other, wherein in addition the rudder ( 4 ) about the rudder longitudinal axis ( 5 ) generate the rudder deflection angle ± ε can. 3. Rudersystem nach Anspruch 1 u. 2, dadurch gekenn­ zeichnet, daß die Ruder (3) und (4) so ange­ ordnet sind, daß sie bei Anströmung Ruderkräfte (R 3) bzw. (R 4) erzeugen, deren Momente um die Ruderachse (2) einander entgegengesetzt sind.3. Rudder system according to claim 1 u. 2, characterized in that the rudders ( 3 ) and ( 4 ) are arranged so that they generate rudder forces (R 3 ) and (R 4 ), the moments about the rudder axis ( 2 ) are opposite to each other with the flow.
DE19863638347 1986-11-10 1986-11-10 Control surface system for controlling aircraft Granted DE3638347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19863638347 DE3638347A1 (en) 1986-11-10 1986-11-10 Control surface system for controlling aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863638347 DE3638347A1 (en) 1986-11-10 1986-11-10 Control surface system for controlling aircraft

Publications (2)

Publication Number Publication Date
DE3638347A1 true DE3638347A1 (en) 1988-05-19
DE3638347C2 DE3638347C2 (en) 1991-10-10

Family

ID=6313613

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863638347 Granted DE3638347A1 (en) 1986-11-10 1986-11-10 Control surface system for controlling aircraft

Country Status (1)

Country Link
DE (1) DE3638347A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072894A (en) * 1989-10-02 1991-12-17 Rockwell International Corporation Apparatus and method for increasing the angle of attack operating range of an aircraft
WO1995011159A1 (en) * 1993-10-19 1995-04-27 Short Brothers Plc Aircraft flight control system
DE102008022452A1 (en) * 2008-05-08 2009-12-03 Bauhaus Luftfahrt E.V. Aircraft, has central flight controller adapted such that individual auxiliary wings are adjusted in position independent of other auxiliary wings, where position of auxiliary wings is adjusted to each other and to main wings
US8944386B2 (en) 2011-06-09 2015-02-03 Aviation Partners, Inc. Split blended winglet
US9033282B2 (en) 2010-07-14 2015-05-19 Airbus Operations Limited Wing tip device
US9302766B2 (en) 2008-06-20 2016-04-05 Aviation Partners, Inc. Split blended winglet
US9381999B2 (en) 2008-06-20 2016-07-05 C. R. Bard, Inc. Wing tip with optimum loading
RU2616458C1 (en) * 2016-04-01 2017-04-17 Борис Владимирович Мищенко Supersonic aircraft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318230B4 (en) * 2002-04-22 2006-04-20 Mayer, Erhard, Dr. Method and apparatus for compensating for side winds when approaching aircraft
CN104554705A (en) * 2014-11-19 2015-04-29 中国航空工业集团公司沈阳飞机设计研究所 Method for reducing steering surface hinge moment of general-purpose airplane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2756107B1 (en) * 1977-12-16 1979-06-28 Messerschmitt Boelkow Blohm Highly effective vertical stabilizer with variable wing geometry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2756107B1 (en) * 1977-12-16 1979-06-28 Messerschmitt Boelkow Blohm Highly effective vertical stabilizer with variable wing geometry

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072894A (en) * 1989-10-02 1991-12-17 Rockwell International Corporation Apparatus and method for increasing the angle of attack operating range of an aircraft
WO1995011159A1 (en) * 1993-10-19 1995-04-27 Short Brothers Plc Aircraft flight control system
DE102008022452A1 (en) * 2008-05-08 2009-12-03 Bauhaus Luftfahrt E.V. Aircraft, has central flight controller adapted such that individual auxiliary wings are adjusted in position independent of other auxiliary wings, where position of auxiliary wings is adjusted to each other and to main wings
DE102008022452B4 (en) * 2008-05-08 2010-09-23 Bauhaus Luftfahrt E. V. Airplane with actively controllable auxiliary wings
US9302766B2 (en) 2008-06-20 2016-04-05 Aviation Partners, Inc. Split blended winglet
US10589846B2 (en) 2008-06-20 2020-03-17 Aviation Partners, Inc. Split blended winglet
US10252793B2 (en) 2008-06-20 2019-04-09 Aviation Partners, Inc. Split blended winglet
US10005546B2 (en) 2008-06-20 2018-06-26 Aviation Partners, Inc. Split blended winglet
US9381999B2 (en) 2008-06-20 2016-07-05 C. R. Bard, Inc. Wing tip with optimum loading
US9033282B2 (en) 2010-07-14 2015-05-19 Airbus Operations Limited Wing tip device
US9199727B2 (en) 2010-07-14 2015-12-01 Airbus Operations Limited Wing tip device
US9193445B2 (en) 2010-07-14 2015-11-24 Airbus Operations Limited Wing tip device
US11851164B2 (en) 2010-07-14 2023-12-26 Airbus Operations Limited Wing tip device
US9434470B2 (en) 2011-06-09 2016-09-06 Aviation Partners, Inc. Split spiroid
US9580170B2 (en) 2011-06-09 2017-02-28 Aviation Partners, Inc. Split spiroid
US10106247B2 (en) 2011-06-09 2018-10-23 Aviation Partners, Inc. Split blended winglet
US9038963B2 (en) 2011-06-09 2015-05-26 Aviation Partners, Inc. Split spiroid
US10377472B2 (en) 2011-06-09 2019-08-13 Aviation Partners, Inc. Wing tip with winglet and ventral fin
US8944386B2 (en) 2011-06-09 2015-02-03 Aviation Partners, Inc. Split blended winglet
US10787246B2 (en) 2011-06-09 2020-09-29 Aviation Partners, Inc. Wing tip with winglet and ventral fin
RU2616458C1 (en) * 2016-04-01 2017-04-17 Борис Владимирович Мищенко Supersonic aircraft

Also Published As

Publication number Publication date
DE3638347C2 (en) 1991-10-10

Similar Documents

Publication Publication Date Title
DE60210512T2 (en) VERTICAL STARTING AND LANDING AIRPLANE
US4124180A (en) Free wing assembly for an aircraft
DE69110449T2 (en) Integrated tail structure of a helicopter.
DE3638347A1 (en) Control surface system for controlling aircraft
US6641086B2 (en) System and method for controlling an aircraft
AU2002326628A1 (en) System and method for controlling an aircraft
WO2010064945A1 (en) Aircraft
DE102018133171A1 (en) Aircraft
DE112020007562T5 (en) Wing console of a vertical take-off and landing airplane and airplane with such a wing
AT230204B (en) Ellipsoidal vertical and horizontal missile of revolution
US6793171B1 (en) Method and system for flying an aircraft
DE3103095C2 (en) Aircraft with negative sweep wings and a tailplane
DE102020007836A1 (en) Aircraft with wings and operating procedures
DE102020107437A1 (en) Aircraft with 3-dimensional, aerodynamic and multifunctional design
DE3534611A1 (en) DEVICE FOR AUTOMATICALLY CONTROLLING AN AERODYNAMIC COMPENSATING DEVICE ASSOCIATED WITH AN AERODYNAMIC CONTROL SURFACE OF AN AIRCRAFT
DE102017128164B4 (en) plane
DE102019004808A1 (en) Aircraft with drive units rotatable about a transverse axis and the aircraft cabin
DE3047389A1 (en) Canard-type guided missile - has stabiliser at rear end with appreciably less wing span than canard surfaces preceding it
DE102021133301B3 (en) VTOL aircraft with battery electric propulsion and internal combustion engine
DE102023108980B3 (en) Airplane
RU212296U1 (en) Aircraft flight control
RU2466907C1 (en) Aircraft
DE960872C (en) Fixed-wing aircraft with a large lift coefficient
US3259338A (en) Aircraft for short and/or vertical take-off and landing
Lowry Recent control studies

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee