DE19847874A1 - Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine - Google Patents

Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine

Info

Publication number
DE19847874A1
DE19847874A1 DE19847874A DE19847874A DE19847874A1 DE 19847874 A1 DE19847874 A1 DE 19847874A1 DE 19847874 A DE19847874 A DE 19847874A DE 19847874 A DE19847874 A DE 19847874A DE 19847874 A1 DE19847874 A1 DE 19847874A1
Authority
DE
Germany
Prior art keywords
regeneration
predetermined
catalyst
exhaust gas
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19847874A
Other languages
English (en)
Inventor
Ekkehard Pott
Gunnar Splisteser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE19847874A priority Critical patent/DE19847874A1/de
Priority to CN99814648XA priority patent/CN1131929C/zh
Priority to DE59901151T priority patent/DE59901151D1/de
Priority to EP99948894A priority patent/EP1121513B1/de
Priority to PCT/EP1999/007213 priority patent/WO2000023694A2/de
Publication of DE19847874A1 publication Critical patent/DE19847874A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es wird ein Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine mit einem nachgeschalteten NO¶x¶-Speicherkatalysator beschrieben, bei dem die NO¶x¶-Einlagerung durch abgastemperatursteigende und/oder massenstromsenkende Maßnahmen begünstigt und die NO¶x¶-Regeneration des Katalysators so gesteuert wird, daß sich eine optimale Abgasreinigung ergibt. Zur Steuerung der NO¶x¶-Regenaration wird der Beladungszustand des Katalysators mit Stickoxiden bestimmt und/oder die Katalysatoraktivität durch eine On-Board-Diagnose überwacht. Bei Überschreitung einer maximal zulässigen Beladung oder beim Auftreten einer Unregelmäßigkeit der Katalysatoraktivität wird durch Überprüfung sicherheitsrelevanter Bauteile auf ordnungsgemäße Funktionsweise und/oder der aktuellen Fahrsituation auf Einhaltung vorbestimmter Fahrparameter zunächst die Zulässigkeit einer NO¶x¶-Regeneration geprüft. Zudem wird überprüft, ob durch Einhaltung vorbestimmter Regenerationsparameter die Möglichkeit zur Durchführung einer BO¶x¶-Regeneration gegeben ist. Bei Erfüllung der Zulässigkeitsvoraussetzungen werden gegebenenfalls die erforderlichen Regenerationsparameter eingestellt und es wird eine NO¶x¶-Regeneration eingeleitet, die solange durchgeführt wird, bis entweder ein vorbestimmter Regenerationsgrad erreicht ist oder die aktuellen Ergebnisse der Zulässigkeitsprüfung einen vorzeitigen Abbruch oder eine Unterbrechung des Regenerationsvorgangs erfordern. In diesem Fall wird die ...

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine mit einem nachgeschalteten NOx-Speicher oder NOx-Speicherkatalysator. Sie betrifft insbesondere ein Verfahren zur optimalen Steuerung der NOx-Regeneration des NOx-Speicherkatalysators und ein Verfahren zur Verbesserung der Stickoxideinlagerung. Sie betrifft zudem einen Common-Rail- Dieselmotor zur Durchführung des Verfahrens mit einer zugehörigen Abgasreinigungsvorrichtung.
NOx-Speicherkatalysatoren bestehen aus einer üblichen 3-Wege-Beschichtung, die um eine NOx-Speicherkomponente erweitert wird. Sie lagern Stickoxide durch Nitratbildung im mageren Abgas ein und setzen diese unter reduzierenden Bedingungen im fetten Abgas in unschädliches N2 um, wobei sie gezielt entleert werden, um im wesentlichen ihre volle Absorptionsfähigkeit für Stickoxide zurückzuerhalten, die mit zunehmender Stickoxidbeladung in der Magerphase kontinuierlich absinkt.
Zur Minimierung der Stickoxidemission ist daher sowohl eine möglichst effektive Einlagerung der Stickoxide in den Katalysator als auch eine rechtzeitige und wirkungsvolle Regeneration des beladenen Katalysators durch intermittierendes Absenken des Lambda-Wertes in den fetten Betriebsbereich erforderlich.
Besondere Probleme treten hierbei bei Dieselmotoren auf, da diese üblicherweise nicht mit λ <1 laufen. Bei dieser Art von Brennkraftmaschinen sind daher besondere motorische Maßnahmen (wie u. a. eine Androsselung ohne Drehmomenteneinbruch) zur NOx-Regeneration erforderlich, die zu einer unerwünschten Veränderung des Fahrverhaltens führen können. Zudem ist bei dieseltypischen Abgastemperaturen von unter 200°C eine NOx-Regeneration nicht möglich. Außerdem ist nur eine unzureichende NOx-Einlagerung festzustellen. Überdies verursachen auch hohe Abgasmassenströme Probleme bei der NOx-Speichereffizienz.
Zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine wird in der deutschen Patentanmeldung 197 16 275.4 ein Steuerungsverfahren für die NOx- Regeneration eines zugeordneten NOx-Speicherkatalysators beschrieben. Bei diesem Verfahren wird zunächst der Beladungszustand des Katalysators bestimmt und mit einem vorbestimmten Schwellenwert verglichen. Bei Überschreitung dieses Wertes wird geprüft, ob die Betriebsbedingungen und die Fahrsituation eine NOx-Regeneration zulassen. Wenn dies der Fall ist, wird die erforderliche Regeneration eingeleitet, während andernfalls so lange damit gewartet wird, bis die Betriebsbedingungen und die Fahrsituation dies erlauben oder ein zweiter Schwellenwert für die Stickoxidbeladung des Katalysators überschritten wird. Nun wird durch gezielte Veränderung der Betriebsbedingungen eine Regeneration eingeleitet und so lange durchgeführt, bis der Beladungszustand des Katalysators den ersten Schwellenwert unterschreitet. Falls die Fahrsituation dies jedoch nicht erlaubt, unterbleibt die Einleitung der Regeneration oder eine bereits begonnene Regeneration wird vorzeitig abgebrochen, um zu gewährleisten, daß keine gefährlichen Betriebssituationen eintreten können. Ein abgebrochener Regenerationsvorgang wird erst dann wieder aufgenommen, wenn auf Grund der aktuellen Fahrsituation keine Bedenken gegen die Durchführung einer solchen Maßnahme mehr bestehen. Maßnahmen zur Verbesserung der NOx-Einlagerung sind der genannten Patentanmeldung nicht zu entnehmen.
Die Aufgabe der vorliegenden Erfindung besteht in der Schaffung eines Verfahrens zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine mit einem nachgeschalteten NOx-Speicherkatalysator, das sowohl eine möglichst effektive Einlagerung der freiwerdenden Stickoxide in den Katalysator ermöglicht als auch durch Verbesserung des beschriebenen NOx-Regenerationsverfahrens eine für eine ordnungsgemäße Funktionsweise des Katalysators stets ausreichend hohe Katalysatoraktivität gewährleistet, ohne daß es hierbei zu einer spürbaren Veränderung des Betriebsverhaltens der Brennkraftmaschine oder gar zu gefährlichen Fahrsituationen kommt. Die Aufgabe besteht auch in der Schaffung eines Common-Rail-Dieselmotors mit einer zugehörigen Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens.
Die NOx-Einlagerung und die Speichereffektivität werden erfindungsgemäß durch abgastemperatursteigernde und/oder massenstromsenkende Maßnahmen verbessert. Insbesondere erfolgt im Schwachlastbereich eine Teillastandrosselung über eine Drosselklappe, wobei zusätzlich eine geringe Nacheinspritzmenge zur Steigerung der Katalysatortemperatur beitragen kann. Bei höheren Lasten kann auch eine Ladedrucksenkung sowie eine Veränderung der EGR-Rate oder der Abgasrückführungsrate und/oder eine Variation des Spritzbeginns/ der Spritzdauer der Vor-, Haupt- und Nacheinspritzmenge zum Einsatz kommen. Durch Halten einer Mindesttemperatur von etwa 190-200°C im NOx-Speicherkatalysator-Vorlauf werden auch die Möglichkeiten zur Durchführung einer NOx-Regeneration deutlich erweitert.
Bei dem erfindungsgemäßen NOx-Regenerationsverfahren wird in einem ersten Verfahrensschritt (Verfahrensschritt a) der Beladungszustand des NOx- Speicherkatalysators mit Stickoxiden bestimmt und mit einer einer gerade noch zulässigen minimalen Katalysatoraktivität entsprechenden vorbestimmten maximal zulässigen Stickoxidbeladung verglichen, um den optimalen Zeitpunkt zur Durchführung einer Regeneration zu ermitteln.
Zur Feststellung einer Unregelmäßigkeit der Katalysatoraktivität erfolgt zudem eine OBD- Kontrolle (OBD = On-Board-Diagnose) des NOx-Speicherkatalysators (Verfahrensschritt b).
Bei Feststellung einer Unregelmäßigkeit oder bei Überschreitung der zulässigen Katalysatorbeladung erfolgt dann zunächst eine Überprüfung der Zulässigkeit einer NOx- Regeneration, um unerwünschte oder gar gefährliche Betriebsbedingungen oder Fahrsituationen zu vermeiden. Hierbei werden sicherheitsrelevante Bauteile auf ordnungsgemäße Funktionsweise und/oder die aktuelle Fahrsituation auf Einhaltung vorbestimmter Fahrparameter überprüft (Verfahrensschritt c).
Gleichzeitig mit der Zulässigkeitsüberprüfung oder im Anschluß daran erfolgt in einem weiteren Verfahrensschritt (Verfahrensschritt d) eine Überprüfung, ob durch Einhaltung vorbestimmter Regenerationsparameter aktuellerweise eine Möglichkeit zur Durchführung einer NOx-Regeneration gegeben ist. Diese Überprüfung kann auch bereits vor der Zulässigkeitsüberprüfung erfolgen.
Gegebenenfalls werden die erforderlichen Regenerationsparameter eingestellt und die Regeneration wird eingeleitet. Ansonsten erfolgt eine Wiederholung des Verfahrensschrittes c) bis zur Zulässigkeit einer NOx-Regeneration. Gegebenenfalls wird auch eine die Durchführung einer Regeneration behindernde festgestellte Funktionsstörung eines der sicherheitsrelevanten Bauteile angezeigt.
Wenn die NOx-Regeneration sowohl zulässig als auch möglich ist, wird der NOx- Speicherkatalysator schließlich in einem letzten Verfahrensschritt e) bis zum Erreichen eines vorbestimmten Regenerationsgrades regeneriert. Im Anschluß daran werden die normalen Betriebsbedingungen wieder eingestellt und es erfolgt eine Rückkehr zum dem Verfahrensschritt a).
Falls die aktuellen Ergebnisse der auch bei Durchführung der Verfahrensschritte d) und e) andauernden Zulässigkeitsüberprüfung des Verfahrensschrittes c) dies erfordern, erfolgt bei erkannter Unzulässigkeit des Regenerationsvorgangs jedoch ein vorzeitiger Abbruch oder zumindest eine Unterbrechung der NOx-Regeneration und eine Rückkehr zum Verfahrensschritt a) oder c). Gegebenenfalls wird auch eine festgestellte Funktionsstörung eines der sicherheitsrelevanten Bauteile angezeigt.
Die Entscheidung über eine Rückkehr zu dem Verfahrensschritt a) oder einer Rückkehr zu dem Verfahrensschritt c) erfolgt vorzugsweise anhand des aktuellerweise bereits erreichten Regenerationsgrades, der mit einem vorbestimmten Regenerationsgrad verglichen wird. Bei Unterschreitung dieses Wertes, d. h. bei Überschreitung eines entsprechenden Stickoxidbeladungsgrades, wird von einer nicht ausreichenden Funktionsfähigkeit des Katalysators ausgegangen und es wird durch Rückkehr zu der Zulässigkeitsüberprüfung des Verfahrensschrittes c) eine Fortsetzung des Regenerationsvorgangs eingeleitet. Beim Erreichen oder beim Überschreiten des vorbestimmten Regenerationsgrades hingegen ist durch Unterschreitung einer kritischen Stickoxidbeladung bereits eine ausreichend hohe katalytische Aktivität gewährleistet und es erfolgt eine Rückkehr zu dem Verfahrensschritt a) zur Ermittlung des optimalen Zeitpunktes für die, nächste NOx-Regeneration. Der erreichte NOx-Regenerationsgrad wird über den Beladungszustand des Katalysators mit Stickoxiden bestimmt.
Bei einer bevorzugten Verfahrensvariante erfolgt die Einstellung der erforderlichen Regenerationsparameter in dem Verfahrensschritt d) erst nach Ablauf einer vorbestimmten ersten Zeitspanne und/oder nach Überschreitung zumindest eines zweiten Schwellenwertes für die Stickoxidbeladung, um möglichst wenig in das Betriebsverhalten der Brennkraftmaschine eingreifen zu müssen.
Weitere bevorzugte Verfahrensvarianten sind den zugehörigen Unteransprüchen zu entnehmen.
Um das Verfahren bei einem Common-Rail-Dieselmotor anwenden zu können, wird dieser erfindungsgemäß zusätzlich mit einer vor dem Ansaugkrümmer angeordneten Drosselklappe versehen.
Eine Abgasreinigungsvorrichtung zur Durchführung der erfindungsgemäßen Verfahren umfaßt einen NOx-Speicherkatalysator, dem zur Bestimmung der optimalen NOx- Regenerationstemperatur zumindest je ein Temperaturfühler vorgeschaltet bzw. nachgeschaltet ist, aus deren Meßwerten die eigentlich gewünschte Katalysatortemperatur bestimmt wird. Dem NOx-Speicherkatalysator kann zudem eine Breitbandlambdasonde zur Bestimmung des Lambda-Wertes vorgeschaltet und ein NOx- Sensor zur Bestimmung der NOx-Emission nachgeschaltet sein.
Weitere Merkmale und Vorteile der erfindungsgemäßen Verfahren und der genannten Vorrichtungen zur Durchführung dieser Verfahren ergeben sich nicht nur aus den zugehörigen Ansprüchen - für sich und/oder in Kombination - sondern auch aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit den zugehörigen Zeichnungen. In den Zeichnungen zeigen:
Fig. 1 ein Flußdiagramm des erfindungsgemäßen NOx-Regenerationsverfahrens und
Fig. 2 eine schematische Darstellung eines Common-Rail-Dieselmotors mit einer nachgeschalteten Abgasreinigungsvorrichtung zur Durchführung des Verfahrens gemäß Fig. 1.
Ausgangspunkt für das erfindungsgemäße Verfahren ist die kontinuierliche Bestimmung der NOx-Speicheraktivität oder des NOx-Emissionsschlupfs, der bei magerer Betriebsweise anhand des aktuellen Beladungszustandes des NOx-Speicherkatalysators, der anströmenden NOx-Rohemission, der Abgas- oder Katalysatortemperatur und des Abgasmassenstroms bestimmt wird. Die NOx-Rohemission wird hierbei anhand eines Kennfeldes aus dem Verbrauch oder aus den gefahrenen Motorbetriebspunkten (Drehzahl n, aktuelle Einspritzmenge M_E) bestimmt. Sie kann über Korrekturfelder für den Ladedruck, die EGR-Rate, die Drosselklappenstellung sowie den Beginn der Vor- und Haupteinspritzung und die Dauer der Voreinspritzung korrigiert werden.
Da die katalytische Aktivität und damit die Funktionstüchtigkeit des Katalysators, wie bereits erwähnt wurde, mit steigender Stickoxidbeladung allmählich absinkt, wird zur Gewährleistung einer ordnungsgemäßen Funktionsweise des Katalysators bei Überschreitung eines einer maximal zulässigen Stickoxidbeladung bzw. bei Unterschreitung eines einer minimal zulässigen Katalysatoraktivität entsprechenden vorbestimmten Schwellenwertes eine NOx-Regeneration als erforderlich erachtet und es werden die hierfür erforderlichen Maßnahmen in Form der nachfolgend beschriebenen Verfahrensschritte ergriffen.
Zur Gewährleistung einer ordnungsgemäßen Betriebsweise des NOx- Speicherkatalysators findet zudem ergänzend zu der Bestimmung des Beladungszustandes eine OBD-Kontrolle (OBD = On-Board-Diagnose) des Katalysators statt, die im wesentlichen aus einer Überwachung der NOx-Speicheraktivität zur Feststellung eventuell auftretender Unregelmäßigkeiten besteht. Die Soll-Werte der NOx- Speichereffizienz dienen daher als Eingangssignal für die OBD-Kontrolle.
Unregelmäßigkeiten der Katalysatoraktivität machen sich im wesentlichen durch zwei Schädigungsbilder bemerkbar, die auch gemeinsam auftreten können:
  • - Nach einer NOx-Regeneration wird zunächst eine gute NOx-Einlagerung gemessen, die Sättigung setzt jedoch schneller und stärker als berechnet ein.
  • - Nach einer NOx-Regeneration wird ein stärkerer NOx-Durchbruch gemessen als nach den Berechnungen zu erwarten ist.
Bei Belegung oder Zerstörung der Edelmetallkomponenten des Katalysators ist neben der abnehmenden NOx-Aktivität auch mit einer Minderung der HC-, CO- und Partikelkonvertierung zu rechnen, so daß ein Abgleich der berechneten mit der gemessenen NOx-Speichereffizienz zur Katalysatordiagnose ausreicht. Unregelmäßigkeiten der Katalysatoraktivität werden daher durch Bestimmung von NOx- Durchbrüchen ermittelt, die in einem vorbestimmten Zeitfenster von etwa 30 s einen vorbestimmten Schwellenwert überschreiten müssen, der bis zu einer NOx-Rohemission von etwa 10 g/h einer Abweichung von etwa 2 g/h zwischen Istwert und Sollwert entspricht, während er bei höheren NOx-Rohemissionen einer Abweichung von 20% entspricht.
Nach Feststellung einer solchen Unregelmäßigkeit der Katalysatoraktivität wird unter Durchführung der nachfolgenden beschriebenen Verfahrensschritte zunächst zumindest eine vorgezogene NOx-Regeneration durchgeführt. Bei Fortbestehen der Unregelmäßigkeiten wird zudem, wie bei einer zu hohen Schwefelbeladung auch, zusätzlich zumindest noch eine De-Sulfatierung eingeleitet.
Zur Durchführung einer vorgezogenen oder regulären NOx-Regeneration wird zunächst die aktuelle Fahrsituation auf Einhaltung vorbestimmter Fahrparameter überprüft, da eine solche Maßnahme nicht bei allen Fahr- oder Betriebssituationen zulässig ist. Insbesondere die Drehzahl, die Last, die Laständerung und die Fahrgeschwindigkeit müssen hierbei innerhalb vorgegebener Zulässigkeitsgrenzen liegen, die eingehalten werden müssen, damit eine NOx-Regeneration erfolgen kann oder ein bereits begonnener Regenerationsvorgang nicht unterbrochen oder abgebrochen wird.
Bei sehr hohen Drehzahlen oder Lasten ist eine Anfettung des insbesondere bei Turbomotoren sehr hohen Abgasmassenstroms auf einen Lambda-Wert von weniger als 1, wie er zur Durchführung einer NOx-Regeneration erforderlich ist, nur in Verbindung mit hoher Exothermie im Abgas möglich, so daß bei Drehzahlen von mehr als etwa 3600 min-1 keine Regeneration erfolgt. Auch bei Drehzahlen von weniger als etwa 1200 min-1 wird eine NOx-Regeneration unterdrückt, da diese nur während des Fahrbetriebs mit entsprechend hohen Drehzahlen erfolgen soll, um akustische Einflüsse durch die erforderliche Teilandrosselung in Fahrphasen mit höheren Abroll- und Windgeräuschen, d. h. höhere Geschwindigkeiten, zu verlagern und um eventuell auftretende, unerwünschte geruchsintensive Reaktionsprodukte nicht im Stillstand oder bei zu geringer Fahrgeschwindigkeit zu emittieren. Aus diesem Grund wird auch die zulässige Mindestgeschwindigkeit zur Durchführung einer NOx-Regeneration auf etwa 20 km/h begrenzt.
Zur Vermeidung gefährlicher Fahrsituationen wird auch bei abrupten Laständerungswünschen keine NOx-Regeneration zugelassen. Als Maß für die Laständerungswünsche dient hierbei eine zeitliche Veränderung des Pedalwertgebers PWG oder die PWG-Geschwindigkeit, die beispielsweise einen Wert von etwa 100%/s nicht überschreiten darf.
Die Zulässigkeit einer NOx-Regeneration bei einer vorgegebenen Fahrsituation kann auch aus Schwellenwerten für die Einspritzmenge, den Drehzahlgradienten oder für ein Schuberkennungs- oder Bremssignal abgeleitet werden, wobei beispielsweise die Einspritzmenge in Abhängigkeit vom verwendeten Motortyp 10-90% des Maximalwertes betragen sollte. Falls eine oder mehrere dieser Möglichkeiten nicht benötigt werden, so können diese durch entsprechende Wahl der Schwellenwerte oder Zulässigkeitsgrenzen oder durch soft- oder hardwaremäßige Schalter außer Betrieb genommen werden.
Der NOx-Speicherkatalysator benötigt nach einer De-Sulfatierung oder einer vollständig verlaufenen oder aus den nachstehend noch dargelegten Gründen unterbrochenen oder vorzeitig abgebrochenen NOx-Regeneration stets eine Abkühl- oder Erholungspause bis zur Durchführung einer erneuten Regeneration, deren Dauer abhängig ist von der zum Erreichen des Regenerationszustandes erforderlichen Vorbereitungszeit und der eigentlichen Regenerationsdauer. Typische Zeiten liegen zwischen 30 und 300 s, insbesondere jedoch zwischen 40 und 60 s. Nach Beendigung einer NOx-Regeneration wird daher durch ein entsprechendes Abbruch- oder Endsignal eine Zeitfunktion gestartet, die in Abhängigkeit von der Vorbereitungs- und Regenerationszeit eine variable Erholungszeit errechnet, in der keine NOx-Regeneration zugelassen wird. Vor dem Einleiten einer Regeneration wird daher als weitere Zulässigkeitsvoraussetzung auch die Einhaltung der erforderlichen Erholungsdauer überprüft.
Da die erforderliche Anfettung des Abgasstroms auf λ ≦1 zu einer Anhebung der gesamten eingespritzten Kraftstoffmenge und damit zu einer Leistungszunahme führen kann, werden zudem die sicherheitsrelevanten Bauteile, wie das Einspritzsystem, die Drosselklappe und der EGR-/Ladedrucksteller, auf ordnungsgemäße Funktionsweise überprüft und eine Regeneration nur zugelassen, wenn von diesen Bauteilen keine Fehlermeldungen kommen.
Gleichzeitig mit dieser Zulässigkeitsprüfung oder im Anschluß daran wird geprüft, ob durch Einhaltung vorbestimmter Regenerationsparameter die Möglichkeit zur Durchführung einer Regeneration gegeben ist. Gegebenenfalls kann diese Überprüfung auch bereits vor der Zulässigkeitsüberprüfung erfolgen.
Zur Gewährleistung einer erfolgreichen Regeneration muß insbesondere die Katalysatortemperatur zwischen 220 und 500°C liegen. Die Einhaltung dieser Grenzen wird über die gemessenen oder berechneten Abgastemperaturen vor und nach dem NOx-Speicherkatalysator überwacht, wobei gegebenenfalls auch bereits einer dieser beiden Werte ausreicht.
Bei Zulässigkeit einer NOx-Regeneration werden nun gegebenenfalls die erforderlichen Regenerationsparameter eingestellt und die Regeneration des Katalysators wird eingeleitet. Da die Katalysatortemperatur insbesondere bei Dieselfahrzeugen, üblicherweise erheblich zu niedrig für die Durchführung einer Regeneration ist, bedeutet dies insbesondere, daß zunächst die Katalysatortemperatur durch motorische Maßnahmen und durch eine Nacheinspritzung angehoben werden muß. Zur Begrenzung der Katalysatortemperatur nach oben oder unten können hierbei die EGR-Rate (Abgasrückführungsrate) die Stellung der Drosselklappe, der Ladedrucksteller, die Nacheinspritzmenge, der Nacheinspritzzeitpunkt und der Spritzbeginn der Haupteinspritzung variiert werden.
Als Haupteingangsdaten für die kennfeldmäßige Berechnung der Parameteränderungen dient der Betriebspunkt (Drehzahl n, aktuelle Einspritzmenge M_E). Die Abgastemperaturen vor und nach dem NOx-Speicherkatalysator, die Kühlmitteltemperatur und der Atmosphärendruck können hierbei über Kennlinien Korrekturwerte bilden, die z. B. multiplikativ oder additiv in die Berechnung der Parameteränderungen eingehen.
Eine zusätzliche Kontrolle erfolgt über ein Lambdasignal, das zur Gewährleistung einer hinreichend schnellen Oxidationsreaktion auf dem Vorkatalysator und dem NOx- Speicherkatalysator einen vorbestimmten unteren Schwellenwert nicht unterschreiten darf, der dem durch motorische Maßnahmen einzustellenden Lambda-Wert bei der NOx- Regeneration entspricht.
In Abhängigkeit von dem vor Einleitung der motorischen Maßnahmen vorliegenden Lambda-Wert kann die Vorbereitung der NOx-Regeneration zunächst durch motorische Maßnahmen, wie z. B. eine Teilandrosselung der Brennkraftmaschine und/oder eine Erhöhung der EGR-Rate und/oder eine Senkung des Ladedrucks (unter Beachtung der Partikelemission und Korrektur der Haupteinspritzmenge zur Kompensation eventueller Leistungseinbrüche als Folge der Drosselung), schnell eingeleitet werden. Mit Annäherung an einen vorbestimmten Lambda-Schwellenwert von etwa 1,1-1,6, insbesondere jedoch etwa 1,3-1,5, wird dann die Verstellgeschwindigkeit der Aktuatoren zunehmend verlangsamt, um eine annähernd drehmomentneutrale Anpassung der Haupteinspritzung zu ermöglichen. Dieser Lambda-Wert richtet sich nach dem Betriebspunkt des Motors und kann über die PWG-Geschwindigkeit dynamikkorrigiert werden.
Nach Abschluß dieser ersten Stufe wird die Nacheinspritzmenge in einer zweiten Stufe rampenförmig angehoben und ihr Maximalwert so geregelt, daß der Lambda-Wert nach dem Motor den Wert des Regenerations-Lambda-Wertes von etwa 0,75-0,99, insbesondere jedoch etwa 0,92-0,99, annimmt. Der Einspritzpunkt wird dabei so eingestellt, daß die Nacheinspritzung im Expansionstakt nach Brennende oder im Ausschubtakt erfolgt. Erfolgt die Nacheinspritzung während des Brennendes, so ist diese Energieabgabe durch Korrektur der Haupteinspritzmenge zu kompensieren. Der Wert des Regenerations-Lambda-Wertes kann dabei über die Regenerationszeit in Abhängigkeit vom Beladungszustand des Katalysators mit Stickoxiden und Schwefel, der Abgasdurchströmung und der Abgastemperatur vor und nach dem NOx- Speicherkatalysator variieren.
Da die NOx-Regeneration überwiegend mit CO als Regenerationsmittel abläuft, wird in einer dritten Stufe die Voreinspritzmenge betriebspunktabhängig und gedämpft auf einen Wert von etwa 1-50%, insbesondere jedoch 5-20%, der Haupteinspritzmenge angehoben und gleichzeitig die Haupteinspritzmenge betriebspunktabhängig und gedämpft zurückgenommen. Der Voreinspritzzeitpunkt liegt hierbei vor Zündbeginn im Ansaugtakt oder in der ersten Phase des Verdichtungstaktes.
Um das Fahrverhalten möglichst wenig zu beeinflussen, kann die Einstellung der erforderlichen Regenerationsparameter auch erst nach Ablauf einer vorbestimmten Zeitspanne oder nach Überschreitung eines zweiten Schwellenwertes für die Stickoxidbeladung erfolgen, der beispielsweise einer Beladung entspricht, bei der eine Regeneration dringend erforderlich ist. In diesem Fall wird der Beladungszustand des NOx-Speicherkatalysators durch die Schwellenwerte in drei charakteristische Bereiche unterteilt, in denen eine "Regeneration nicht nötig", eine "Regeneration nötig" oder eine "Regeneration dringend nötig" ist. Es ist auch eine Kombination beider Verfahren oder auch eine feinere Unterteilung des Beladungszustandes durch Verwendung weiterer Schwellenwerte denkbar.
Im Zustand "Regeneration nötig" findet dann eine NOx-Regeneration des NOx- Speicherkatalysators nur statt, wenn sowohl die Betriebssituation eine Regeneration erlaubt, d. h., wenn die angegebenen Zulässigkeitsvoraussetzungen erfüllt sind, als auch die erforderlichen Betriebsparameter eingestellt sind und eine Regeneration ermöglichen. Andernfalls wird mit einer Regeneration so lange gewartet, bis der Zustand "Regeneration dringend nötig" erreicht ist. Dann wird jedoch beim Vorliegen der Zulässigkeitsvoraussetzungen durch verschiedene motorische Maßnahmen der genannten Art, die einzeln oder in Kombination erfolgen, auf die Betriebsparameter derart Einfluß genommen, daß eine Regeneration erfolgen kann. Durch diese aus der genannten deutschen Patentanmeldung 197 16 275.4 bekannte zweistufige Vorgehensweise wird das Betriebsverhalten der Brennkraftmaschine möglichst wenig beeinflußt.
Vor Einsetzen der NOx-Regeneration muß zunächst der im NOx-Speicherkatalysator lagernde Restsauerstoff verbraucht werden. Der bei fettem Abgas hierfür nutzbare Reduktionsmittelüberschuß läßt sich aus dem HC- und CO-Massenstrom errechnen. Anschließend werden die gespeicherten Stickoxide mit dem Reduktionsmittelüberschuß umgesetzt. Die Reaktion läuft nicht vollkommen stöchiometrisch ab, sondern wird über den Lambda-Wert, den Abgasmassenstrom und die Abgastemperatur vor und nach dem NOx-Speicherkatalysator korrigiert.
Die eigentliche NOx-Regeneration wird durch eine Teilandrosselung des Motors, und/oder eine Erhöhung der EGR-Rate, und/oder eine Senkung des Ladedrucks (unter Beachtung der Partikelemission), und/oder eine Anhebung der Vor- und Nacheinspritzmenge und/oder eine Senkung der Haupteinspritzmenge gesteuert.
Insbesondere durch die Teilandrosselung ist mit einer Momentenänderung zu rechnen, die durch Anpassung der Haupteinspritzmenge korrigiert werden muß, ohne daß der Fahrer eine Änderung des Fahrverhaltens bemerkt. Die Korrektur der Momentenänderung kann hierbei auch erst nach Überschreiten eines bestimmten Schwellenwertes erfolgen.
Zur Korrektur wird zunächst per Kennfeld ein Sollmoment abgerufen. Momentenänderungen als Folge eines Motoreingriffs ergeben sich durch Abweichungen bei der Ladungswechselarbeit und durch eine Verbrennungsverschleppung infolge anderer Drosselklappen- und EGR- und Ladedruckeinstellungen. Daneben führt eine unvollständige Verbrennung bei sehr niedrigen Lambda-Werten als Folge von Androsselung/Ladedrucksenkung/Anhebung der EGR-Rate zu einer Korrektur des Sollmomentes. Bei sehr hohen Nacheinspritzmengen verbleiben Kraftstoffreste im Zylinder, die erst im nächsten Takt mit verbrennen und somit ebenfalls momentenbeeinflussend sind. Nur zur Applikationserleichterung wird abschließend bei der Ermittlung des tatsächlichen Momentes ein weiteres Korrekturfeld additiv eingeschleift.
Eine Änderung der Haupteinspritzmenge wird erst freigegeben, wenn ein vorbestimmter Schwellenwert der Momentenabweichung überschritten wird.
Die pro Zeiteinheit im fetten Abgas mögliche absolute Entladung des NOx- Speicherkatalysators richtet sich nach dem verfügbaren Reduktionsmittelangebot, d. h. nach der verfügbaren Reduktionsmittelmenge und der Reduktionsmittelzusammensetzung im Fetten. Der Regenerationsablauf wird zudem durch den Beladungszustand, des Katalysators, den NOx- und Restsauerstoffgehalt des anströmenden Abgases, der Temperatur des Speicherkatalysators, den Abgasmassenstrom sowie die O2-Speicherfähigkeit des Washcoats beeinflußt und kann modellmäßig erfaßt werden. Die CO- und -Massenströme im Abgas lassen sich aus dem Spritzbeginn und der Spritzdauer der Vor-, Haupt- und Nacheinspritzung sowie aus der Drehzahl und dem Luftmassenstrom errechnen.
Die NOx-Regeneration wird üblicherweise bis zum Erreichen eines vorbestimmten Regenerationsgrades durchgeführt. Anschließend werden wieder normale Betriebsbedingungen eingestellt und es wird erneut mit der eingangs beschriebenen Bestimmung des Beladungszustandes begonnen, um den Zeitpunkt für die nächste NOx- Regeneration zu ermitteln.
Bei dieser regulären Beendigung der NOx-Regeneration wird in umgekehrter Reihenfolge wie bei der Durchführung der NOx-Regeneration verfahren. Zunächst wird die Voreinspritzmenge zeitgesteuert rampenförmig auf den Normalwert zurückgeführt, wobei jedoch die Änderungsgeschwindigkeit größer ist als bei der Durchführung der Regeneration. Die Nacheinspritzung kann gleichzeitig ohne Verzögerung gestoppt werden, da sie keinen oder allenfalls einen geringen Einfluß auf den Brennverlauf besitzt. Zudem werden die Drosselklappe, der EGR-Steller und der Ladedruckregler mit einer vom Lambda-Wert und vom Betriebspunkt (Drehzahl n, aktuelle Einspritzmenge M_E) abhängigen Verstellgeschwindigkeit auf die Normalwerte zurückgeführt.
In manchen Fällen kann es jedoch auch zu einem vorzeitigen Abbruch oder zumindest zu einer Unterbrechung eines bereits begonnenen Regenerationsvorgangs kommen, falls dieser aufgrund der aktuellen Ergebnisse der bereits beschriebenen Zulässigkeitsüberprüfung unzulässig sein sollte.
Beim vorzeitigen Abbruch einer NOx-Regeneration werden Haupt- und Voreinspritzmenge sofort auf den Normalwert gesetzt und gleichzeitig die Nacheinspritzung abgeschaltet. Wenn der Abbruch des Regenerationsvorgangs jedoch aus einer zu geringen Fahrgeschwindigkeit, d. h. einer Geschwindigkeit von weniger als etwa 20 km/h resultiert, wird die Nacheinspritzung für eine bestimmte Taktzeit nur reduziert. Die Nacheinspritzung wird nicht abgeschaltet, wenn der Abbruch der NOx- Regeneration auf eine zu große Laständerung zurückzuführen ist, d. h. wenn die zeitliche Änderung des Pedalwertgebers PWG einen vorbestimmten Schwellenwert überschreitet. Die Drosselklappe, der EGR-Steller und der Ladedruckregler werden in Abhängigkeit vom errechneten oder gemessenen Lambda-Wert mit hoher Geschwindigkeit wieder auf den Normalwert zurückgeführt.
Eine andere Möglichkeit für eine plötzliche Unzulässigkeit des NOx- Regenerationsvorgangs besteht in einer zu hohen thermischen Belastung des NOx- Speicherkatalysators durch Überschreitung eines Schwellenwertes für die Regenerations-Gesamtzeit, die sich aus der zum Umschalten vom normalen Betriebszustand in den Regenerationszustand erforderlichen Vorbereitungs- oder Aufheizzeit und aus der zur Durchführung einer Regeneration erforderlichen eigentlichen Regenerationszeit zusammensetzt. Alternativ hierzu können auch Schwellenwerte für die Einzelzeiten verwendet werden. Die zulässige Regenerationsdauer beträgt hierbei etwa maximal 5-30 s, insbesondere jedoch etwa 15 s.
Nach dem vorzeitigen Abbruch oder einer Unterbrechung des Regenerationsvorgangs wird kontinuierlich die Zulässigkeit einer Regeneration sowie die Möglichkeit zu deren Durchführung weiter überprüft, um, falls erforderlich, den abgebrochenen Regenerationsvorgang durch Weiterführung so bald wie möglich zu beenden, und damit die volle Funktionsfähigkeit des NOx-Speicherkatalysators wieder herstellen zu können.
Zudem wird die Stickoxidbeladung des NOx-Speicherkatalysators und damit dessen Regenerationsgrad bestimmt und mit einer maximal zulässigen Restbeladung von etwa 5-15% bezogen auf den Beladungszustand bei Einleitung der NOx-Regeneration bestimmt. Bei Unterschreitung dieses Wertes ist der NOx-Speicherkatalysator durch den vorangegangenen Regenerationsvorgang bereits ausreichend gut regeneriert, um eine ordnungsgemäße Funktionsweise gewährleisten zu können. In diesem Fall wird der Regenerationsvorgang endgültig abgebrochen und es wird durch Rückkehr zu der anfangs beschriebenen kontinuierlichen Bestimmung des Beladungszustandes der Zeitpunkt für die nächste reguläre NOx-Regeneration bestimmt.
Beim Erreichen oder Überschreiten der angegebenen Restbeladung erfolgt hingegen nach erneutem Vorliegen der Zulässigkeitsvoraussetzungen eine Fortführung des unterbrochenen Regenerationsvorgangs bis zum Erreichen des vorbestimmten Regenerationsgrades. Um die zum Erwärmen des Speicherkatalysators eingesetzte Energie möglichst optimal nutzen zu können, wird die Katalysatortemperatur hierbei durch abgeschwächte temperaturerhaltende Maßnahmen beibehalten und erst nach Ablauf einer vorbestimmten Zeitspanne von etwa 10-300 s, insbesondere jedoch 30-50 s, ohne Erfüllung der Zulässigkeitsvoraussetzungen auf normale Betriebswerte abgesenkt.
Die NOx-Regeneration gilt als beendet, wenn die Abweichung des Ist-Lambda-Wertes vom Normal-Lambda-Wert unterhalb eines bestimmten Schwellenwertes liegt, wobei der Lambda-Wert sowohl durch eine Messung mittels eines Lambda-Sensors als auch über eine Berechnung bestimmt werden kann.
Zur Gewährleistung einer ordnungsgemäßen Funktionsweise des NOx- Speicherkatalysators wird nach einer vorgezogenen NOx-Regeneration und/oder De- Sulfatierung auf Grund einer durch die OBD-Kontrolle ermittelten Unregelmäßigkeit der Katalysatoraktivität die Anzahl der nachfolgend durchgeführten NOx-Regenerationen bestimmt und mit einer vorbestimmten Mindestanzahl aufeinanderfolgender NOx- Regenerationen verglichen, die 10-100, vorzugsweise jedoch etwa 20 beträgt. Beim Auftreten einer erneuten Unregelmäßigkeit der Katalysatoraktivität vor Erreichung dieser Mindestanzahl wird von einem Katalysatordefekt ausgegangen, der durch eine ansprechende Anzeigeeinrichtung angezeigt wird.
Zwischen den einzelnen Regenerationsvorgängen wird die NOx-Einlagerung in den Speicherkatalysator durch abgastemperatursteigende und abgasmassenstromsenkende Maßnahmen begünstigt, was im Vergleich zu herkömmlichen Abgasreinigungsverfahren zu einer merklichen Verminderung des Stickoxidausstoßes führt. Die Verbesserung der NOx-Einlagerung erfolgt hierbei insbesondere durch eine Steigerung der Abgastemperatur vor dem NOx-Speicherkatalysator auf einen Wert von mehr als etwa 190°C mittels einer EGR-Änderung, einer Drosselung der Frischluftmenge um bis zu 70% und eine Ladedrucksenkung bis hin zum reinen Saugbetrieb. Diese Werte werden über die Abgastemperatur und die PWG-Dynamik korrigiert. Es erfolgt ein gedämpftes Einsetzen und Ausschleifen der Maßnahmen. Da die Katalysatoren bei diesen Temperaturen noch zu kalt zur Schadstoffumsetzung sind, macht eine Nacheinspritzung keinen Sinn. Es dürfen nur thermische Maßnahmen ergriffen werden.
Fig. 2 zeigt in schematischer Darstellung einen zur Durchführung des erfindungsgemäßen Regenerationsverfahrens und zur Verbesserung der NOx- Einlagerung, d. h. zur wirkungsvollen Verringerung der Stickoxidemission geeigneten Common-Rail-Dieselmotor 10 mit einem vorgeschalteten Saugrohr 12 und einer darin eingebauten Drosselklappe 14, die hinter nicht dargestellten Ladedruck- und Temperatursensoren aber vor einer EGR-Einleitung 16 angeordnet ist und zur Reduzierung des Luft-Kraftstoffverhältnisses Lambda ohne Drehmomenteneinbrüche dient. Die Ansteuerung der Drosselklappe 14 erfolgt entweder durch ein pulsweitenmoduliertes Signal mit fester Frequenz, welches sich aus dem Tastverhältnis der Ansteuerung ergibt, oder durch eine CAN-Botschaft, die prozentual die Stellung der Drosselklappe 14 beschreibt. Die Ruhestellung der Drosselklappe 14 ist grundsätzlich in Stellung "offen". Die Definition, welcher Wert des Ansteuersignals welcher Drosselklappenstellung entspricht, ist per Software einstellbar.
Das Abgas des Dieselmotors 10 gelangt über eine Abgasleitung 18 mit einem Abgasturbolader 20 in eine Abgasreinigungsvorrichtung mit einem Vorkatalysator 22 und einem NOx-Speicherkatalysator 24. Dem Vorkatalysator 22 ist eine Breitbandlambdasonde 26 zur Messung des Lambda-Wertes vorgeschaltet, die zusätzlich oder alternativ zu einer Berechnung des Lambda-Wertes erfolgt.
Vor dem NOx-Speicherkatalysator 24 und nach dem NOx-Speicherkatalysator 24 ist jeweils ein Temperaturfühler 28 bzw. 30 zur Überwachung der minimal bzw. maximal zulässigen Regenerationstemperatur angeordnet. Die Temperaturfühler 28, 30 dienen zudem zur Überwachung des für eine De-Sulfatierung erforderlichen Temperaturbereichs sowie zur Steuerung der optimalen NOx-Einlagerung durch temperatursteigernde Maßnahmen. Durch Vergleich der Ausgangstemperatur des aus dem NOx-Speicherkatalysator 24 ausströmende Abgases mit der Eingangstemperatur des in den Katalysator 24 einströmenden Abgases kann die katalytische Aktivität des NOx-Speicherkatalysators 24 überwacht werden.
Dem NOx-Speicherkatalysator 24 ist ein NOx-Sensor 38 zur Messung der Stickoxidemission nachgeschaltet, der zur Bestimmung von Unregelmäßigkeiten der Katalysatoraktivität dient.
Die Meßsignale der Breitbandlambdasonde 26, der Temperaturfühler 28, 30 und des NOx-Sensors 38 liegen über Leitungen 32, 34, 40 an einer zugehörigen Steuereinrichtung 36 zur Steuerung des Motors 10 an.

Claims (52)

1. Verfahren zur NOx-Regeneration eines einer mager betriebenen Brennkraftmaschine (10) nachgeschalteten NOx-Speicherkatalysators (24) mit folgenden Verfahrensschritten:
  • a) Bestimmung des Beladungszustandes des NOx-Speicherkatalysators (24) mit Stickoxiden und Vergleich der ermittelten Beladungswerte mit einem vorbestimmten ersten Schwellenwert für eine maximal zulässige Stickoxidbeladung und/oder
  • b) OBD-Kontrolle des NOx-Speicherkatalysators (24) zur Überwachung der Katalysatoraktivität;
  • c) bei Überschreitung des Schwellenwertes oder bei Feststellung einer Unregelmäßigkeit der Katalysatoraktivität Überprüfung der Zulässigkeit einer NOx-Regeneration durch Überprüfung der ordnungsgemäßen Funktionsweise sicherheitsrelevanter Bauteile und/oder Überprüfung der aktuellen Fahrsituation auf Einhaltung vorbestimmter Fahrparameter;
  • d) Überprüfung, ob durch Einhaltung vorbestimmter Regenerationsparameter die Möglichkeit zur Durchführung einer NOx-Regeneration gegeben ist, gegebenenfalls Einstellung der erforderlichen NOx-Regenerationsparameter und Einleitung der NOx-Regeneration bei Zulässigkeit einer solchen Maßnahme, ansonsten Wiederholung des Verfahrensschrittes c) und/oder gegebenenfalls Signalisierung einer festgestellten Funktionsstörung eines der sicherheitsrelevanten Bauteile; und
  • e) Durchführung der NOx-Regeneration bis zum Erreichen eines vorbestimmten NOx-Regenerationsgrades, Einstellung normaler Betriebsbedingungen und Rückkehr zu dem Verfahrensschritt a) oder vorzeitiger Abbruch oder Unterbrechung der NOx-Regeneration, falls die aktuellen Ergebnisse der Zulässigkeitsüberprüfung des Verfahrensschrittes c) dies erfordern, Rückkehr zu dem Verfahrensschritt a) oder c) und/oder gegebenenfalls Signalisierung einer festgestellten Funktionsstörung eines der sicherheitsrelevanten Bauteile.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einstellung der erforderlichen Regenerationsparameter bei dem Verfahrensschritt d) erst nach Ablauf einer vorbestimmten ersten Zeitspanne und/oder nach Überschreitung zumindest eines zweiten Schwellenwertes für die Stickoxidbeladung erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nach einem vorzeitigen Abbruch oder einer Unterbrechung der NOx-Regeneration der Beladungszustand der NOx-Speicherkatalysators (24) mit Stickoxiden bestimmt und bei Unterschreitung eines vorbestimmten Regenerationsgrades, d. h. bei Überschreitung einer vorbestimmten Stickoxidbeladung, durch Rückkehr zu dem Verfahrensschritt c) eine erneute NOx-Regeneration eingeleitet wird, während beim Erreichen oder bei einer Überschreitung des vorbestimmten Regenerationsgrades eine Rückkehr zu dem Verfahrensschritt a) erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der vorbestimmte Regenerationsgrad weniger als 5-15% Restbeladung bezogen auf den Beladungszustand bei Einleitung der NOx-Regeneration beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Brennkraftmaschine (10) ein Common-Rail-Dieselmotor verwendet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als sicherheitsrelevante Bauteile das Einspritzsystem und/oder die Drosselklappe (14) und/oder der EGR-/Ladedrucksteller überprüft werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fahrsituation aus einem Schwellenwert für den Pedalwertgeber PWG und/oder der Einspritzmenge und/oder der Drehzahl und/oder einem Schuberkennungssignal und/oder einem Bremssignal und/oder einem Drehzahlgradienten abgeleitet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine NOx-Regeneration nur bei Überschreitung einer bestimmten Mindestgeschwindigkeit durchgeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Mindestgeschwindigkeit 20 km/h beträgt.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nur in einem bestimmten Drehzahl- oder Lastbereich und in einem bestimmten Bereich von Laständerungswünschen oder der PWG-Geschwindigkeit eine NOx- Regeneration durchgeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Drehzahlbereich 1200-3600 min-1 beträgt, während die maximale PWG-Geschwindigkeit <100%/s ist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine NOx-Regeneration nur durchgeführt wird, wenn die Haupteinspritzmenge 10-90% des Maximalwertes beträgt.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einhaltung der erforderlichen Regenerationstemperatur durch Bestimmung der Abgastemperatur vor und/oder nach dem NOx-Speicherkatalysator (24) überwacht wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Durchführung einer NOx-Regeneration eine Abgastemperatur von 220-500°C eingestellt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abgas- oder Katalysatortemperatur durch Einstellung der EGR-Rate und/oder einer Drosselklappe und/oder des Ladedruckstellers, und/oder der Nacheinspritzmenge und/oder des Zeitpunktes der Nacheinspritzung und/oder des Spritzbeginns der Haupteinspritzung gesteuert wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zum Einstellen des Regenerationszustandes erforderliche Vorbereitungszeit und die zur Durchführung einer NOx-Regeneration erforderliche Regenerationsdauer bestimmt werden und daß die NOx-Regeneration nach Überschreitung einer vorbestimmten maximal zulässigen Vorbereitungszeit und/oder Regenerationsdauer unterbrochen oder vorzeitig abgebrochen wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die maximal zulässige Regenerationsdauer 5-30 s beträgt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die maximal zulässige Regenerationsdauer 15 s beträgt.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb einer vorbestimmten minimalen Erholungszeit nach einer ordnungsgemäßen Beendigung oder einem vorzeitigen Abbruch bzw. einer Unterbrechung einer NOx-Regeneration keine erneute NOx-Regeneration oder De- Sulfatierung durchgeführt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die minimale Erholungszeit in Abhängigkeit von der zur Einstellung des Regenerationszustandes erforderlichen Vorbereitungszeit und der eigentlichen Regenerationsdauer variabel gewählt wird.
21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die minimale Erholungszeit 30-300 s beträgt.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die minimale Erholungszeit 40-60 s beträgt.
23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Katalysatortemperatur nach einer Unterbrechung oder einem vorzeitigen Abbruch der NOx-Regeneration durch abgeschwächte temperaturerhaltende Maßnahmen beibehalten und erst nach Ablauf einer vorbestimmten zweiten Zeitspanne auf normale Betriebswerte abgesenkt wird.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß die vorbestimmte zweite Zeitspanne 10-300 s beträgt.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die vorbestimmte zweite Zeitspanne 30-50 s beträgt.
26. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die NOx-Speicheraktivität oder der NOx-Emissionsschlupf bei magerer Betriebsweise anhand des aktuellen Beladungszustandes des NOx- Speicherkatalysators (24), der ausströmenden NOx-Rohemission, der Abgas- oder Katalysatortemperatur und des Abgasmassenstroms bestimmt wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die NOx- Rohemission anhand eines Kennfeldes aus dem Verbrauch oder den gefahrenen Motorbetriebspunkten (Drehzahl n, aktuelle Einspritzmenge M_E) bestimmt wird.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß die bestimmten NOx- Rohemissionswerte über Korrekturfelder für den Ladedruck, die EGR-Rate, die Drosselklappenstellung sowie den Beginn der Vor- und Haupteinspritzung und die Dauer der Voreinspritzung korrigiert werden.
29. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die NOx-Regeneration durch Teilandrosselung der Brennkraftmaschine (10) und/oder Erhöhung der EGR-Rate und/oder Senkung des Ladedrucks und/oder Anhebung der Vor- und/oder Nacheinspritzmenge und/oder Senkung der Haupteinspritzmenge gesteuert wird.
30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Lambda-Wert in einer ersten Stufe durch Teilandrosselung der Brennkraftmaschine (10) und/oder Erhöhung der EGR-Rate und/oder Senkung des Ladedrucks zunächst auf einen vorbestimmten ersten Lambda-Schwellenwert abgesenkt und dann in einer zweiten Stufe durch Steuerung der Nacheinspritzung auf den endgültigen Regenerations- Lambda-Wert eingestellt wird.
31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß der vorbestimmte Lambda-Schwellenwert 1,1-1,6 beträgt.
32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, daß der vorbestimmte Lambda-Schwellenwert 1,3-1,5 beträgt.
33. Verfahren nach einem der Ansprüche 30 bis 32, dadurch gekennzeichnet, daß der vorbestimmte Regenerations-Lambda-Wert 0,75 bis 0,99 beträgt.
34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß der Regenerations- Lambda-Wert 0,92-0,99 beträgt.
35. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die Voreinspritzmenge in einer dritten Stufe auf 1-50% der Haupteinspritzmenge angehoben wird.
36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, daß die Voreinspritzmenge auf 5-20% der Haupteinspritzmenge angehoben wird.
37. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auftretende Momentenänderungen durch Steuerung der Haupteinspritzmenge korrigiert werden.
38. Verfahren nach Anspruch 37, dadurch gekennzeichnet, daß die Momentenänderungen erst nach Überschreitung eines bestimmten Schwellenwertes korrigiert werden.
39. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, daß Unregelmäßigkeiten der Katalysatoraktivität hinsichtlich aller Schadstoffe durch Bestimmung von NOx-Durchbrüchen ermittelt werden.
40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß die NOx- Durchbrüche in einem bestimmten Zeitfenster einen bestimmten Schwellenwert überschreiten müssen.
41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, daß der Schwellenwert für mehr als 30 s überschritten werden muß.
42. Verfahren nach Anspruch 40 oder 41, dadurch gekennzeichnet, daß der Schwellenwert bis zu einer NOx-Rohemission von 10 g/h einer Abweichung von 2 g/h zwischen Istwert und Sollwert entspricht, während er bei höheren NOx- Rohemissionen einer Abweichung von 20% entspricht.
43. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach Feststellung einer Unregelmäßigkeit der Katalysatoraktivität zumindest eine vorgezogene NOx-Regeneration durchgeführt wird.
44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß zusätzlich zumindest noch eine De-Sulfatierung durchgeführt und danach bei Fortbestehen der Unregelmäßigkeit ein Katalysatordefekt signalisiert wird.
45. Verfahren nach Anspruch 43 oder 44, dadurch gekennzeichnet, daß die Anzahl der nach einer vorgezogenen NOx-Regeneration durchgeführten regulären NOx- Regenerationen bestimmt und mit einer vorbestimmten Mindestanzahl aufeinanderfolgender NOx-Regenerationen verglichen wird und daß beim Auftreten einer erneuten Unregelmäßigkeit der Katalysatoraktivität vor Erreichung dieser Mindestanzahl ein Katalysatordefekt signalisiert wird.
46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß die Mindestanzahl aufeinanderfolgender regulärer NOx-Regenerationen 10-100 beträgt.
47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, daß die Mindestanzahl aufeinanderfolgender regulärer NOx-Regenerationen 20 beträgt.
48. Common-Rail-Dieselmotor (10), dadurch gekennzeichnet, daß zur NOx- Regeneration eines nachgeschalteten NOx-Speicherkatalysators (24) nach einem der vorhergehenden Ansprüche vor dem Ansaugkrümmer eine Drosselklappe (14) angeordnet ist.
49. Verfahren zur Begünstigung der NOx-Einlagerung in einem einer mager betriebenen Brennkraftmaschine (10) nachgeschalteten NOx-Speicherkatalysator (24) durch abgastemperatursteigernde und/oder massenstromsenkende Maßnahmen.
50. Verfahren nach Anspruch 49, dadurch gekennzeichnet, daß die abgastemperatursteigernden und/oder massenstromsenkenden Maßnahmen eine EGR-Änderung und/oder eine Drosselung der Frischluftmenge um bis zu 70% und/oder eine Ladedrucksenkung bis hin zum reinen Saugbetrieb umfassen.
51. Verfahren nach Anspruch 49 oder 50, dadurch gekennzeichnet, daß die Abgastemperatur vor dem NOx-Speicherkatalysator (24) durch die abgastemperatursteigernden Maßnahmen auf einen Wert von mehr als 190°C erhöht wird.
52. Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine (10) mit einem nachgeschalteten NOx-Speicherkatalysator (24) durch
  • 1. Steuerung der NOx-Regeneration des NOx-Speicherkatalysators (24) nach zumindest einem der Ansprüche 1-47 und
  • 2. Begünstigung der NOx-Einlagerung nach zumindest einem der Ansprüche 49-51.
DE19847874A 1998-10-16 1998-10-16 Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine Withdrawn DE19847874A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE19847874A DE19847874A1 (de) 1998-10-16 1998-10-16 Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine
CN99814648XA CN1131929C (zh) 1998-10-16 1999-09-29 稀薄燃烧内燃机的废气中氮氧化物还原的方法
DE59901151T DE59901151D1 (de) 1998-10-16 1999-09-29 Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine
EP99948894A EP1121513B1 (de) 1998-10-16 1999-09-29 Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine
PCT/EP1999/007213 WO2000023694A2 (de) 1998-10-16 1999-09-29 Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19847874A DE19847874A1 (de) 1998-10-16 1998-10-16 Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine

Publications (1)

Publication Number Publication Date
DE19847874A1 true DE19847874A1 (de) 2000-04-20

Family

ID=7884767

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19847874A Withdrawn DE19847874A1 (de) 1998-10-16 1998-10-16 Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine
DE59901151T Expired - Lifetime DE59901151D1 (de) 1998-10-16 1999-09-29 Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59901151T Expired - Lifetime DE59901151D1 (de) 1998-10-16 1999-09-29 Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP1121513B1 (de)
CN (1) CN1131929C (de)
DE (2) DE19847874A1 (de)
WO (1) WO2000023694A2 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053902A1 (de) 1999-03-11 2000-09-14 Volkswagen Aktiengesellschaft Verfahren zur de-sulfatierung eines nox-speicherkatalysators
EP1077319A2 (de) * 1999-08-16 2001-02-21 Mazda Motor Corporation Verfahren und Vorrichtung zur Steuerung einer selbstgezündeten Brennkraftmaschine
EP1152137A1 (de) * 2000-05-04 2001-11-07 Peugeot Citroen Automobiles SA Verfahren zur Erkennung der Betriebsbereitschaft eines Katalysator für den Auspuff einer Brennkraftmaschine
EP1079091A3 (de) * 1999-08-24 2003-01-15 DaimlerChrysler AG Motorregelsystem für einen Dieselmotor
DE10034874B4 (de) * 2000-07-18 2004-01-22 Siemens Ag Verfahren zum Adaptieren einer NOx-Rohkonzentration
DE10137134B4 (de) * 2001-07-30 2004-09-02 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschime insbesondere eines Kraftfahrzeugs
WO2005001266A1 (de) * 2003-06-30 2005-01-06 Siemens Aktiengesellschaft Verfahren zur steuerung einer brennkraftmaschine
DE10326932A1 (de) * 2003-06-16 2005-01-27 Audi Ag Verfahren zur Überprüfung eines Stickoxid-Sensors einer einen Stickoxid-Speicherkatalysator aufweisenden Brennkraftmaschine
DE10337902A1 (de) * 2003-08-18 2005-03-24 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE10115431B4 (de) * 2000-03-30 2005-04-21 Mitsubishi Jidosha Kogyo K.K. Abgasreinigungsvorrichtung für Ottomotor
DE102004026797A1 (de) * 2004-06-02 2005-12-22 Daimlerchrysler Ag Brennkraftmaschine mit Abgasnachbehandlungssystem und ein Verfahren zur Regelung der Abgastemperatur
DE10242914B4 (de) * 2002-09-16 2006-01-12 Siemens Ag Verfahren zur Adaption der NOx-Rohemission bei Verbrennungskraftmaschinen
DE10334091B4 (de) * 2002-07-29 2006-04-27 Mitsubishi Fuso Truck And Bus Corp. Motorregelungssystem
EP1798392A1 (de) * 2005-12-15 2007-06-20 Robert Bosch Gmbh Verfahren und Steuergerät zur Beurteilung der Funktionsfähigkeit eines NOx-Speicherkatalysators
DE10318213B4 (de) * 2003-04-22 2007-09-20 Siemens Ag Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine
DE102007000006B4 (de) * 2006-01-11 2009-04-23 Denso Corp., Kariya-shi Luft-Kraftstoffverhältnissteuergerät, das mit einer Abgasemissionssteuervorrichtung ausgestattet ist
DE10023080B4 (de) * 2000-05-11 2009-10-22 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung einer Speicherfähigkeit eines NOx-Speicherkatalysators
DE10038461B4 (de) * 2000-08-07 2009-12-24 Volkswagen Ag Modell für einen NOx-Speicherkatalysator
DE10163006B4 (de) * 2000-12-21 2010-06-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Vorrichtung und Verfahren zur Abgasreinigung für einen Verbrennungsmotor
DE10305635B4 (de) * 2003-02-11 2011-01-13 Continental Automotive Gmbh Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE10153901B4 (de) * 2001-10-12 2011-07-14 Volkswagen AG, 38440 Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
DE10115968B4 (de) * 2001-03-27 2012-08-16 Volkswagen Ag Verfahren zur Erwärmung eines Katalysators
EP2884065A1 (de) * 2013-12-11 2015-06-17 Hirtenberger Aktiengesellschaft Verfahren zur automatisierten Wiederaufbereitung eines verunreinigten Gegenstandes sowie Vorrichtung zur Durchführung desselben
EP2792865A4 (de) * 2011-12-12 2015-12-02 Isuzu Motors Ltd Dieselmotorabgasreinigungsverfahren und abgasreinigungssystem
FR3057612A1 (fr) * 2016-10-18 2018-04-20 Renault S.A.S Procede de purge d'un piege a oxydes d'azote d'un moteur a combustion interne et dispositif de motorisation associe
DE102016219042B4 (de) 2015-11-03 2022-12-22 Ford Global Technologies, Llc Verfahren zur Regeneration eines NOx-Speicherkatalysators während des Betriebs eines autonom fahrenden Fahrzeuges sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage und Fahrzeug mit Steuerungseinrichtung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922981A1 (de) * 1999-05-19 2000-11-30 Bosch Gmbh Robert Verfahren zur Kontrolle der Funktionstüchtigkeit eines NO¶x¶-Speicherkatalysators
DE10039965A1 (de) * 2000-08-16 2002-02-28 Siemens Ag Verfahren und Anordnung zur Abgasuntersuchung an Kraftfahrzeugen mit bordeigenem Motorsteuerungs- und Diagnosesystem
JP4103665B2 (ja) * 2003-04-02 2008-06-18 日産自動車株式会社 排気浄化装置
JP3912354B2 (ja) * 2003-10-10 2007-05-09 トヨタ自動車株式会社 内燃機関の排気浄化装置及び排気浄化方法
DE102004011582B4 (de) * 2004-03-10 2011-04-14 Audi Ag Verfahren zur Verringerung der Abgasemissionen von Kraftfahrzeugverbrennungsmotoren sowie Kraftfahrzeug
JP4314135B2 (ja) * 2004-03-11 2009-08-12 トヨタ自動車株式会社 車載内燃機関の排気浄化装置
DE102004021339B4 (de) 2004-04-30 2008-01-31 Siemens Ag Verfahren und Vorrichtung zum Überwachen eines Aufheizens eines Abgaskatalysators einer Brennkraftmaschine
DE102005056312A1 (de) * 2005-11-25 2007-06-06 Volkswagen Ag Verfahren zur Überprüfung der Konvertierungsfähigkeit eines Katalysators
US8166749B2 (en) * 2009-02-12 2012-05-01 GM Global Technology Operations LLC Exhaust treatment diagnostic system and method
JP6132803B2 (ja) * 2014-04-07 2017-05-24 本田技研工業株式会社 内燃機関の排ガス浄化装置
DE102015011175B4 (de) * 2015-08-27 2021-01-14 Audi Ag Abgasanlage für eine Brennkraftmaschine
US9631565B2 (en) * 2015-09-15 2017-04-25 Hyundai Motor Company Control method for improving nitrogen oxide purification performance
CN111102068B (zh) * 2018-10-29 2024-06-07 广州汽车集团股份有限公司 发动机稀薄燃烧装置、控制方法、发动机及汽车
CN114265313B (zh) * 2021-12-23 2024-02-13 河钢数字信达(邯郸)科技有限公司 一种基于废气温度上升曲线的空气阀调优策略方法
CN114856783B (zh) * 2022-05-12 2023-07-07 安庆中船柴油机有限公司 一种基于钒基分子筛催化剂的柴油机NOx去除系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626835A1 (de) * 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
DE19636790A1 (de) * 1996-09-11 1998-03-12 Volkswagen Ag NOx-Abgasreinigungsverfahren
DE19636040A1 (de) * 1996-09-05 1998-03-12 Volkswagen Ag Abgasreinigungsverfahren für eine Brennkraftmaschine
DE19716275C1 (de) * 1997-04-18 1998-09-24 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605556B2 (ja) * 1992-10-13 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP0636770B1 (de) * 1993-01-19 1999-09-08 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsgerät für eine brennkraftmaschine
JP3248806B2 (ja) * 1994-03-18 2002-01-21 本田技研工業株式会社 内燃エンジンの排気ガス浄化装置
KR0150432B1 (ko) * 1994-05-10 1998-10-01 나까무라 유이찌 내연엔진의 제어장치 및 제어방법
DE19543219C1 (de) * 1995-11-20 1996-12-05 Daimler Benz Ag Verfahren zum Betreiben eines Dieselmotors
US5771685A (en) * 1996-10-16 1998-06-30 Ford Global Technologies, Inc. Method for monitoring the performance of a NOx trap
JP3557815B2 (ja) * 1996-11-01 2004-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19703295C2 (de) * 1997-01-30 2000-06-29 Ford Global Tech Inc Verfahren zur Regelung der Temperatur einer Katalysatoranordnung sowie Vorrichtung zur Durchführung des Verfahrens
US5855113A (en) * 1997-03-28 1999-01-05 Ford Global Technologies, Inc. Method and system for controlling the temperature of an exhaust system having a variable length exhaust pipe
EP1164268B1 (de) * 1997-04-09 2006-05-24 Emitec Gesellschaft für Emissionstechnologie mbH Anordnung zur Überwachung eines NOx-Speichers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626835A1 (de) * 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
DE19626837A1 (de) * 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
DE19636040A1 (de) * 1996-09-05 1998-03-12 Volkswagen Ag Abgasreinigungsverfahren für eine Brennkraftmaschine
DE19636790A1 (de) * 1996-09-11 1998-03-12 Volkswagen Ag NOx-Abgasreinigungsverfahren
DE19716275C1 (de) * 1997-04-18 1998-09-24 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053902A1 (de) 1999-03-11 2000-09-14 Volkswagen Aktiengesellschaft Verfahren zur de-sulfatierung eines nox-speicherkatalysators
EP1077319A2 (de) * 1999-08-16 2001-02-21 Mazda Motor Corporation Verfahren und Vorrichtung zur Steuerung einer selbstgezündeten Brennkraftmaschine
EP1077319A3 (de) * 1999-08-16 2003-01-29 Mazda Motor Corporation Verfahren und Vorrichtung zur Steuerung einer selbstgezündeten Brennkraftmaschine
EP1079091A3 (de) * 1999-08-24 2003-01-15 DaimlerChrysler AG Motorregelsystem für einen Dieselmotor
DE10115431B4 (de) * 2000-03-30 2005-04-21 Mitsubishi Jidosha Kogyo K.K. Abgasreinigungsvorrichtung für Ottomotor
EP1152137A1 (de) * 2000-05-04 2001-11-07 Peugeot Citroen Automobiles SA Verfahren zur Erkennung der Betriebsbereitschaft eines Katalysator für den Auspuff einer Brennkraftmaschine
FR2808560A1 (fr) * 2000-05-04 2001-11-09 Peugeot Citroen Automobiles Sa Procede de detection de l'etat d'un catalyseur integre dans une ligne d'echappement d'un moteur a combustion interne
DE10023080B4 (de) * 2000-05-11 2009-10-22 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung einer Speicherfähigkeit eines NOx-Speicherkatalysators
DE10034874B4 (de) * 2000-07-18 2004-01-22 Siemens Ag Verfahren zum Adaptieren einer NOx-Rohkonzentration
DE10038461B4 (de) * 2000-08-07 2009-12-24 Volkswagen Ag Modell für einen NOx-Speicherkatalysator
DE10163006B4 (de) * 2000-12-21 2010-06-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Vorrichtung und Verfahren zur Abgasreinigung für einen Verbrennungsmotor
DE10115968B4 (de) * 2001-03-27 2012-08-16 Volkswagen Ag Verfahren zur Erwärmung eines Katalysators
DE10137134B4 (de) * 2001-07-30 2004-09-02 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschime insbesondere eines Kraftfahrzeugs
DE10153901B4 (de) * 2001-10-12 2011-07-14 Volkswagen AG, 38440 Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
DE10334091B4 (de) * 2002-07-29 2006-04-27 Mitsubishi Fuso Truck And Bus Corp. Motorregelungssystem
DE10242914B4 (de) * 2002-09-16 2006-01-12 Siemens Ag Verfahren zur Adaption der NOx-Rohemission bei Verbrennungskraftmaschinen
DE10305635B4 (de) * 2003-02-11 2011-01-13 Continental Automotive Gmbh Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE10318213B4 (de) * 2003-04-22 2007-09-20 Siemens Ag Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine
DE10326932A1 (de) * 2003-06-16 2005-01-27 Audi Ag Verfahren zur Überprüfung eines Stickoxid-Sensors einer einen Stickoxid-Speicherkatalysator aufweisenden Brennkraftmaschine
WO2005001266A1 (de) * 2003-06-30 2005-01-06 Siemens Aktiengesellschaft Verfahren zur steuerung einer brennkraftmaschine
DE10337902A1 (de) * 2003-08-18 2005-03-24 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE102004026797A1 (de) * 2004-06-02 2005-12-22 Daimlerchrysler Ag Brennkraftmaschine mit Abgasnachbehandlungssystem und ein Verfahren zur Regelung der Abgastemperatur
EP1798392A1 (de) * 2005-12-15 2007-06-20 Robert Bosch Gmbh Verfahren und Steuergerät zur Beurteilung der Funktionsfähigkeit eines NOx-Speicherkatalysators
DE102007000006B4 (de) * 2006-01-11 2009-04-23 Denso Corp., Kariya-shi Luft-Kraftstoffverhältnissteuergerät, das mit einer Abgasemissionssteuervorrichtung ausgestattet ist
EP2792865A4 (de) * 2011-12-12 2015-12-02 Isuzu Motors Ltd Dieselmotorabgasreinigungsverfahren und abgasreinigungssystem
EP2884065A1 (de) * 2013-12-11 2015-06-17 Hirtenberger Aktiengesellschaft Verfahren zur automatisierten Wiederaufbereitung eines verunreinigten Gegenstandes sowie Vorrichtung zur Durchführung desselben
DE102016219042B4 (de) 2015-11-03 2022-12-22 Ford Global Technologies, Llc Verfahren zur Regeneration eines NOx-Speicherkatalysators während des Betriebs eines autonom fahrenden Fahrzeuges sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage und Fahrzeug mit Steuerungseinrichtung
FR3057612A1 (fr) * 2016-10-18 2018-04-20 Renault S.A.S Procede de purge d'un piege a oxydes d'azote d'un moteur a combustion interne et dispositif de motorisation associe
EP3330521A1 (de) * 2016-10-18 2018-06-06 RENAULT s.a.s. Verfahren zur regenerierung einer stickoxidfalle eines verbrennungsmotors

Also Published As

Publication number Publication date
WO2000023694A3 (de) 2000-11-02
EP1121513B1 (de) 2002-04-03
DE59901151D1 (de) 2002-05-08
CN1330745A (zh) 2002-01-09
WO2000023694A2 (de) 2000-04-27
EP1121513A2 (de) 2001-08-08
CN1131929C (zh) 2003-12-24

Similar Documents

Publication Publication Date Title
EP1121513B1 (de) Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine
EP1121519B1 (de) Verfahren und vorrichtung zur de-sulfatierung eines nox-speicherkatalysators
EP1161618B1 (de) Verfahren zur de-sulfatierung eines nox-speicherkatalysators
EP3475543B1 (de) Verfahren und vorrichtung zur abgasnachbehandlung eines verbrennungsmotors
EP1084332B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1373693B2 (de) Verfahren und vorrichtung zur überwachung eines abgasnachbehandlungssystems
WO2011124283A1 (de) Verfahren zum heizen eines katalysators in einem motorsystem und zur diagnose der wirksamkeit von massnahmen zum heizen des katalysators
EP1366278B1 (de) Verfahren zur temperatursteuerung eines katalysatorsystems
DE19923299A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1584809B1 (de) Verfahren zur Regeneration einer Abgasnachbehandlungseinrichtung
EP1132584B1 (de) Verfahren und Vorrichtung zur Steuerung einer Heizmassnahme in einer Abgasreinigungsanlage von Brennkraftmaschinen
EP1035313B1 (de) Verfahren und Vorrichtung zur Abgastemperaturerhöhung
DE10016219A1 (de) Verfahren und Vorrichtung zur Steuerung einer Heizmaßnahme in einer Abgasreinigungsanlage von Brennkraftmaschinen
DE10226873B4 (de) Verfahren zur Steuerung der Betriebsartenwahl einer Verbrennungskraftmaschine
DE10162115A1 (de) Verfahren und Vorrichtung zur Katalysatoraufheizung
EP2294292B1 (de) Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems
DE102006016447A1 (de) Verfahren zum Betreiben einer Dosiervorrichtung eines Abgas-Reinigungssystems und Vorrichtung zur Durchführung des Verfahrens
EP1303690B1 (de) Verfahren zur adaption eines katalysatortemperatur-sollbereichs für einen no x?-speicherkatalysator
DE102009045088B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors in Verbindung mit einer exothermen Regeneration einer Abgasnachbehandlungkomponente
EP1167710B1 (de) Verfahren und Vorrichtung zur Erhöhung einer Katalysatortemperatur
DE10154974A1 (de) Verfahren und Vorrichtung zur Umschaltung einer Verbrennungskraftmaschine von einem gefeuerten Betrieb in einen ungefeuerten Schubbetrieb
EP1300572B1 (de) Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1387070B1 (de) Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungsanlage einer Verbrennungskraftmaschine
DE10010031A1 (de) Verfahren und Vorrichtung zur Durchführung einer NO¶x¶-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators
DE10010032A1 (de) Verfahren und Vorrichtung zur Durchführung einer NO¶x¶-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination