DE3144805A1 - Method for measuring relative movements by means of laser radiation in accordance with the Doppler radar principle - Google Patents

Method for measuring relative movements by means of laser radiation in accordance with the Doppler radar principle

Info

Publication number
DE3144805A1
DE3144805A1 DE19813144805 DE3144805A DE3144805A1 DE 3144805 A1 DE3144805 A1 DE 3144805A1 DE 19813144805 DE19813144805 DE 19813144805 DE 3144805 A DE3144805 A DE 3144805A DE 3144805 A1 DE3144805 A1 DE 3144805A1
Authority
DE
Germany
Prior art keywords
laser
frequency difference
relative movements
measuring relative
doppler radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19813144805
Other languages
German (de)
Other versions
DE3144805C2 (en
Inventor
Konrad Dipl.-Phys. Dr. 8000 München Altmann
Ernst Dipl.-Phys. Dr. 8175 Greiling Lill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19813144805 priority Critical patent/DE3144805C2/en
Publication of DE3144805A1 publication Critical patent/DE3144805A1/en
Application granted granted Critical
Publication of DE3144805C2 publication Critical patent/DE3144805C2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

In the so-called heterodyne method for measuring relative movements by means of laser radiation according to the Doppler radar principle, two laser beams having a constant frequency difference are needed. Utilising the interaction of transverse laser modes, laser beams having a constant frequency difference are generated and coupled out in part areas of a single laser.

Description

Verfahren zur Messung von Relativbewegungen mittels Laserstrahlung nach dem Dopplerradarprinzip Die Erfindung betrifft ein Verfahren zur Messung von Relativbewegungen mittels Laserstrahlung nach dem Dopplerradarprinzip, gemäß dem Oberbegriff des Anspruchs 1. Method for measuring relative movements by means of laser radiation According to the Doppler radar principle The invention relates to a method for measuring Relative movements by means of laser radiation according to the Doppler radar principle, according to the Preamble of claim 1.

Die Anwendung von Laserstrahlung für die Messung von Relativgeschwindigkeiten ist bekannt, A. Javan, E.A. Ballik, W.L. Bond, J. Opt. Soc. Am. 52, 96 (1961). The use of laser radiation for measuring relative speeds is known to A. Javan, E.A. Ballik, W.L. Bond, J. Opt. Soc. At the. 52, 96 (1961).

Die Messung beruht auf dem Prinzip des optischen Uberlagerungsempfangs. Ein Laserstrahl (Sendestrahl) der Frequenz Lts trifft auf ein bewegtes Objekt. Dieses streut einen Bruchteil der gesendeten Intensität auf die Empfangsoptik. Entsprechend der Relativgeschwindigkeit v R des Objekts zur Sende-/Empfangsapparatur ist die Frequenz tE der rückgestreuten Strahlung (Empfangssignal) um den Betrag "dopplerverschoben", Es gilt: c P Lichtgeschwindigkeit Wird das optische Empfangssignal tE tS + D mit dem Strahl der Frequenz bLO eines Lokaloszillators, der vom Sendestrahl einen Frequenzabstand au hat, auf einem optischen Detektor überlagert, so ergibt sich ein elektrisches Signal der Zwischenfrequenz tZF #ZF = (#S + #D) - #LO = ( #S - #LO) + #D = ## + #D (2) 5 Da #ZF gemessen werden kann und AZ bekannt ist, kann aus (1) und (2) die Relativgeschwindigkeit bestimmt werden: c ( YzF - VR 2-- (3) S Je nach dem Wert der Differenz ## = #S - #LO unterscheidet man zwei Verfahren ## = 0 Homodynverfahren ## # 0 Heterodynverfahren GegenUber dem Homodynverfahren bietet das Heterodynverfahren erhebliche Vorteile wie geringeres Rauschen.The measurement is based on the principle of optical superimposition reception. A laser beam (transmission beam) with the frequency Lts hits a moving object. This scatters a fraction of the transmitted intensity onto the receiving optics. According to the relative speed v R of the object to the transmitting / receiving apparatus, the frequency tE of the backscattered radiation (received signal) is "Doppler shifted" by the amount. c P Speed of light If the optical received signal tE tS + D is superimposed on an optical detector with the beam of frequency bLO of a local oscillator, which has a frequency separation au from the transmitted beam, an electrical signal of the intermediate frequency tZF #ZF = (#S + #D) - #LO = (#S - #LO) + #D = ## + #D (2) 5 Since #ZF can be measured and AZ is known, the relative speed can be determined from (1) and (2) become: c (YzF - VR 2-- (3) S. Depending on the value of the difference ## = #S - #LO, a distinction is made between two methods ## = 0 homodyne method ## # 0 heterodyne method Compared to the homodyne method, the heterodyne method offers considerable advantages such as lower noise.

Allerdings ist es technisch aufwendig. Entweder man verwendet zwei verschiedene Laser, die durch umfangreiche Maßnahmen so stabilisiert werden, daß ar konstant bleibt, oder die Laserintensität eines Lasers wird in zwei Teilstrahlen (Sendestrahl und LO-Strahl) aufgespaltet. Durch geeignete resonatorexterne Modulation (elektro-optisch oder akusto-optisch) eines Teilstrahls erzielt man den notwendigen Frequenzversatz a t. In der Regel sind diese Modulationsverfahren sehr aufwendig und reduzieren sie die verwertbaren Strahlungsleistungen.However, it is technically complex. Either you use two various lasers, which are stabilized by extensive measures so that ar remains constant, or the laser intensity of a laser is split into two partial beams (Transmit beam and LO beam) split. By suitable modulation external to the resonator (electro-optical or acousto-optical) of a partial beam one achieves the necessary Frequency offset a t. As a rule, these modulation methods are very complex and reduce the usable radiation output.

Der Erfindung liegt die Aufgabe zugrunde, die Messung von Relativbewegungen nach dem Heterodynverfahren mit geringerem technischem Aufwand zu bewerkstelligen. The invention is based on the object of measuring relative movements to accomplish according to the heterodyne process with less technical effort.

Diese Aufgabe wird erfindungsgemäß mit einem Verfahren gelöst, wie es durch den Anspruch 1 gekennzeichnet ist. Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben. According to the invention, this object is achieved with a method such as it is characterized by claim 1. Developments of the invention are in the Described subclaims.

Die Erfindung beruht auf der Ausnutzung der Wechselwirkung bzw. spontanen Kopplung transversaler Lasermoden, wie sie in den Patentanmeldungen P 31 25 544.2 und P 31 43 057.0 "Wellenleiter und TEA-LaserW beschrieben ist. Basierend auf dieser Wechselwirkung transversaler Lasermoden können durch eine gezielte Einflußnahme (z.B. Ausblenden der Teilstrahlen, Verwendung von Auskoppelspiegeln örtlich unterschiedlicher Reflexion). aus einem einzigen Laserresonator Laserstrahlen mit geeigneten Differenzfrequenzen für das Heterodynverfahren erhalten werden. The invention is based on the exploitation of the interaction or spontaneous Coupling of transverse laser modes, as described in patent applications P 31 25 544.2 and P 31 43 057.0 "Waveguide and TEA-LaserW. Based on this Interaction of transversal laser modes can be achieved through a specific influence (e.g. masking out the partial beams, using decoupling mirrors that are locally different Reflection). from a single laser resonator laser beams with suitable difference frequencies for the heterodyne method can be obtained.

Wie in der Patentanmeldung P 31 43 057.0 für den Spezialfall von Wellenleiter- und- TEA-Laser beschrieben, kann die Laserstrahlung durch gezielte Veränderung der Parameter des Laserresonators hinsichtlich ihrer Amplitude, Frequenz und Polarisation verändert werden. Solche Maßnahmen sind 1. Verkippen und/oder dreidimensionales Verformen der Resonatorspiegel, 2. Änderung der Resonatorlänge, 3. sämtliche Möglichkeiten der mechanischen Verformung der Resonatorgeometrie, z.B. Querschnittsverä.nderungen und Durchbiegen des Plasmarohrs, 4.. Verformung des aktiven Lasermediums, 5. Änderung der Resonatorsymmestrie, zum Beispiel des Reflexionsvermögens des Plasmarohrs, 6. Kombination dieser Maßnahmen. As in the patent application P 31 43 057.0 for the special case of Waveguide and TEA laser described, the laser radiation can be targeted Change in the parameters of the laser resonator with regard to their amplitude, frequency and polarization can be changed. Such measures are 1. Tilting and / or three-dimensional Deforming the resonator mirror, 2. Changing the resonator length, 3. All possibilities the mechanical deformation of the resonator geometry, e.g. changes in cross-section and bending of the plasma tube, 4th .. deformation of the active laser medium, 5th modification resonator symmetry, for example the reflectivity of the plasma tube, 6. Combination of these measures.

Darüber hinaus besitzt die Strahlung der einzelnen Teilbereiche des Modenbildes unterschiedliche optische Trägerfrequenzen, wobei die entsprechenden Differenzfrequenzen durch die oben genannten Maßnahmen in weiten Bereichen einstellbar sind. In addition, the radiation from the individual areas of the Modesbildes different optical carrier frequencies, with the corresponding Difference frequencies through the above measures in wide Ranges are adjustable.

Mit Hilfe einfacher Verfahren, vergleiche die Patentanmeldung P 31 43 056.2 "Laser mit Intensitätsmodulation" können die Differenzfrequenzen bis auf einige Hz Bandbreite langzeit-stabilisiert werden. Die Kurzzeitschwankungen des Lasers wirken sich auf beide Laserstrahlen annähernd in gleicher Weise aus, so daß auch in dieser Hinsicht das neue Verfahren den bisherigen Verfahren klar überlegen ist. Aufgrund der einfachen Stabilisierungsmaßnahmen mittels Regelkreisen kann die Meßgenauigkeit der Apparatur ohne wesentlichen Mehraufwand um mehrere Größenordnungen erhöht werden. With the help of simple procedures, compare patent application P 31 43 056.2 "Lasers with intensity modulation" can use the difference frequencies up to a few Hz bandwidth are long-term stabilized. The short-term fluctuations of the Lasers have almost the same effect on both laser beams, so that In this respect, too, the new process is clearly superior to the previous process is. Due to the simple stabilization measures by means of control loops, the Measurement accuracy of the apparatus by several orders of magnitude without significant additional effort increase.

Die Vorteile der Erfindung gegenüber den bisherigen Verfahren liegen in der Tatsache, daß mit einem Bruchteil des bislang notwendigen technischen Aufwandes eine erheblich höhere Meßgenauigkeit bei der Bestimmung von Relativgeschwindigkeiten erreicht werden kann. The advantages of the invention over the previous methods are in the fact that with a fraction of the previously necessary technical effort a considerably higher measurement accuracy when determining relative speeds can be reached.

Claims (3)

Patent ansprUch e: Verfahren zur Messung von Relativbewegungen mittels Laserstrahlung nach dem Dopplerradarprinzip, unter Verwendung eines Laseroszillators zur Abstrahlung eines Sendesignals ( #S) und Abgabe eines Ossillatorsignals ( wLO) mit konstanter Frequenzdifferenz (# #) (- sogenanntes Heterodynverfahren), dadurch g e -k e n n z e i c h n e t, daß durch Ausnutzung der Wechselwirkung transversaler Lasermoden in Teilbereichen des Laseroszillators Laserstrahlen mit konstanter Frequenzdifferenz ( ß t) erzeugt und ausgekoppelt werden. Patent claims: Method for measuring relative movements by means of Laser radiation according to the Doppler radar principle, using a laser oscillator for emitting a transmission signal (#S) and emitting an ossillator signal (wLO) with constant frequency difference (# #) (- so-called heterodyne method), thereby G e -k e n n n n z e i c h n e t that by exploiting the interaction of transversal Laser modes in partial areas of the laser oscillator Laser beams with constant frequency difference (ß t) are generated and decoupled. 2. Verfahren nach Anspruch 1, dadurch g e -k e n n z e i c h n e t, daß durch gezielte Einflußnahme auf die Parameter des Laserresonators die Frequenzdifferenz ( b) der ausgekoppelten Strahlung. eingestellt wird. 2. The method according to claim 1, characterized in that g e -k e n n z e i c h n e t that by deliberately influencing the parameters of the laser resonator, the frequency difference (b) the coupled-out radiation. is set. 3. Verfahren nach Anspruch 1 oder 2, dadurch g.e k e n n z e i c h n e t, daß die Frequenzdifferenz (ay) der ausgekoppelten Strahlung durch Regelkreise langzeit-stabilisiert wirde 3. The method according to claim 1 or 2, characterized in that g.e k e n n z e i c h n e t that the frequency difference (ay) of the decoupled radiation by control loops long-term stabilization
DE19813144805 1981-11-11 1981-11-11 Process for measuring relative movements by means of laser radiation according to the Doppler radar principle Expired DE3144805C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19813144805 DE3144805C2 (en) 1981-11-11 1981-11-11 Process for measuring relative movements by means of laser radiation according to the Doppler radar principle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813144805 DE3144805C2 (en) 1981-11-11 1981-11-11 Process for measuring relative movements by means of laser radiation according to the Doppler radar principle

Publications (2)

Publication Number Publication Date
DE3144805A1 true DE3144805A1 (en) 1983-05-26
DE3144805C2 DE3144805C2 (en) 1986-09-11

Family

ID=6146143

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19813144805 Expired DE3144805C2 (en) 1981-11-11 1981-11-11 Process for measuring relative movements by means of laser radiation according to the Doppler radar principle

Country Status (1)

Country Link
DE (1) DE3144805C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572806A1 (en) * 1984-11-05 1986-05-09 Deutsche Forsch Luft Raumfahrt METHOD FOR DETERMINING THE SIGN AND VALUE OF A FREQUENCY OFFSET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141583A1 (en) * 1971-06-11 1973-01-26 Tokyo Shibaura Electric Co
GB2075787A (en) * 1980-04-09 1981-11-18 Secr Defence Measuring velocity by doppler shift of laser radiation
DE3125544A1 (en) * 1981-06-29 1983-01-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Stable optical resonator for lasers
DE3143056A1 (en) * 1981-10-30 1983-05-19 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Laser with intensity modulation
DE3143057A1 (en) * 1981-10-30 1983-05-19 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Waveguide and TEA laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141583A1 (en) * 1971-06-11 1973-01-26 Tokyo Shibaura Electric Co
GB2075787A (en) * 1980-04-09 1981-11-18 Secr Defence Measuring velocity by doppler shift of laser radiation
DE3125544A1 (en) * 1981-06-29 1983-01-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Stable optical resonator for lasers
DE3143056A1 (en) * 1981-10-30 1983-05-19 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Laser with intensity modulation
DE3143057A1 (en) * 1981-10-30 1983-05-19 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Waveguide and TEA laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of the Optical Society of America, Vol.52, No.1, January 1962, S.96-98 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572806A1 (en) * 1984-11-05 1986-05-09 Deutsche Forsch Luft Raumfahrt METHOD FOR DETERMINING THE SIGN AND VALUE OF A FREQUENCY OFFSET

Also Published As

Publication number Publication date
DE3144805C2 (en) 1986-09-11

Similar Documents

Publication Publication Date Title
DE2058064C3 (en) Interferometric device for determining the composition of a substance
DE69628624T2 (en) OTDR apparatus
DE3638583A1 (en) METHOD AND DEVICE FOR DETERMINING THE DISPERSION OF OPTICAL FIBERS
EP0008089A1 (en) Laser pulse range finder having an optical correlator
EP0075032B1 (en) Method for interferometric surface topography
DE102009012356A1 (en) Temperature measuring device and method
EP3612860B1 (en) Lidar measuring device
DE4400680C2 (en) Device for determining changes in distance of an object
DE19628200A1 (en) Device and method for performing interferometric measurements
DE2934794A1 (en) Absolute rotation speed measurement - using monochromatic light ring with single sideband modulation of opposed partial light beams
DE2709571A1 (en) FACILITY RESPONDING TO THE INTENSITY OF ULTRASONIC RADIATION
DE3730091A1 (en) INTERFEROMETRIC DISTANCE MEASURING DEVICE
DE102018216636A1 (en) Device for scanning the distance of an object
DE2100236A1 (en) Arrangement for measuring optical path lengths using interferometric methods
DE19712519C2 (en) Measuring device for optical fiber amplifiers and corresponding setting method
DE3144805A1 (en) Method for measuring relative movements by means of laser radiation in accordance with the Doppler radar principle
DE2850743C3 (en) Method and device for measuring the deviation of the transmission beam from the optical axis of the receiving telescope in a lidar device
DE3918812A1 (en) Distance-measuring heterodyne interferometer
DE1623151A1 (en) Method and device for measuring and regulating the mass of profile pieces
EP0776536B1 (en) Stabilised multi-frequency light source and method of generating synthetic light wavelengths
DD209263A1 (en) INTERFEROMETRIC ARRANGEMENT FOR OPTOELECTRIC DISTANCE MEASUREMENT
EP0172391A2 (en) Method and apparatus for measuring rotation rate using the Sagnac effect
EP0937229B1 (en) Interferometric measuring device for form measurement on rough surfaces
EP0322077A3 (en) Optical backscattering device
CH686744A5 (en) Fiberoptic current sensor.

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8320 Willingness to grant licences declared (paragraph 23)
8327 Change in the person/name/address of the patent owner

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8339 Ceased/non-payment of the annual fee