DE19913397A1 - Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption - Google Patents

Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption

Info

Publication number
DE19913397A1
DE19913397A1 DE1999113397 DE19913397A DE19913397A1 DE 19913397 A1 DE19913397 A1 DE 19913397A1 DE 1999113397 DE1999113397 DE 1999113397 DE 19913397 A DE19913397 A DE 19913397A DE 19913397 A1 DE19913397 A1 DE 19913397A1
Authority
DE
Germany
Prior art keywords
ultrasound
fluidized bed
regeneration
flushed
subjecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999113397
Other languages
English (en)
Inventor
Marc Breitbach
Dieter Bathen
Henner Schmidt-Traub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1999113397 priority Critical patent/DE19913397A1/de
Publication of DE19913397A1 publication Critical patent/DE19913397A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders

Abstract

Beschrieben wird ein Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption. Die Regeneration der beladenen Adsorbentien erfolgt hierbei in einer Wirbelschicht, die mit Ultraschall beaufschlagt wird, um den gebundenen Stoff zu desorbieren. DOLLAR A Hierdurch können nachteilige Effekte durch die limitierte Eindringtiefe des Ultraschalls vermieden werden. Weiterhin treten die Probleme bei der Umsetzung der bisher vorgeschlagenen Verfahren in den industriellen Maßstab auf.

Description

Adsorptionsprozesse in der flüssigen Phase finden vielfach Anwendung in der Industrie, so z. B. bei der Aufbereitung von Abwässern, der Trinkwasseraufbereitung oder der Gewinnung von pharmazeutischen oder biotechnologischen Wertstoffen aus flüssigen Lösungen. Problematisch ist in der Regel die Regeneration der beladenen Adsorbentien im Anschluss an den eigentlichen Adsorptionsprozess. Üblicherweise werden hierzu Chemika­ lien oder erhitzte Flüssigkeiten eingesetzt.
Bekannt ist, dass beladene Adsorbentien auch durch Ultraschall regeneriert werden können. So beschreibt Bäßler die grundlegenden Effekte bei der Ultraschall-Desorption verschiedener Stoffe, die an Polymerharzen adsorbiert wurden (Bäßler, Reichert, Fisch­ wasser, "Einfluss von Ultraschall auf das Adsorptions- und Desorptionsverhalten von Adsorberpolymeren in wässriger Phase", Vom Wasser 87 (1996) S. 15-27). Des weiteren existiert ein Patent DE 43 12 445 C2, in dem ein Verfahren zur Regeneration durch Ultraschall beschrieben wird, bei dem zusätzlich belüftetes Wasser verwendet wird.
Die genannten Untersuchungen finden in Bechergläsern, in die ein Ultraschallhorn einge­ bracht wird, bzw. in handelsüblichen Ultraschallbädern statt. Hierbei treten mehrere Probleme auf:
  • 1. Eine solche Anordnung kann nicht in den industriellen Maßstab übertragen werden.
  • 2. Da Ultraschall eine endliche Eindringtiefe besitzt, ist insbesondere bei der Anordnung mit dem Ultraschallhorn zu erwarten, dass bei größeren Adsorbens­ mengen lediglich die Randschicht regeneriert wird, während die Beladung des inneren Bereichs unverändert bleibt.
Eine apparative Anordnung oder ein Verfahren, die einen industriellen Einsatz der UI­ traschalldesorption ermöglichen, existieren somit zur Zeit noch nicht. Die vorliegende Erfindung löst dieses Problem.
Das Adsorbens befindet sich in einem Doppelmantelgefäß, das temperiert werden kann. Dieses Gefäß wird von unten nach oben von einer Spülflüssigkeit durchströmt. Je nach Geschwindigkeit des Spülfluids stellt sich ein durchströmtes Festbett oder eine Wirbel­ schicht in dem Gefäß ein. Für den Teilschritt der Adsorption erweist es sich als vorteil­ haft, das System als Festbett zu betreiben, während der Regenerationsphase sollte es als Wirbelschicht betrieben werden.
Am Kopf oder am Boden oder an Seiten des Gefäßes (oder an allen Stellen gleichzeitig) befinden sich Ultraschallsender, die ein Ultraschallfeld erzeugen und so das im Gefäß befindliche Fluid und das Adsorbens beschallen.
Ist die Eindringtiefe des Ultraschalls in das vorliegende Stoffsystem limitiert, so sollte der Apparat auf jeden Fall als Wirbelschicht-Desorber betrieben werden. Durch die axiale Durchmischung der Wirbelschicht kann nämlich sichergestellt werden, dass über einen gewissen Zeitraum alle Adsorbens-Partikel in das Ultraschallfeld gelangen und dort desorbiert/regeneriert werden. Somit kann durch die kombinierte Wirbelschicht-Ultraschall- Desorption das Problem der endlichen Eindringtiefe des Ultraschalls in weiten Bereichen gelöst werden. Zudem kann dieses Verfahren in den industriellen Maßstab übertragen werden.
Als Beispiel für das Verfahren ist der Aufbau in Zeichnung 1 dokumentiert. In einem Doppelmantelgefäß (5) befindet sich das Adsorbens (2). Das Spülfluid strömt durch den Einlass (6) zunächst in den unteren Bereich des Gefässes (4), um anschließend durch eine Fritte oder einen Siebboden (3) das Adsorbens (2) aufzuwirbeln und durch den Auslass­ stutzen (7) das System zu verlassen. Während der Desorption wird der Innenraum des Gefäßes durch einen Ultraschallsender (1) mit Ultraschall beaufschlagt. Die Temperierung des Systems erfolgt über ein Kühl- oder Heizmedium, das über den Stutzen (8) oder (9) zugeführt werden kann, je nachdem ob eine Gleich- oder Gegenstromführung angestrebt wird.
Alternativ zu der dargestellten Anordnung einer einstufigen Wirbelschicht ist auch ein System als mehrstufige Wirbelschicht möglich. Weiterhin kann die Anordnung der Be­ schallungseinrichtung variiert werden. Es besteht die Möglichkeit, das System, wie in Zeichnung 1 dargestellt, von oben oder von unten oder von der Seite mit Ultraschall zu beaufschlagen. Auch eine Kombination der genannten Anordnungen ist möglich.

Claims (5)

1. Verfahren zur Regeneration beladener Adsorbentien, dadurch gekennzeichnet, dass die Regeneration des beladenen Adsorbens durch Beschallung mit Ultraschall in einer Wirbelschicht erfolgt.
2. Verfahren zur Regeneration beladener Adsorbentien nach Patentanspruch 1, dadurch gekennzeichnet, dass die Beschallung in einer einstufigen Wirbelschicht mit einem von oben aufgesetzten Ultraschallsender erfolgt.
3. Verfahren zur Regeneration beladener Adsorbentien nach Patentanspruch 1, dadurch gekennzeichnet, dass die Beschallung mit Ultraschall in einer einstufigen Wirbelschicht mit einem von unten aufgesetzten Ultraschallsender erfolgt.
4. Verfahren zur Regeneration beladener Adsorbentien nach Patentanspruch 1, dadurch gekennzeichnet, dass die Beschallung des Adsorbens mit Ultraschall durch in die Wirbelschicht einge­ tauchte Ultraschallsender durchgeführt wird.
5. Verfahren zur Regeneration beladener Adsorbentien nach Patentanspruch 1, dadurch gekennzeichnet, dass die Beschallung mit Ultraschall in einer mehrstufigen Wirbelschicht erfolgt, wobei die Beschallung des Adsorbens in jeder Stufe durch an den Seiten aufgesetzte Ultraschallsender durchgeführt wird.
DE1999113397 1999-03-25 1999-03-25 Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption Withdrawn DE19913397A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999113397 DE19913397A1 (de) 1999-03-25 1999-03-25 Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999113397 DE19913397A1 (de) 1999-03-25 1999-03-25 Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption

Publications (1)

Publication Number Publication Date
DE19913397A1 true DE19913397A1 (de) 2000-09-28

Family

ID=7902270

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999113397 Withdrawn DE19913397A1 (de) 1999-03-25 1999-03-25 Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption

Country Status (1)

Country Link
DE (1) DE19913397A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029308A1 (en) 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7703698B2 (en) * 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016899C2 (de) * 1990-05-25 1993-05-06 Karl Dr. 6917 Schoenau De Kleinermanns
DE4312445C2 (de) * 1993-04-16 1997-08-07 Guv Ges Fuer Umweltvertraeglic Verfahren zum Regenerieren von Adsorbentien

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016899C2 (de) * 1990-05-25 1993-05-06 Karl Dr. 6917 Schoenau De Kleinermanns
DE4312445C2 (de) * 1993-04-16 1997-08-07 Guv Ges Fuer Umweltvertraeglic Verfahren zum Regenerieren von Adsorbentien

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
WO2008029308A1 (en) 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US7703698B2 (en) * 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US8616759B2 (en) 2006-09-08 2013-12-31 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system
KR101415792B1 (ko) * 2006-09-08 2014-07-04 킴벌리-클라크 월드와이드, 인크. 초음파 처리 챔버와, 이를 구비한 초음파 처리 장치, 및 화합물 제거 방법
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles

Similar Documents

Publication Publication Date Title
DE19913397A1 (de) Verfahren zur Regeneration beladener Adsorbentien durch kombinierte Ultraschall-Wirbelschicht-Desorption
Luukkonen et al. Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer
Dotto et al. Current scenario and challenges in adsorption for water treatment
Bonilla-Petriciolet et al. Adsorption processes for water treatment and purification
Mckay et al. The adsorption of dyes onto chitin in fixed bed columns and batch adsorbers
Atar et al. Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: batch and fixed-bed system studies
Ho et al. Sorption studies of acid dye by mixed sorbents
Breitbach et al. Influence of ultrasound on adsorption processes
DE69305800T3 (de) Reinigung mittels Kavitation in Flüssiggas
Simsek et al. Predicting the dynamics and performance of selective polymeric resins in a fixed bed system for boron removal
Speth et al. Effect of Preloading on the Scale‐up of GAC Microcolumns
Al-Jabari Kinetic models for adsorption on mineral particles comparison between Langmuir kinetics and mass transfer
GB248414A (en) Improvements relating to processes involving exchange reactions and particularly to the softening of water by zeolite-like bodies
CN102105402A (zh) 通过由漂浮微粒引起的浮选来处理液体的方法
Castillejos et al. Phenol adsorption from water solutions over microporous and mesoporous carbon surfaces: a real time kinetic study
US3580842A (en) Downflow ion exchange
de Oliveira et al. Study of variables for optimization of the dye indosol adsorption process using red mud and clay as adsorbents
Famularo et al. Prediction of carbon column performance from pure-solute data
Mustafiz et al. A novel method for heavy metal removal
Gaid et al. Surface mass transfer processes using activated date pits as adsorbent
JPH07504840A (ja) セパレータの改良
Majeed et al. Removal of Dissolved Organic Compounds and Contaminants from Wastewater of a Petroleum Refinery by Ion Exchange.
Tiruneh et al. Assessment of technical and economic feasibility of activated charcoal removal of organic matter from different streams of grey water through study of adsorption isotherms
Jusoh et al. Model studies on granular activated carbon adsorption in fixed bed filtration
CN220091026U (zh) 一种处理饮用水的中空纤维膜丝自动清洗装置

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licenses declared
8139 Disposal/non-payment of the annual fee