DE3628562A1 - Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung - Google Patents

Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung

Info

Publication number
DE3628562A1
DE3628562A1 DE19863628562 DE3628562A DE3628562A1 DE 3628562 A1 DE3628562 A1 DE 3628562A1 DE 19863628562 DE19863628562 DE 19863628562 DE 3628562 A DE3628562 A DE 3628562A DE 3628562 A1 DE3628562 A1 DE 3628562A1
Authority
DE
Germany
Prior art keywords
alkaline earth
molding compositions
weight
compositions according
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19863628562
Other languages
English (en)
Inventor
Heiner Dr Goerrissen
Dietrich Dr Saenger
Wilhelm Dr Schuette
Manfred Dr Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE19863628562 priority Critical patent/DE3628562A1/de
Publication of DE3628562A1 publication Critical patent/DE3628562A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Description

Thermoplastisch verarbeitbare Formmassen auf der Grundlage von hochmolekularen Polyoxymethylenen - im folgenden abgekürzt POM genannt - und thermoplastischen Polyurethan-Elastomeren - abgekürzt TPU genannt - sind bekannt und werden beispielsweise beschrieben in der DE-A 11 93 240 (GB-A 10 17 244), DE-A 20 51 028, EP-A 01 16 456 und EP-A 01 17 664.
Formkörper aus derartigen Formmassen besitzen eine hohe Reißfestigkeit, außerordentliche Zähigkeit und Druckfestigkeit.
Zur Verbesserung der Kerbschlagzähigkeit werden nach Angaben der DE-A 33 03 760 (US-A 45 17 319) in Gemische aus POM und TPU mit einer Shore-Härte A von höchstens 90 Füllstoffe mit einer mittleren Teilchengröße von weniger als 10 µm einverleibt. Als geeignete Füllstoffe werden u. a. beispielhaft genannt: Oxide, wie z. B. Magnesium-, Zink-, Aluminium- und Titandioxid, mit Silanen modifiziertes Siliciumdioxid, Hydroxide wie z. B. Calcium- oder Aluminiumhydroxid, Carbonate wie z. B. Magnesium-, Calcium- oder Zinkcarbonate, Silikate, wie z. B. Asbestmineralien, Glimmer, Feldspäte, Wollastonit, Talkum, Zeolithe und feinteilige Gläser, Sulfate wie z. B. Calcium- oder Bariumsulfat, Phosphate, wie z. B. Tricalciumphosphat, Fluorapatit und Phosphorit, Sulfide wie z. B. Zink-, Cadmiumsulfid oder Schwermetallsulfide sowie Ruß und Graphit.
Aus der DE-A 12 08 490 (GB-A 9 99 422) ist außerdem bekannt, POM, die Metalle, Metalloxide, Metallcarbonate, Metallsilikate, Kohlenstoff, Kieselsäure und/oder Bor und gegebenenfalls Glas- und Asbestfasern enthalten, zum Herstellen von Verbundmaterialien zu verwenden.
Die bekannten POM-TPU-Gemische bzw. POM zeichnen sich durch gute mechanische Eigenschaften, beispielsweise elektrische Eigenschaften, Zähigkeit und Abriebfestigkeit, aus. Bekannte POM-TPU-Mischungen besitzen jedoch für einige Anwendungen eine nicht ausreichende thermische Stabilität, die die Verarbeitung zu Formkörpern nachteilig beeinflußt und beispielsweise zu Ablagerungen am Formwerkzeug oder zur Verschlechterung der Entformbarkeit beitragen und/oder beim späteren Gebrauch der Formkörper zu Verfärbungen und Verminderung der mechanischen Eigenschaften führt. Nachteilig ist ferner, daß diese Gemische Formaldehydaddukte enthalten, welche bei der Verarbeitung bei erhöhten Temperaturen durch Formaldehydabspaltung zu Geruchsbelästigungen führen können.
Die Aufgabe der vorliegenden Erfindung bestand darin, die Thermostabilität von POM-TPU-Mischungen zu verbessern und die Verfärbungsneigung zu verringern sowie gleichzeitig einen eventuell vorhandenen Restformaldehydgehalt zu minimieren.
Diese Aufgabe konnte überraschenderweise durch den Zusatz speziell ausgewählter Additive gelöst werden.
Gegenstand der Erfindung sind somit Formmassen aus
  • (A) mindestens einem Polyoxymethylen-homo- und/oder -copolymerisat,
  • (B) mindestens einem thermoplastischen Polyurethan-Elastomeren und
  • (C) gegebenenfalls Zusatzstoffen
die enthalten als
  • (D) Additive zur Verbesserung der Temperaturbeständigkeit mindestens ein Erdalkalicarbonat, Erdalkalihydroxidcarbonat, Erdalkaliglycerophosphat oder eine Mischung aus mindestens zwei der genannten Verbindungen.
Gegenstand der Erfindung sind ferner ein Verfahren zur Herstellung von Formmassen nach Anspruch 1 gemäß Anspruch 10 und die Verwendung dieser Formmassen zur Herstellung von Folien oder vorzugsweise Formkörpern gemäß Anspruch 12.
Zur Erzielung einer sehr guten Thermostabilität verbunden mit einer geringen Verfärbungstendenz und minimiertem Formaldehydgehalt enthält die POM-TPU-Mischung zweckmäßigerweise 0,005 bis 2 Gew.-%, vorzugsweise 0,02 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (A) und (B) mindestens eines Erdalkalicarbonats, Erdalkalihydroxidcarbonats, Erdalkaliglycerophosphats oder eine Mischung aus mindestens zwei der genannten Additive (D). Als Erdalkalimetalle zur Bildung der Carbonate, Hydroxidcarbonate und Glycerophosphate haben sich vorzugsweise Calcium und insbesondere Magnesium vorzüglich bewährt. Anwendung finden vorzugsweise Magnesium- und/oder Calciumglycerophosphat und insbesondere Magnesiumhydroxidcarbonat.
Die Additive (D) werden vorteilhafterweise in feingemahlener Form eingesetzt. Produkte mit einer durchschnittlichen Teilchengröße von kleiner als ungefähr 100 µm, vorzugsweise kleiner als 50 µm sind besonders gut geeignet.
Geeignete Magnesiumhydroxidcarbonate 4MgCO₃ · Mg(OH)₂ · nH₂O, Magnesium- und Calciumglycerophosphate (Mg- bzw. CaO₂POOC₃H₅(OH)₂ · nH₂O) können durch die folgenden Kenndaten charakterisiert werden:
Magnesiumhydroxidcarbonate: MgO-Gehalt: 40 bis 45 Gew.-%,
Schüttgewicht: kleiner als 100 g/100 ml, vorzugsweise kleiner als 20 g/100 ml,
wasserlösliche Anteile: kleiner als 5 Gew.-%,
durchschnittliche Korngröße: kleiner als 100 µm, vorzugsweise kleiner als 50 µm.
Magnesium- und Calciumglycerophosphate: MgO bzw. CaO-Gehalt: größer als 70 Gew.-%, vorzugsweise größer als 80 Gew.-%,
Glührückstand: 45 bis 65 Gew.-%,
Schmelzpunkt: größer als 300°C und
durchschnittliche Korngröße: kleiner als 100 µm, vorzugsweise kleiner als 50 µm.
Zur Herstellung der erfindungsgemäßen Formmassen können die Aufbaukomponenten POM (A) und TPU (B) in breiten Mengenverhältnissen variiert werden. Besonders bewährt haben sich und daher vorzugsweise verwendet werden POM-TPU-Mischungen, die 40 bis 95 Gew.-%, vorzugsweise 60 bis 90 Gew.-% mindestens eines Polyoxymethylen-homo- und/oder -copolymerisats und 60 bis 5 Gew.-%, vorzugsweise 40 bis 10 Gew.-% mindestens eines thermoplastischen Polyurethan-Elastomeren, wobei die Gew.-% bezogen sind auf das Gesamtgewicht der Aufbaukomponenten (A) und (B), enthalten.
(A) Geeignete Polyoxymethylene (a) sind Homopolymerisate des Formaldehyds oder Copolymerisate des Formaldehyds sowie das Trioxans mit cyclischen und/oder linearen Formalen, wie Butandiolformal oder Epoxiden wie Ethylen- oder Propylenoxid. Die Homopolymerisate haben in der Regel thermisch stabile Endgruppen, wie Ester- oder Ethergruppen. Die Copolymerisate des Formaldehyds oder des Trioxans weisen vorteilhaft mehr als 50%, insbesondere mehr als 75% Oxymethylengruppen auf. Besonders bewährt haben sich Copolymerisate, in denen mindestens 0,1% Gruppen des Comonomeren enthalten sind, die mindestens zwei benachbarte Kohlenstoffatome in der Kette haben. Besondere technische Bedeutung haben Polyoxymethylene erlangt, die 1 bis 10 Gew.-% Comonomere enthalten. Solche Copolymerisate sind in an sich bekannter Weise durch kationische Copolymerisation von Trioxan mit geeigneten Comonomeren wie cyclischen Ethern oder Acetalen, z. B. Ethylenoxid, 1,3-Dioxolan, 1,3-Dioxan, 1,3-Dioxacycloheptan oder mit linearen Oligo- oder Polyformalen, wie Polydioxolan oder Polybutandiolformal erhältlich. In der Regel haben die verwendeten Polyoxymethylene ein Molekulargewicht (Zahlenmittel) M n von 2000 bis 100 000, vorzugsweise von 10 000 bis 100 000 und einem MFI bei 190°C, 21,17 N nach DIN 53 735 von 0,5 bis 200, vorzugsweise von 1 bis 50. Besondere Bedeutung haben Polymerisate, die aus Trioxan und 1 bis 10 Mol-% Ethylenoxid, 1,3- Dioxolan oder Butandiolformal aufgebaut sind, erlangt. Die erfindungsgemäßen Formmassen enthalten, wie bereits dargelegt wurde, zweckmäßigerweise 40 bis 95 Gew.-%, bezogen auf das Gewicht der Komponenten (A) und (B), mindestens eines Polyoxymethylens.
Als zusätzliche Comonomere für Trioxan werden gegebenenfalls noch Verbindungen mit mehreren polymerisierbaren Gruppen im Molekül, z. B. Alkylglycidylformale, Polyglykoldiglycidylether, Alkandioldiglycidylether oder Bis-(alkantriol)-triformale verwendet, und zwar in einer Menge von 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 2 Gew.-%, bezogen auf die Gesamtmonomermenge.
(B) Die erfindungsgemäßen Formmassen besitzen neben POM (A) als Basiskunststoff nach dem Band- oder vorzugsweise dem Extruderverfahren hergestellte thermoplastische Polyurethan-Elastomere (TPU). Geeignete TPU können beispielsweise hergestellt werden durch Umsetzung von
  • a) organischen, vorzugsweise aromatischen Diisocyanaten,
  • b) Polyhydroxylverbindungen mit Molekulargewichten von 500 bis 8000 und
  • c) Kettenverlängerungsmitteln mit Molekulargewichten von 60 bis 400 in Gegenwart von gegebenenfalls
  • d) Katalysatoren,
  • e) Hilfsmitteln und/oder Zusatzstoffen.
Zu den hierfür verwendbaren Ausgangsstoffen (a) bis (c), Katalysatoren (d), Hilfsmitteln und Zusatzstoffen (e) möchten wir folgendes ausführen:
a) Als organische Diisocyanate (a) kommen beispielsweise aliphatische, cycloaliphatische und vorzugsweise aromatische Diisocyanate in Betracht. Im einzelnen seien beispielhaft genannt: aliphatische Diisocyanate, wie Hexamethylen-diisocyanat, cycloaliphatische Diisocyanate, wie Isophoron-diisocyanat, 1,4-Cyclohexan-diisocyanat, 1-Methyl- 2,4- und -2,6-cyclohexan-diisocyanat sowie die entsprechenden Isomerengemische, 4,4′-, 2,4′- und 2,2′-Dicyclohexylmethan-diisocyanat sowie die entsprechenden Isomerengemische und vorzugsweise aromatische Diisocyanate, wie 2,4-Toluylen-diisocyanat, Gemische aus 2,4- und 2,6-Toluylen-diisocyanat, 4,4′-, 2,4′- und 2,2′-Diphenylmethan-diisocyanat, Gemische aus 2,4′- und 4,4′-Diphenylmethan-diisocyanat, urethanmodifizierte flüssige 4,4′- und/oder 2,4′-Diphenylmethan-diisocyanate, 4,4′-Diisocyanato-diphenylethan-(1,2) und 1,5-Naphthylendiisocyanat. Vorzugsweise verwendet werden Hexamethylen-diisocyanat, Isophoron-diisocyanat, 1,5-Naphthylen-diisocyanat, Diphenylmethan-diisocyanat-Isomerengemische mit einem 4,4′-Diphenylmethan-diisocyanatgehalt von größer als 96 Gew.-% und insbesondere 4,4′-Diphenylmethan-diisocyanat.
b) Als höhermolekulare Polyhydroxylverbindungen (b) mit Molekulargewichten von 500 bis 8000 eignen sich vorzugsweise Polyetherole und Polyesterole. In Betracht kommen jedoch auch hydroxylgruppenhaltige Polymere, beispielsweise Polyacetale, wie Polyoxymethylene und vor allem wasserunlösliche Formale, z. B. Polybutandiolformal und Polyhexandiolformal, und Polycarbonate, insbesondere solche aus Diphenylcarbonat und Hexandiol-1,6, hergestellt durch Umesterung, mit den oben genannten Molekulargewichten. Die Polyhydroxylverbindungen müssen zumindest überwiegend linear, d. h. im Sinne der Isocyanatreaktion difunktionell aufgebaut sein. Die genannten Polyhydroxylverbindungen können als Einzelkomponenten oder in Form von Mischungen zur Anwendung kommen.
Geeignete Polyetherole können dadurch hergestellt werden, daß man ein oder mehrere Alkylenoxide mit 2 bis 4 Kohlenstoffatomen im Alkylenrest mit einem Startermolekül, das zwei aktive Wasserstoffatome gebunden enthält, umsetzt. Als Alkylenoxide seien z. B. genannt: Ethylenoxid, 1,2-Propylenoxid, 1,2- und 2,3-Butylenoxid. Vorzugsweise Anwendung finden Ethylenoxid und Mischungen aus Propylenoxid-1,2 und Ethylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischung verwendet werden. Als Startermolekül kommen beispielsweise in Betracht: Wasser, Aminoalkohole, wie N-Alkyl-diethanolamine, beispielsweise n-Methyl-diethanolamin und Diole, wie Ethylenglykol, 1,3-Propylenglykol, Butandiol-1,4 und Hexandiol-1,6. Gegebenenfalls können auch Mischungen von Startermolekülen eingesetzt werden. Geeignete Polyetherole sind ferner die hydroxylgruppenhaltigen Polymerisationsprodukte des Tetrahydrofurans (Polyoxytetramethylen-glykole).
Vorzugsweise verwendet werden Polyetherole aus Propylenoxid-1,2 und Ethylenoxid, in denen mehr als 50%, vorzugsweise 60 bis 80% der OH-Gruppen primäre Hydroxylgruppen sind und bei denen zumindest ein Teil des Ethylenoxids als endständiger Block angeordnet ist und insbesondere Polyoxytetramethylen-glykole.
Solche Polyetherole können erhalten werden, indem man z. B. an das Startermolekül zunächst das Propylenoxid-1,2 und daran anschließend das Ethylenoxid polymerisiert oder zunächst das gesamte Propylenoxid-1,2 im Gemisch mit einem Teil des Ethylenoxids copolymerisiert und den Rest des Ethylenoxids anschließend anpolymerisiert oder schrittweise zunächst einen Teil des Ethylenoxids, dann das gesamte Propylenoxid-1,2 und dann den Rest des Ethylenoxids an das Startermolekül anpolymerisiert.
Die im wesentlichen linearen Polyetherole besitzen Molekulargewichte von 500 bis 8000, vorzugsweise 600 bis 6000 und insbesondere 800 bis 3500. Sie können sowohl einzeln als auch in Form von Mischungen untereinander zur Anwendung kommen.
Geeignete Polyesterole können beispielsweise aus Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 4 bis 8 Kohlenstoffatomen, und mehrwertigen Alkoholen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: aliphatische Dicarbonsäuren, wie Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure und Sebacinsäure und aromatische Dicarbonsäuren, wie Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können einzeln oder als Gemische, z. B. in Form einer Bernstein-, Glutar- und Adipinsäuremischung, verwendet werden. Desgleichen sind Mischungen aus aromatischen und aliphatischen Dicarbonsäuren einsetzbar. Zur Herstellung der Polyesterole kann es gegebenenfalls vorteilhaft sein, anstelle der Dicarbonsäuren die entsprechenden Dicarbonsäurederivate, wie Dicarbonsäureester mit 1 bis 4 Kohlenstoffatomen im Alkoholrest, Dicarbonsäureanhydride oder Dicarbonsäurechloride zu verwenden. Beispiele für mehrwertige Alkohole sind Glykole mit 2 bis 10, vorzugsweise 2 bis 6 Kohlenstoffatomen, wie Ethylenglykol, Diethylenglykol, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6, Decandiol-1,10, 2,2-Dimethylpropandiol-1,3, Propandiol-1,3 und Dipropylenglykol. Je nach den gewünschten Eigenschaften können die mehrwertigen Alkohole allein oder gegebenenfalls in Mischungen untereinander verwendet werden.
Geeignet sind ferner Ester der Kohlensäure mit den genannten Diolen, insbesondere solchen mit 4 bis 6 Kohlenstoffatomen, wie Butandiol-1,4 und/oder Hexandiol-1,6, Kondensationsprodukte von ω-Hydroxycarbonsäuren, beispielsweise ω-Hydroxycapronsäure und vorzugsweise Polymerisationsprodukte von Lactonen, beispielsweise gegebenenfalls substituierten l-Caprolactonen.
Als Polyesterole vorzugsweise verwendet werden Dialkylenglykol-polyadipate mit 2 bis 6 Kohlenstoffatomen im Alkylenrest, wie z. B. Ethandiol-polyadipate, 1,4-Butandiol-polyadipate, Ethandiol-butandiol-1,4- polyadipate, 1,6-Hexandiol-neopentylglykol-polyadiapte, Polycaprolactone und insbesondere 1,6-Hexandiol-1,4-butandiol-polyadipate.
Die Polyesterole besitzen Molekulargewichte von 500 bis 6000, vorzugsweise von 800 bis 3500.
(c) Als Kettenverlängerungsmittel (c) mit Molekulargewichten von 60 bis 400, vorzugsweise 60 bis 300, kommen vorzugsweise aliphatische Diole mit 2 bis 12 Kohlenstoffatomen, vorzugsweise mit 2, 4 oder 6 Kohlenstoffatomen, wie z. B. Ethandiol, Hexandiol-1,6, Diethylenglykol, Dipropylenglykol und insbesondere Butandiol-1,4 in Betracht. Geeignet sind jedoch auch Diester der Terephthalsäure mit Glykolen mit 2 bis 4 Kohlenstoffatomen, wie z. B. Terephthalsäure-bis-ethylenglykol oder -butandiol-1,4, Hydroxyalkylenether des Hydrochinons, wie z. B. 1,4-Di-(β-hydroxyethyl)-hydrochinon, (cyclo)aliphatische Diamine, wie z. B. 4,4′-Diamino-dicyclohexylmethan, 3,3′-Dimethyl-4,4′-diaminodicyclohexylmethan, Isophoron-diamin, Ethylendiamin, 1,2-, 1,3-Propylen-diamin, N-Methyl-propylendiamin-1,3, N,N′-Dimethyl-ethylendiamin und aromatische Diamine, wie z. B. 2,4- und 2,6-Toluylen-diamin, 3,5-Diethyl-2,4- und -2,6-toluylen-diamin und primäre ortho-di, tri- und/oder tetraalkylsubstituierte 4,4′-Diamino-diphenylmethane.
Zur Einstellung von Härte und Schmelzpunkt der TPU können die Aufbaukomponenten (b) und (c) in relativ breiten molaren Verhältnissen variiert werden. Bewährt haben sich molare Verhältnisse von Polyhydroxylverbindungen (b) zu Kettenverlängerungsmitteln (c) von 1 : 1 bis 1 : 12, insbesondere von 1 : 1,8 bis 1 : 6,4, wobei die Härte und der Schmelzpunkt der TPU mit zunehmendem Gehalt an Diolen ansteigt.
Zur Herstellung der TPU werden die Aufbaukomponenten (a), (b) und (c) in Gegenwart von gegebenenfalls Katalysatoren (d), Hilfsmitteln und/oder Zusatzstoffen (e) in solchen Mengen zur Reaktion gebracht, daß das Äquivalenzverhältnis von NCO-Gruppen der Diisocyanate (a) zur Summe der Hydroxylgruppen oder Hydroxyl- und Aminogruppen der Komponenten (b) und (c) 1 : 0,85 bis 1,20, vorzugsweise 1 : 0,95 bis 1 : 1,05 und insbesondere 1 : 0,98 bis 1,02 beträgt.
(d) Geeignete Katalysatoren, welche insbesondere die Reaktion zwischen den NCO-Gruppen der Diisocyanate (a) und den Hydroxylgruppen der Aufbaukomponenten (b) und (c) beschleunigen, sind die nach dem Stand der Technik bekannten und üblichen tertiären Amine, wie z. B. Triethylamin, Dimethylcyclohexylamin, N-Methylmorpholin, N,N′-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)- octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z. B. Eisen-(III)-acetylacetonat, Zinnverbindungen, z. B. Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,001 bis 0,1 Teilen pro 100 Teile Polyhydroxylverbindung (b) eingesetzt.
Neben Katalysatoren können den Aufbaukomponenten (a) bis (c) auch Hilfsmittel und/oder Zusatzstoffe (e) einverleibt werden. Genannt seien beispielsweise Gleitmittel, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze oder Verfärbung, Farbstoffe, Pigmente, anorganische und/oder organische Füllstoffe und Weichmacher.
Nähere Angaben über die oben genannten Hilfsmittel- und Zusatzstoffe sind der Fachliteratur, beispielsweise der Monographie von J. H. Saunders und K. C. Frisch "High Polymers", Band XVI, Polyurethane, Teil 1 und 2, Verlag Interscience Publishers 1962 bzw. 1964 oder der DE-OS 29 01 774 zu entnehmen.
Wie bereits dargelegt wurde, wird das TPU nach dem Bandverfahren oder vorzugsweise nach dem Extruderverfahren hergestellt. Im einzelnen wird beim Bandverfahren auf folgende Weise verfahren:
Die Aufbaukomponenten (a) bis (c) und gegebenenfalls (d) und/oder (e) werden bei Temperaturen oberhalb des Schmelzpunktes der Aufbaukomponenten (a) bis (c) mit Hilfe eines Mischkopfes kontinuierlich gemischt. Die Reaktionsmischung wird auf einen Träger, vorzugsweise ein Förderband, aufgebracht und durch eine temperierte Zone geführt. Die Reaktionstemperatur in der temperierten Zone beträgt 60 bis 200°C, vorzugsweise 100 bis 180°C und die Verweilzeit 0,05 bis 0,5 Stunden, vorzugsweise 0,1 bis 0,3 Stunden.
Nach beendeter Reaktion wird das TPU abkühlen gelassen, zerkleinert oder granuliert und zwischengelagert oder direkt mit POM (A), gegebenenfalls den Zusatzstoffen (C), und dem Additiv (D) zu den erfindungsgemäßen Formmassen verarbeitet.
Beim Extruderverfahren werden die Aufbaukomponenten (a) bis (c) und gegebenenfalls (d) und (e) einzeln oder als Gemisch in den Extruder eingeführt, bei Temperaturen von 100 bis 250°C, vorzugsweise 140 bis 220°C zur Reaktion gebracht, das erhaltene TPU extrudiert, abkühlen gelassen, granuliert und zwischengelagert oder ebenfalls direkt mit POM (A), gegebenenfalls den Zusatzstoffen (C) und dem Additiv (D) zu den erfindungsgemäßen Formmassen weiterverarbeitet.
Die erfindungsgemäßen Formmassen können neben den Komponenten (A), (B) und (D) gegebenenfalls Zusatzstoffe (C) enthalten.
Als geeignete, gegebenenfalls mitverwendbare Zusatzstoffe (C) kommen beispielsweise in Betracht: Stabilisatoren, Nukleierungsmittel, Antistatika, Licht- und Flammschutzmittel, Gleit- und Schmiermittel, Weichmacher, Pigmente, Farbstoffe, optische Aufheller, Entformungshilfsmittel und dergleichen. Als Zusatzstoff insbesondere bewährt hat sich und daher vorzugsweise eingesetzt wird ein oder mehrere Antioxidantien mit phenolischer Stuktur. Derartige Antioxidantien werden beschrieben z. B. in der DE-A 27 02 661.
Als Stabilisatoren gegen den Einfluß von Wärme eignen sich insbesondere Polyamide, Amide mehrbasiger Carbonsäuren, Amidine, z. B. Dicyandiamid, Hyrazine, Harnstoffe, Poly-(N-vinyllactame) und Erdalkalisalze von aliphatischen, vorzugsweise hydroxylgruppenhaltigen, ein- bis dreibasigen Carbonsäuren mit 2 bis 20 Kohlenstoffatomen, z. B. Calciumstearat, Calciumrizinoleat, Calciumlactat und Calciumcitrat. Als Oxidationsstabilisatoren werden vor allem Bisphenolverbindungen verwendet, vorzugsweise Diester von einbasigen 4-Hydroxyphenylalkansäuren, die 7 bis 13, vorzugsweise 7, 8 oder 9 Kohlenstoffatome aufweisen, mit Diolen, die 2 bis 6 Kohlenstoffatome enthalten. Als Lichtstabilisatoren sind beispielsweise α-Hydroxybenzophenonderivate und Benzotriazolderivate geeignet. Die Stabilisatoren werden zumeist in einer Menge von insgesamt 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der Komponenten (A) und (B) verwendet.
Als Zusatzstoffe (C) können ferner verstärkend wirkende Füllstoffe, vorzugsweise Fasern, beispielsweise Kohlenstoff- oder insbesondere Glasfasern, die mit Haftvermittlern und/oder Schlichten ausgerüstet sein können, Anwendung finden.
Die Fasern, die in Mengen von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-%, bezogen auf das Gewicht der Komponenten (A) und (B) eingesetzt werden, weisen zweckmäßigerweise einen Durchmesser von 5 bis 20 µm, vorzugsweise von 8 bis 15 µm auf und besitzen im Granulat im allgemeinen eine mittlere Faserlänge von 0,05 bis 1 mm, vorzugsweise von 0,1 bis 0,5 mm.
Anstelle der Fasern, insbesondere Glasfasern, oder in Kombination mit diesen, können die erfindungsgemäßen Formmassen auch andere Füll- oder Verstärkungsmittel enthalten. Genannt seien beispielsweise Glaskugeln, Talkum, Kaolin, Wollastonit oder Glimmer, die in Mengen von 3 bis 60 Gew.-%, bezogen auf das Gewicht der Komponenten (A) und (B) verwendet werden können.
Zur Herstellung der erfindungsgemäßen Formmassen kann das Additiv (D) zunächst dem POM (A) oder dem TPU (B) oder einer Aufbaukomponente (a), (b) und/oder (c) zur Herstellung des TPU einverleibt werden. Das erhaltene Konzentrat aus Additiv (D) und POM (A) bzw. Additiv (D) und TPU (B) kann danach mit unbehandeltem TPU (B) bzw. unbehandeltem POM (A) abgemischt und auf diese Weise die Additivkonzentration in der erfindungsgemäßen Formmasse eingestellt werden. Nach einer anderen Verfahrensvariante können auch Additiv (D) enthaltende POM- und TPU-Konzentrate gemischt werden, sofern die Additivkonzentration (D) in den Konzentraten innerhalb der für die Formmasse erforderlichen Menge liegt. Nach bevorzugten Ausführungsformen werden jedoch die Aufbaukomponenten (A), (B), (D) und gegebenenfalls (C) der erfindungsgemäßen Formmassen direkt gemischt oder das Additiv (D) wird in eine vorgefertigte Mischung aus POM (A) und TPU (B) oder POM-TPU-Masse in den gewünschten Mengenverhältnissen eingebracht. Das Abmischen der Aufbaukomponenten (A), (B), (D) und gegebenenfalls (C) wird vorteilhafterweise bei Temperaturen von 0 bis 150°C, vorzugsweise von 20 bis 100°C durchgeführt. Die Einarbeitung des Additiv (D) oder Additiv(D)konzentrats in die POM-TPU-Masse oder Mischung aus POM (A) und TPU (B) erfolgt bei Temperaturen von 50 bis 260°C, vorzugsweise von 150 bis 240°C, im beispielsweise fließfähigen, erweichten oder geschmolzenen Zustand der Aufbaukomponenten (A) und (B) z. B. durch Rühren, Walzen, Kneten oder Extrudieren, beispielsweise unter Verwendung eines Doppelschnecken- oder Preßspritzmischextruders oder eines Kneters.
Nach dem zweckmäßigsten und daher vorzugsweise angewandten Herstellungsverfahren für die erfindungsgemäßen Formmassen werden die Aufbaukomponenten (A), (B), (D) und gegebenenfalls (C) in Form von vorgefertigten Mischungen oder insbesondere einzeln in einen Extruder, vorzugsweise Doppelschneckenextruder eingebracht, bei Temperaturen von 150 bis 260°C, vorzugsweise von 180 bis 240°C zusammengeschmolzen, die Schmelze extrudiert, abgekühlt und anschließend granuliert. Die erhaltenen Granulate können zwischengelagert oder direkt zur Herstellung von Formkörpern verwendet werden.
Die erfindungsgemäßen Formmassen besitzen neben guten mechanischen Eigenschaften eine deutlich verbesserte Temperaturbeständigkeit und geringere Verfärbungstendenz sowie einen verringerten Restformaldehydgehalt und eignen sich zur Herstellung von beispielsweise Folien oder vorzugsweise Formkörpern nach bekannten Techniken, z. B. durch Blasformen, Extrusion oder Spritzgießen. Die Formkörper finden beispielsweise Verwendung in der Fahrzeug-, Elektrogeräte- und Elektronikindustrie.
Beispiele 1 bis 4 und Vergleichsbeispiele A bis D
80 Gew.-Teile eines Polyoxymethylencopolymerisats mit ca. 3 Gew.-% Butandiolformal und einem MFI = 9 g/10 min bei 190°C, 21,17 N (DIN 53 735), das als Antioxidans 0,3 Gew.-% 1,6-Hexandiol-bis-3-(3,5-di-tert.butyl- 4-hydroxiphenyl)-propionat und als Wärmestabilisatoren 0,1 Gew.-% eines endgruppenverkappten Polyamids (analog den Angaben der US-A 39 60 984, Beispiel 5-4) und 0,3 Gew.-% eines Melamin-Formaldehyd-Polykondensates (analog den Angaben der DE-A 25 40 207, Beispiel 1) enthielt, 20 Gew.-Teile eines TPU, hergestellt durch Umsetzung von 4,4′-Diphenylmethan-diisocyanat, 1,4-Butandiol-polyadipat und 1,4-Butandiol mit einer Shore-Härte A von 85 und gegebenenfalls 0,1 Gew.-Teile Additiv (D) oder einer Vergleichssubstanz wurden bei 23°C gemischt und die Mischung in einen Doppelschneckenextruder (Typ ZSK 28 der Firma Werner & Pfleiderer) eingebracht, bei 220°C zusammengeschmolzen, extrudiert, granuliert und das erhaltene Granulat unter vermindertem Druck bei 80°C 15 Stunden lang getrocknet.
Zur Prüfung der Thermostabilität und Verfärbungsneigung wurden bestimmt:
GV N₂:Der Gewichtsverlust in Prozent einer Probe aus 2 g Granulat bei zweistündigem Erhitzen auf 220°C unter Stickstoff,GV Luft:Gewichtsverlust in Prozent einer Probe aus 1 g Granulat bei zweistündigem Erhitzen auf 220°C unter Luft, Farbe:Farbe der Rückwaage nach GV N₂.
Der Formaldehydgehalt im Granulat wurde nach folgender Methode ermittelt: Eine Probe von 100 g Granulat wird während 60 min in 150 ml Wasser am Rückfluß gekocht. Nach dieser Zeit wird das Granulat abfiltriert, 10 ml einer 0,5 N Natriumsulfitlösung mit pH 9,1 zum Wasser gegeben und mit 0,1 N Schwefelsäure bis auf pH 9,1 zurücktitriert. Der Verbrauch in ml an 0,1 N Schwefelsäure ist V (Probe). Desgleichen werden 150 ml Wasser mit 10 ml einer 0,5 N Natriumsulfitlösung (pH 9,1) vermischt und dann mit 0,1 N Schwefelsäure bzw. 0,1 N Natronlauge auf pH 9,1 zurücktitriert. Der Verbrauch in ml an Schwefelsäure bzw. Natronlauge ist V Säure (Nullprobe) bzw. V Lauge (Nullprobe).
Der Formaldehydgehalt des Granulates errechnet sich dann aus
ppm Formaldehyd = 30 [V (Probe) - V Säure (Nullprobe)
bzw.
ppm Formaldehyd = 30 [V (Probe) - V Lauge (Nullprobe).
Die verwendeten Additive (D) und Vergleichssubstanzen und die erhaltenen Ergebnisse sind in der Tabelle zusammengefaßt.
Tabelle

Claims (13)

1. Formmassen aus
  • (A) mindestens einem Polyoxymethylen-homo- und/oder -copolymerisat,
  • (B) mindestens einem thermoplastischen Polyurethan-Elastomeren und
  • (C) gegebenenfalls Zusatzstoffen, enthaltend als
  • (D) Additiv zur Verbesserung der Temperaturbeständigkeit mindestens ein Erdalkalicarbonat, Erdalkalihydroxidcarbonat, Erdalkaliglycerophosphat oder eine Mischung aus mindestens zwei der genannten Verbindungen.
2. Formmassen nach Anspruch 1, enthaltend als Additiv (D) 0,005 bis 2 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (A) und (B) mindestens eines Erdalkalicarbonats, Erdalkalihydroxidcarbonats, Erdalkaliglycerophosphats oder eine Mischung aus mindestens zwei der genannten Verbindungen.
3. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß das Erdalkalimetall Calcium oder vorzugsweise Magnesium ist.
4. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß das Additiv (D) Magnesiumhydroxidcarbonat ist.
5. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß das Additiv (D) oder die -mischung eine durchschnittliche Teilchengröße kleiner als 100 µm besitzt.
6. Formmassen nach Anspruch 1, enthaltend
  • (A) 40 bis 95 Gew.-% mindestens eines Polyoxymethylen-homo- und/oder -copolymerisats und
  • (B) 60 bis 5 Gew.-% mindestens eines thermoplastischen Polyurethan- Elastomeren, wobei die Gewichtsprozente bezogen sind auf das Gesamtgewicht der Komponenten (A) und (B).
7. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß die Polyoxymethylen-homo- und/oder -copolymerisate (A) ein durchschnittliches Molekulargewicht von 2000 bis 100 000 und einen MFI bei 190°C, 21,17 N nach DIN 53 735 von 0,5 bis 200 besitzen.
8. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß die thermoplastischen Polyurethan-Elastomeren (B) hergestellt werden durch Umsetzung von
  • (a) aromatischen Diisocyanaten, vorzugsweise 4,4′-Diphenylmethandiisocyanat,
  • (b) im wesentlichen linearen Polyhydroxylverbindungen, vorzugsweise Dialkylenglykol-polyadipaten mit 2 bis 6 Kohlenstoffatomen im Alkylenrest und Molekulargewichten von 800 bis 3500 oder Polyoxytetramethylen-glykolen mit einem Molekulargewicht von 800 bis 3500 und
  • (c) Butandiol-1,4 in Gegenwart von
  • (d) Katalysatoren und gegebenenfalls
  • (e) Hilfsmitteln und/oder Zusatzstoffen
nach dem Bandverfahren oder vorzugsweise dem Extruderverfahren.
9. Formmassen nach Anspruch 1, enthaltend als Zusatzstoff (C) mindestens ein Antioxidans mit phenolischer Struktur.
10. Verfahren zur Herstellung von Formmassen aus
  • (A) mindestens einem Polyoxymethylen-homo- und/oder -copolymerisat,
  • (B) mindestens einem thermoplastischen Polyurethan-Elastomeren,
  • (C) gegebenenfalls Zusatzstoffen und
  • (D) einem Additiv zur Verbesserung der Temperaturbeständigkeit, dadurch gekennzeichnet, daß man als Additiv (D) mindestens ein Erdalkalicarbonat, Erdalkalihydroxidcarbonat, Erdalkaliglycerophosphat oder eine Mischung aus mindestens zwei der genannten Verbindungen verwendet.
11. Verfahren zur Herstellung von Formmassen nach Anspruch 10, dadurch gekennzeichnet, daß man die Komponenten (A), (B) und (D) sowie gegebenenfalls (C) bei Temperaturen von 150 bis 260°C zusammenschmilzt, die Schmelze extrudiert und anschließend granuliert.
12. Verwendung von Formmassen nach Anspruch 1 zur Herstellung von Folien oder vorzugsweise Formkörpern.
DE19863628562 1986-08-22 1986-08-22 Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung Withdrawn DE3628562A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19863628562 DE3628562A1 (de) 1986-08-22 1986-08-22 Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863628562 DE3628562A1 (de) 1986-08-22 1986-08-22 Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung

Publications (1)

Publication Number Publication Date
DE3628562A1 true DE3628562A1 (de) 1988-03-03

Family

ID=6307963

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863628562 Withdrawn DE3628562A1 (de) 1986-08-22 1986-08-22 Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung

Country Status (1)

Country Link
DE (1) DE3628562A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854330A (en) * 1996-03-07 1998-12-29 Minnesota Mining And Manufacturing Company Capstan comprising polyacetal-based polymer composition for magnetic tape cartridge
WO1999016605A1 (de) * 1997-09-30 1999-04-08 Ticona Gmbh Verfahren zur herstellung von verbundkörpern
US6590020B1 (en) 1998-06-27 2003-07-08 Basf Aktiengesellschaft Stabilized polyoxymethylene moulding materials
US6878764B2 (en) 2000-06-29 2005-04-12 Basf Aktiengesellschaft Stabilized black polyoxymethylene moulding materials
US6919390B2 (en) 2001-06-19 2005-07-19 Basf Aktiengesellschaft Stabilized thermoplastic moulding compounds
US7008986B2 (en) 2000-06-29 2006-03-07 Basf Aktiengesellschaft Stabilized thermoplastic moulding materials
DE102005044515A1 (de) * 2005-09-16 2007-05-24 Ticona Gmbh Polyoxymethylen Formmassen, deren Verwendung und daraus hergestellte Formkörper

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854330A (en) * 1996-03-07 1998-12-29 Minnesota Mining And Manufacturing Company Capstan comprising polyacetal-based polymer composition for magnetic tape cartridge
WO1999016605A1 (de) * 1997-09-30 1999-04-08 Ticona Gmbh Verfahren zur herstellung von verbundkörpern
US6590020B1 (en) 1998-06-27 2003-07-08 Basf Aktiengesellschaft Stabilized polyoxymethylene moulding materials
US6878764B2 (en) 2000-06-29 2005-04-12 Basf Aktiengesellschaft Stabilized black polyoxymethylene moulding materials
US7008986B2 (en) 2000-06-29 2006-03-07 Basf Aktiengesellschaft Stabilized thermoplastic moulding materials
US6919390B2 (en) 2001-06-19 2005-07-19 Basf Aktiengesellschaft Stabilized thermoplastic moulding compounds
DE102005044515A1 (de) * 2005-09-16 2007-05-24 Ticona Gmbh Polyoxymethylen Formmassen, deren Verwendung und daraus hergestellte Formkörper

Similar Documents

Publication Publication Date Title
EP0257517B1 (de) Formmassen aus Polyoymethylen-homo- und/oder -copolymerisaten und thermoplastischen Polyurethan-Elastomeren mit verbesserter Temperaturbeständigkeit, Verfahren zu deren Herstellung und deren Verwendung
EP0115846B2 (de) Schlagzäh modifiziertes Polyoxymethylen und daraus hergestellte Formkörper
EP0115847B1 (de) Schlagzäh modifiziertes Polyoxymethylen und daraus hergestellte Formkörper
EP0129193B1 (de) Verfahren zur Herstellung von antistatischen und/oder elektrisch leitfähigen thermoplastischen Polyurethanen sowie deren Verwendung
EP0794978B1 (de) Schlagzähe thermoplastische formmassen
EP0134455B2 (de) Verwendung von weichmacherhaltigen thermoplastischen Polyurethanen zur Herstellung von Folien oder Formkörpern
EP0382051A2 (de) Kälteschlagzähe, gut fliessfähige, thermoplastische Polyurethan-Elastomerzusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102005001793A1 (de) Polyoxymethylen und Zeolith enthaltende Formmasse
EP0189130B1 (de) Flammwidrige, thermoplastische Polyurethan-Elastomere, Verfahren zu deren Herstellung und deren Verwendung
EP0757078B1 (de) Schlagzähe thermoplastische Formmassen
EP0896030B1 (de) Polyoxymethylen-Formmassen mit verbesserter Thermostabilität und Verfärbungsstabilität
DE3628562A1 (de) Formmassen aus polyoxymethylen-homo- und/oder -copolymerisaten und thermoplastischen polyurethan-elastomeren mit verbesserter temperaturbestaendigkeit, verfahren zu deren herstellung und deren verwendung
DE3703232A1 (de) Verfahren zur herstellung von formmassen mit verbesserter kaelteschlagzaehigkeit auf der grundlage von polyoxymethylenen und thermoplastischen polyurethanen
DE3628561A1 (de) Verstaerkte polyoximethylenformmassen mit verbesserter thermostabilitaet, verfahren zu deren herstellung und deren verwendung
EP0111682B1 (de) Gut entformbare und nicht blockende, thermoplastische Polyurethan-Elastomere, Verfahren zu deren Herstellung und deren Verwendung
EP1622974B1 (de) Polyoxymethylenformmassen
DE3802753A1 (de) Schlagzaehe polymer-formmassen, verfahren zu ihrer herstellung und ihre verwendung
EP0595139A1 (de) Polyoxymethylen mit verbesserter Stabilität gegen Säuren, Verfahren zu seiner Herstellung sowie Verwendung
DE3927424A1 (de) Polyoxymethylen-polyurethan-formmassen mit verbesserter lichtbestaendigkeit, verfahren zu ihrer herstellung und ihre verwendung
EP0387590B1 (de) Schlagzäh modifizierte thermoplastische Polyurethan-Formmassen, Verfahren zu ihre Herstellung und ihre Verwendung
WO2000063291A1 (de) Verwendung von polyoxymethylenformmassen
EP0755973A1 (de) Schlagzähmodifizierte Polyoxy-methylen-Zusammensetzung
DE10003370A1 (de) POM/TPU Blends
DE4435157A1 (de) Verstärkte thermoplastische Kunststoffmasse für Formteile mit isotroper Schwindung und geringem Verzug
DE4409277A1 (de) Farbstabile schlagzähe thermoplastische Formmassen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee