DE19805650A1 - Joining method using a PTC polymer - Google Patents

Joining method using a PTC polymer

Info

Publication number
DE19805650A1
DE19805650A1 DE19805650A DE19805650A DE19805650A1 DE 19805650 A1 DE19805650 A1 DE 19805650A1 DE 19805650 A DE19805650 A DE 19805650A DE 19805650 A DE19805650 A DE 19805650A DE 19805650 A1 DE19805650 A1 DE 19805650A1
Authority
DE
Germany
Prior art keywords
ptc
polymer
polymer material
connection
connecting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19805650A
Other languages
German (de)
Inventor
Ralf Struempler
Vishal Mallick
Joergen Skindhoj
Joachim Glatz-Reichenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to DE19805650A priority Critical patent/DE19805650A1/en
Priority to PCT/FI1999/000105 priority patent/WO1999041059A1/en
Priority to AU24263/99A priority patent/AU2426399A/en
Publication of DE19805650A1 publication Critical patent/DE19805650A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3436Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising independent continuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3488Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being an electrically conductive polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/364Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a woven or non-woven fabric or being a mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/474Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/344Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a woven or non-woven fabric or being a mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3636Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising independent continuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • B29C65/368Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3684Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic
    • B29C65/3696Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic with a coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/349Cooling the welding zone on the welding spot
    • B29C66/3494Cooling the welding zone on the welding spot while keeping the welding zone under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Abstract

The invention concerns an improved joining method for joining two parts (1 and 2) by means of a joining material layer (3). By means of contacts (4 and 5), a voltage is applied to a PTC polymer material layer in the joining material (3) from an energy supply (6) via an external electric circuit. The PTC effect leads to automatic uniform distribution of the Joulean heat loss and to uniform two-dimensional melting when the joint is being produced.

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren im Bereich der Verbin­ dungstechnik. In der Verbindungstechnik werden zwei oder mehr Teile mecha­ nisch fest miteinander verbunden, so daß die Verbindung zwischen ihnen zumin­ dest nicht mehr leicht und unbeabsichtigt zu lösen ist.The present invention relates to a method in the field of connectors manure technology. In connection technology, two or more parts are mecha nisch firmly connected, so that the connection between them at least least is no longer easy and unintentional to solve.

Bekannt ist da bei natürlich die Verwendung von Verbindungselementen mit einer bestimmten körperlichen Ausgestaltung, z. B. Schrauben, Nägel, Nieten und Klammern. Bekannt sind ferner viele Verfahren der Schweißtechnik (z. B. Laser­ schweißen), bei denen die Verbindung ohne Verwendung eines zusätzlichen Verbindungsmaterials, also aus dem Material der zu verbindenden Teile selbst hergestellt wird. Im Bereich der Kunststofftechnik sind dies z. B. das Ultra­ schall- und Vibrationsschweißen.Of course, the use of connecting elements with a is known certain physical form, e.g. B. screws, nails, rivets and Parentheses. Many processes in welding technology (e.g. lasers weld), where the connection without using an additional Connection material, i.e. from the material of the parts to be connected themselves will be produced. In the field of plastics technology, these are e.g. B. the Ultra sound and vibration welding.

Diese Erfindung bezieht sich jedoch auf ein Verbindungsverfahren, bei dem ein zusätzliches Verbindungsmaterial verwendet wird (das in seiner Zusammenset­ zung jedoch nicht unbedingt von den Materialien der zu verbindenden Teile ab­ weichen muß). Im Bereich der Metallverarbeitung sind dazu die Löttechniken und die Schweißtechniken, die einen zusätzlichen Schweißdraht verwenden, anzufüh­ ren. Weiterhin gehören in diesen Bereich alle Klebetechniken.However, this invention relates to a connection method in which a additional connecting material is used (which in its composition However, this does not necessarily depend on the materials of the parts to be connected must give way). In the field of metal processing, soldering techniques and the welding techniques using an additional welding wire ren. Furthermore, all adhesive techniques belong in this area.

Im Bereich der Kunststofftechnik sind ferner Kunststoffschweißverfahren bekannt, bei denen durch in der Verbindung eingebettete und dort letztlich verbleibende Heizelemente aus Metall oder Kohlenstoffasern die zu verbindenden Teile zu min­ dest in der Umgebung einer Verbindungsfläche aufgeschmolzen und miteinander verschmolzen werden:
"A Review of Methods for Fusion Bonding Thermoplastic Composites",
"A. Benatar, T. G. Gutowski, SAMPE Journal, Januar/Februar 1987, S. 33 ff;
"Thermoplastic Aromatic Polymer Composites", F. N. Cogswell, Butterworth-Heine­ mann Ltd. 1992, Kap. 5.3.4;
"Resistance Welding of Graphite Polyetheretherketone Composites: An Experi­ mental Investigation" E. C. Eveno, J. W. Gillespie, jr., Journal of Thermoplastic Composite Materials, Bd. 1, 1988, S. 322 ff;
"Joining Thermoplastic Composites", D. M. Maguire, SAMPE Journal, Bd. 25, Nr. 1, Januar/Februar 1989, S. 11 ff.
In the field of plastics technology, plastic welding processes are also known, in which, by means of heating elements made of metal or carbon fibers embedded in the connection and ultimately remaining there, the parts to be connected are melted and melted together at least in the vicinity of a connection surface:
"A Review of Methods for Fusion Bonding Thermoplastic Composites",
"A. Benatar, TG Gutowski, SAMPE Journal, January / February 1987, pp. 33 ff;
"Thermoplastic Aromatic Polymer Composites", FN Cogswell, Butterworth-Heine mann Ltd. 1992, chap. 5.3.4;
"Resistance Welding of Graphite Polyetheretherketone Composites: An Experimental Investigation" EC Eveno, JW Gillespie, Jr., Journal of Thermoplastic Composite Materials, Vol. 1, 1988, pp. 322 ff;
"Joining Thermoplastic Composites", DM Maguire, SAMPE Journal, Vol. 25, No. 1, January / February 1989, pp. 11 ff.

Da bei diesen Techniken das eingebettete Heizelement die Verbindung zwar her­ zustellen hilft, in ihrer Dauerhaftigkeit aber eher einschränkt als fördert, kann von einem zusätzlichen Verbindungsmaterial im Grunde keine Rede sein. Jedoch sind in den zitierten Quellen auch zusätzliche Filme aus isolierendem Polymermaterial erwähnt, die durch thermische (A. Benatar, T. G. Gutowski) bzw. elektrische (F. N. Cogswell) Isolation einer Verbesserung der Verteilung der Wärme des Heizers in der Verbindungsfläche bewirken sollen.Because with these techniques the embedded heating element makes the connection Delivering helps, but its durability is more restrictive than encouraging there is basically no question of additional connecting material. However are in the sources cited also additional films of insulating polymer material mentioned by thermal (A. Benatar, T. G. Gutowski) or electrical (F. N. Cogswell) Isolation to improve the distribution of heat from the heater in the connecting surface.

In den genannten Quellen ist als wesentliche Schwierigkeit der dort dargestellten Schweißtechniken die Gleichmäßigkeit der Temperaturverteilung entlang der Verbindungsfläche genannt. Insbesondere sollen die erwähnten Isolationsschich­ ten eine zu große Wärme- oder Stromeinkopplung aus dem Heizer in die zu ver­ bindenden Teile am äußeren Rand der Verbindungsfläche verhindern. Trotzdem können erhebliche Ungleichmäßigkeiten nicht vermieden werden.In the sources mentioned, the main difficulty is that shown there Welding techniques the uniformity of the temperature distribution along the Called connecting surface. In particular, the insulation layer mentioned Too much heat or electricity is injected from the heater into the prevent binding parts on the outer edge of the connecting surface. Nevertheless significant unevenness cannot be avoided.

Zum Stand der Technik ist ferner zu sagen, daß strombegrenzende Elemente aus Polymermaterialien bekannt sind, die einen PTC-Effekt (größeren positiven Tem­ peraturkoeffizienten des elektrischen Widerstandes) zeigen:
"Polymer Composite Thermistors for Temperature and Current Sensors", R. Strümpler, J. Appl. Phys. 80 (11), Dezember 1996, S. 6091 ff;
"Polyethylene Current Limiters for Short-Circuit Protection", T. Hansson, ABB Review 4/92;
"PolySwitch PTC Devices - A New Low-Resistance Conductive Polymer-Based PTC-Device for Overcurrent Protection", F. A. Doljack, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Band CHMT-4, Nr. 4, De­ zember 1981, S. 372 ff;
US-P 5,313,184.
The state of the art can also be said that current-limiting elements made of polymer materials are known which have a PTC effect (larger positive temperature coefficient of electrical resistance):
"Polymer Composite Thermistors for Temperature and Current Sensors", R. Strümpler, J. Appl. Phys. 80 (11), December 1996, p. 6091 ff;
"Polyethylene Current Limiters for Short-Circuit Protection", T. Hansson, ABB Review 4/92;
"PolySwitch PTC Devices - A New Low-Resistance Conductive Polymer-Based PTC-Device for Overcurrent Protection", FA Doljack, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Volume CHMT-4, No. 4, December 1981, p. 372 ff;
U.S. Patent 5,313,184.

Elemente mit PTC-Polymeren sind auch als Teil selbstregulierender Heizer für Zweiradhandgriffe, Autobatterien, Leitungen und Tanks, Antennen, elektrische Bauteile usw. bekannt. Dabei bildet eine PTC-Polymerschicht ein Heizelement mit Metallelektroden zur Stromzuführung:
US-P4,761, 541.
Elements with PTC polymers are also known as part of self-regulating heaters for two-wheel handles, car batteries, lines and tanks, antennas, electrical components, etc. A PTC polymer layer forms a heating element with metal electrodes for power supply:
U.S. P4,761,541.

Die Erfindung richtet sich auf Verbindungsverfahren unter Verwendung eines Verbindungsmaterials zur Herstellung einer festen Verbindung zwischen zwei Teilen. Sie geht dabei aus von einem bekannten Verfahren zum Verbinden zu­ mindest zweier Teile durch ein Verbindungsmaterial, wobei das Verbindungsma­ terial ein Polymermaterial enthält und die Verbindung durch Einwirkung Joule­ scher Verlustwärme elektrischer Ströme in dem Verbindungsmaterial hergestellt wird.The invention is directed to connection methods using a Connection material for establishing a firm connection between two Divide. It is based on a known method for connecting at least two parts by a connecting material, the connecting dimension material contains a polymer material and the connection by action Joule shear heat loss of electrical currents produced in the connecting material becomes.

Das der Erfindung zugrunde liegende technische Problem ist, ein neues und ver­ bessertes Verbindungsverfahren anzugeben.The technical problem underlying the invention is a new and ver to provide a better connection method.

Dieses Problem wird erfindungsgemäß dadurch gelöst, daß das Polymermaterial ein PTC-Polymermaterial ist und daß die elektrischen Ströme die Joulesche Ver­ lustwärme durch den durch den PTC-Effekt erzeugten Widerstand in dem PTC-Polymermaterial erzeugen. This problem is solved according to the invention in that the polymer material is a PTC polymer material and that the electric currents are the Joulesche Ver heat through the resistance created by the PTC effect in the Create PTC polymer material.  

Die Erfindung beruht auf dem Gedankengang, daß bei vielen Verbindungstechni­ ken die Verbindung durch Wärmeeinwirkung hergestellt wird. In vielen Fällen und aus verschiedenen Gründen ist die Erzeugung dieser Wärme durch elektrische Ströme in dem Verbindungsmaterial vorteilhaft. Solche Gründe können sein, daß die zu verbindenden Teile jedenfalls in ihrer Gänze thermisch nicht belastet wer­ den sollen, daß die Verbindung möglichst schnell und gezielt hergestellt werden soll, daß die Verbindungsfläche zwischen den beiden zu verbindenden Teilen für eine äußere Wärmeeinkopplung schwer zugänglich ist oder andere.The invention is based on the idea that in many connection technologies The connection is made by exposure to heat. In many cases and for various reasons, this heat is generated by electrical Currents in the connecting material are advantageous. Such reasons may be that in any case, the parts to be connected are not thermally stressed in their entirety The aim is that the connection should be made as quickly and specifically as possible is that the interface between the two parts to be connected for external heat input is difficult to access or others.

Die Joulesche Wärme der elektrischen Ströme kann dabei verschiedene Prozes­ se hervorrufen oder fördern, die die Verbindung herstellen. Dies kann ein Auf­ schmelzen eines Materials sein entsprechend einem Schweiß- oder Lötverfahren, die Verstärkung einer Interdiffusion, die Aktivierung einer chemischen Reaktion, die Verbesserung einer Adhäsionswirkung usw. In jedem Fall ist es wichtig, daß die Wärme möglichst gleichmäßig verteilt ist.The Joule heat of the electrical currents can do various processes evoke or promote the connection. This can be an on melting a material according to a welding or soldering process, the strengthening of an interdiffusion, the activation of a chemical reaction, the improvement of an adhesive effect, etc. In any case it is important that the heat is distributed as evenly as possible.

Anstatt wie im Stand der Technik die Wärmeverteilung durch Isolatorschichten zu verbessern, geht die Erfindung davon aus, daß die Wärmeerzeugung selbst mög­ lichst gleichmäßig erfolgen soll. Dazu enthält das Verbindungsmaterial ein PTC-Polymer, dessen PTC-Effekt den für den wesentlichen Teil der verwendeten Jouleschen Verlustwärme verantwortlichen elektrischen Widerstand erzeugt. Der Begriff PTC-Polymer bezeichnet dabei elektrisch leitfähige Polymere, die in der Umgebung einer Übergangstemperatur von einem gut leitfähigen Zustand in ei­ nen weniger gut leitenden oder isolierenden Zustand schalten. Bei halbkristallinen Polymeren liegt diese Übergangstemperatur in der Nähe der Schmelztemperatur.Instead of the heat distribution through insulator layers, as in the prior art improve, the invention assumes that the heat generation itself possible Lich should be done evenly. For this purpose, the connecting material contains a PTC polymer whose PTC effect is used for the essential part of the Jouleschen waste heat responsible electrical resistance generated. Of the The term PTC polymer here denotes electrically conductive polymers which are used in the Environment of a transition temperature from a good conductive state in egg switch less conductive or insulating state. With semi-crystalline For polymers, this transition temperature is close to the melting temperature.

Eine Abgrenzung kann erfolgen durch einen Widerstandsanstieg in einem Tem­ peraturintervall von 14 K um mindestens den Faktor 2,5 oder in einem Tempera­ turintervall von 30 K um den Faktor 6 oder in einem Temperaturintervall von 100 K um den Faktor 10. (Die Erfüllung eines Kriteriums definiert das Material dabei als PTC-Polymer). Bevorzugt ist eine Abgrenzung mit einem Anstieg des Wider­ standes in dem Temperaturintervall von 14 K um den Faktor 5 oder in dem Tem­ peraturintervall von 30 K um den Faktor 20 oder in dem Temperaturintervall von 100 K um den Faktor 100.A distinction can be made by an increase in resistance in a tem temperature interval of 14 K by at least a factor of 2.5 or in a tempera interval of 30 K by a factor of 6 or in a temperature interval of 100 K by a factor of 10. (The fulfillment of a criterion defines the material  as a PTC polymer). A delimitation with an increase in the resistance is preferred in the temperature interval of 14 K by a factor of 5 or in the tem temperature interval of 30 K by a factor of 20 or in the temperature interval of 100 K by a factor of 100.

Besonders bevorzugt ist eine Abgrenzung mit dem Faktor 7,5 in dem Intervall von 14 K, dem Faktor 100 in dem Intervall von 30 K oder dem Faktor 1000 in dem Intervall von 100 K.A delimitation with a factor of 7.5 in the interval of is particularly preferred 14 K, the factor 100 in the interval of 30 K or the factor 1000 in the Interval of 100 K.

Solche PTC-Polymermaterialien können aus einer Polymermatrix mit einem darin verteilten und die elektrische Leitfähigkeit fördernden Füllmaterial bestehen, wie im zitierten Stand der Technik näher dargestellt. Das Füllmaterial können Metall­ partikel, Carbide, Boride, Nitride, Kohlekurzfasern, leitfähige Polymerpartikel oder auch Ruß sein.Such PTC polymer materials can consist of a polymer matrix with one therein distributed filling material that promotes electrical conductivity, such as presented in more detail in the cited prior art. The filling material can be metal particles, carbides, borides, nitrides, short carbon fibers, conductive polymer particles or also be soot.

Wenn bei der Herstellung der Verbindung die elektrischen Ströme durch das PTC-Polymermaterial fließen und der PTC-Effekt bei zunehmender Erwärmung für den wesentlichen Teil des Spannungsabfalls und damit dem wesentlichen Teil der Jouleschen Verlustwärme verantwortlich ist, so ergibt sich selbsttätig eine gleichmäßige Wärmeerzeugung. (Wesentlicher Teil soll hier bedeuten zumindest 50 bevorzugterweise 80, 90 oder 95 des gesamten Spannungsabfalls in dem Verbindungsmaterial.) Der starke Widerstandsanstieg im Temperaturbereich des PTC-Effekts sorgt dabei für eine Verteilung der elektrischen Ströme auf die ge­ ringfügig kälteren Teile des PTC-Polymermaterials und ihre Begrenzung in Berei­ chen über einer bestimmten Temperatur.If the electrical currents through the PTC polymer material flows and the PTC effect with increasing warming for the essential part of the voltage drop and thus the essential part the Joule heat loss is responsible, there is automatically one even heat generation. (The essential part here means at least 50 preferably 80, 90 or 95 of the total voltage drop in the Connection material.) The strong increase in resistance in the temperature range of the PTC effect ensures that the electrical currents are distributed among the ge slightly colder parts of the PTC polymer material and their limitation in the area chen above a certain temperature.

Damit können Überhitzungen des Verbindungsmaterials oder der zu verbinden­ den Teile leicht vermieden werden. Durch geeignete Wahl des PTC-Tem­ peraturbereichs kann dabei eine für den speziellen Verwendungsprozeß ausreichende und für alle beteiligten Materialien verträgliche Temperatur gewählt und eingestellt werden. This can cause overheating of the connection material or the connection the parts can be easily avoided. By suitable selection of the PTC tem temperature range can be one for the special application process sufficient temperature that is compatible with all materials involved is selected and be set.  

Der starke Widerstandsanstieg in diesem Temperaturbereich sorgt bei geeigneter äußerer Verschaltung zur Zuführung der elektrischen Ströme für eine selbsttätige Einstellung der Gesamtleistungszufuhr auf diesen Temperaturbereich. Anderer­ seits können PTC-Polymermaterialien aus einer sehr großen Auswahl von Poly­ meren für die Polymermatrix hergestellt werden, so daß das Verbindungsmaterial nicht nur hinsichtlich des PTC-Temperaturbereichs sondern auch unter Berück­ sichtigung anderer physikalischer oder chemischer Gesichtspunkte auf den An­ wendungsfall hin optimiert werden kann.The strong increase in resistance in this temperature range ensures a suitable one external circuit for supplying the electrical currents for an automatic Setting the total power supply to this temperature range. Other On the one hand, PTC polymer materials can be made from a very large selection of poly mers for the polymer matrix are made, so that the connecting material not only with regard to the PTC temperature range but also under consideration consideration of other physical or chemical aspects on the type application can be optimized.

Nach einer bevorzugten Ausgestaltung der Erfindung werden die elektrischen Ströme durch Anlegen einer Spannung an das Verbindungsmaterial durch An­ schluß an einen äußeren elektrischen Stromkreislauf erzeugt. So können in ein­ facher Weise Ströme in praktisch beliebiger Größenordnung erzeugt werden. Ins­ besondere entfallen die bei im Rahmen der Erfindung auch denkbaren induktiven Einkopplungsmethoden vorhandenen geometrischen Einschränkungen.According to a preferred embodiment of the invention, the electrical Currents by applying a voltage to the connecting material by An connected to an external electrical circuit. So can in one streams of practically any size are generated. Ins In particular, the inductive conceivable in the context of the invention are omitted Coupling methods existing geometric restrictions.

Zur Zuführung des Stroms bzw. zum Anlegen der Spannung werden vorteilhaf­ terweise Kontaktflächen verwendet, die vergleichsweise dünne PTC-Polymerma­ terialbereiche zwischen sich einschließen, d. h. der Strom sollte durch relativ kur­ ze Strecken in dem PTC-Polymermaterial fließen. Dies hat den Grund, daß sich bei längeren Strompfaden durch das PTC-Polymermaterial quer zur Stromrich­ tung verlaufende Ebenen höherer Temperatur bilden können, in denen durch den PTC-Effekt der wesentliche Widerstandsabfall auftritt. Dabei existieren also aus­ geprägte Gradienten der Temperatur und des spezifischen Widerstandes in der Stromrichtung, wobei die Temperatur und der spezifische Widerstand quer zur Stromrichtung zweidimensional relativ homogen sind. Je nach Schärfe des PTC-Effekts, d. h. der Größe der Ableitung des Widerstandes nach der Temperatur, und der thermischen Leitfähigkeit des Materials bilden sich entsprechende Schichtdicken der "PTC-Ebene" aus. Diese Schichtdicken sind technisch relevant und sollten möglichst nicht geringer sein als die oben genannten dünnen PTC-Polymermaterialbereiche zwischen den Kontaktflächen.To supply the current or to apply the voltage are advantageous Contact surfaces used, the comparatively thin PTC polymer ma include material areas between them, d. H. the current should go through relatively short stretches flow in the PTC polymer material. This is because with longer current paths through the PTC polymer material across the current device can form planes of higher temperature, in which the PTC effect the significant drop in resistance occurs. So there exist from embossed gradients of temperature and resistivity in the Current direction, the temperature and resistivity across Current direction are two-dimensionally relatively homogeneous. Depending on the sharpness of the PTC effect, i.e. H. the size of the derivative of the resistance according to the temperature, and the thermal conductivity of the material are formed accordingly Layer thicknesses of the "PTC level". These layer thicknesses are technically relevant  and should not be less than the thin ones mentioned above PTC polymer material areas between the contact surfaces.

Günstige Kontaktflächengeometrien ergeben sich z. B. aus kammartig verzahn­ ten Fingerstrukturen für die Stromzuleitungen in der Verbindungsebene oder durch auf und unter einer relativ dünnen Schicht des Verbindungsmaterials ver­ laufende flache (nicht unbedingt kontinuierliche) Kontaktflächen. Im letztgenann­ ten Fall können z. B. netzförmige oder fingerförmige Stromzuleitungen in den Kontaktflächen liegen. Es ist aber auch möglich, den Strom durch die zu verbin­ denden Teile selbst zuzuführen, wenn diese eine gewisse elektrische Leitfähig­ keit aufweisen, so daß die zu verbindenden Teile nicht zu stark erwärmt werden. Dies bietet sich natürlich vor allen Dingen bei Metallen an; gut leitfähige Kunst­ stoffe sind jedoch auch denkbar.Favorable contact surface geometries result e.g. B. from comb-like tooth th finger structures for the power supply lines in the connection level or by ver on and under a relatively thin layer of the connecting material running flat (not necessarily continuous) contact surfaces. In the latter ten case can e.g. B. net-shaped or finger-shaped power supply lines in the Contact areas. But it is also possible to connect the current through the the parts themselves if they have a certain electrical conductivity have speed so that the parts to be connected are not heated too much. Of course, this is particularly useful for metals; good conductive art however, fabrics are also conceivable.

Neben Metallstrukturen können für die Stromzuleitungen auch Kohlenstoffasern verwendet werden. Diese sind gut mit vielen Polymermaterialien verträglich und können somit besonders gut in der Verbindungsfläche bzw. im Verbindungsmate­ rial nach Herstellen der Verbindung verbleiben. Neben der Funktion als Stromzu­ leitung - einseitig oder zweiseitig - können sich aus ihrer Verwendung auch me­ chanische Verstärkungseigenschaften ergeben. Im Gegensatz zum Stand der Technik sollen diese Kohlenstoffaserstrukturen jedoch nicht selbst als Heizele­ ment dienen, indem sie den Strom durch im wesentlichen isolierende Polymere hindurchführen. Insbesondere ergeben sich mit Kohlenstoffaserstrukturen gute Möglichkeiten, die Länge der Strompfade in dem Verbindungsmaterial zu verkür­ zen. Die Ströme können dabei durch die Vielzahl der Kohlenstoffasern sehr gut aufgeteilt und verteilt werden.In addition to metal structures, carbon fibers can also be used for the power supply lines be used. These are well tolerated and compatible with many polymer materials can therefore be particularly good in the connecting surface or in the connecting mat rial remain after establishing the connection. In addition to the function as a power supply cable - one-sided or two-sided - can also me mechanical reinforcement properties result. In contrast to the state of the However, these carbon fiber structures should not be used as heating elements ment serve by passing the current through essentially insulating polymers pass through. In particular, good results arise with carbon fiber structures Possibilities to shorten the length of the current paths in the connection material Zen. The currents can do very well due to the large number of carbon fibers be divided and distributed.

Wie oben bereits angedeutet, ist es im Rahmen der Erfindung aber auch denk­ bar, die elektrischen Ströme als Wirbelströme induktiv zu erzeugen. Dazu muß eine elektromagnetische Welle in das Verbindungsmaterial eingekoppelt werden, wie das vom konventionellen Induktionsschweißen von Kunststoffen bekannt ist. As already indicated above, it is also within the scope of the invention bar to generate the electrical currents inductively as eddy currents. To do this an electromagnetic wave is coupled into the connecting material, as is known from conventional induction welding of plastics.  

Jedoch ergibt sich auch hier der bereits beschriebene wesentliche Effekt der Er­ findung. Wenn durch unterschiedlich starke Absorption oder aus anderen Grün­ den eine ungleichmäßige Erwärmung des Verbindungsmaterials stattfindet, so wird dies im Temperaturbereich des PTC-Effekts automatisch ausgeglichen, in­ dem in den etwas kälteren Bereichen größere Wirbelströme fließen können.However, the essential effect of the Er already described also results here finding. If due to different levels of absorption or from other green the uneven heating of the connecting material takes place, so this is automatically compensated for in the temperature range of the PTC effect, in where larger eddy currents can flow in the somewhat colder areas.

Gegenüber dem direkten Anschluß in einen Heizstromkreis hat das induktive Verfahren den Vorteil, daß keine Stromzuleitungen notwendig sind und sich ins­ besondere das Problem in der Verbindungsfläche oder zumindest an ihrem Rand nach dem Herstellen der Verbindung verbleibender Kontaktvorrichtungen oder Stromzuleitungen nicht stellt. Andererseits muß die Einkopplungsvorrichtung für die elektromagnetische Welle, z. B. eine Spule, geometrisch genau an die her­ zustellende Verbindung angepaßt sein, damit keine zu großen Leistungsverluste auftreten. Dies kann auch zu geometrischen Einschränkungen der zu verbinden­ den Teile führen. Von der apparativen Seite her ist das induktive Verfahren grundsätzlich aufwendiger als das zuvor beschriebene.Compared to the direct connection to a heating circuit, this has inductive Process the advantage that no power lines are necessary and ins special the problem in the interface or at least on its edge after the connection of remaining contact devices or Power supply lines do not provide. On the other hand, the coupling device for the electromagnetic wave, e.g. B. a coil, geometrically exactly to the forth The connection to be delivered must be adjusted so that there are no excessive losses in performance occur. This can also connect to geometric constraints lead the parts. On the apparatus side, the inductive process is basically more complex than that previously described.

Die Erfindung ist im Prinzip für die verschiedensten Materialien zu verbindender Teile geeignet. Häufig wird es dabei jedoch nur zu einem Adhäsionseffekt ähnlich einer Klebstoffverbindung kommen, ob nun durch das geheizte PTC-Poly­ mermaterial oder durch in dem Verbindungsmaterial enthaltene zusätzliche Adhäsionsschichten vermittelt. Ein bevorzugter Anwendungsbereich liegt jedoch dort, wo zumindest eines der zu verbindenden Teile ebenfalls aus einem Poly­ mermaterial besteht. Dann vor allem kann es zu diesem Teil zu einer sehr viel festeren Verbindung ähnlich der konventionellen Kunststoffschweißtechnik kom­ men, die besonders stabil ist, wenn zumindest eines der Polymermaterialien bei der Herstellung der Verbindung (an-)schmilzt. Jedoch können auch durch eine gewisse Erweichung und verstärkte Interdiffusion an den Grenzschichten sehr stabile Verbindungen geschaffen werden. Erfahrungsgemäß sind die thermisch induzierten Verbindungen zwischen Polymermaterialien dann besonders gut, wenn sich die gegenüberstehenden Materialien möglichst weitgehend entspre­ chen. Dazu sollte das Polymermaterial des oder der zu verbindenden Teile mit dem Material der Polymermatrix des PTC-Polymermaterials identisch oder zu­ mindest nah verwandt sein.In principle, the invention can be combined for a wide variety of materials Parts suitable. Often, however, it only becomes similar to an adhesion effect an adhesive connection, whether through the heated PTC poly mermaterial or by additional contained in the connecting material Adhesion layers conveyed. A preferred area of application is, however where at least one of the parts to be connected is also made of a poly material exists. Then, above all, it can become a lot to this part stronger connection similar to conventional plastic welding technology com men, which is particularly stable when at least one of the polymer materials the establishment of the connection melts. However, a certain softening and increased interdiffusion at the boundary layers very much stable connections are created. Experience has shown that they are thermal induced connections between polymer materials then particularly well, if the opposite materials correspond as much as possible  chen. To do this, the polymer material of the part or parts to be joined should also identical or to the material of the polymer matrix of the PTC polymer material be at least closely related.

Zugunsten auch bei etwas höherer Temperatur zuverlässiger Verbindungen zielt die Erfindung besonders auf Hochtemperatur-PTC-Polymermaterialien ab, die ihren PTC-Effekt und Schmelzpunkt oberhalb von 140°C, vorzugsweise oberhalb von 200°C haben. Dabei können in dem Verbindungsmaterial neben den elek­ trisch leitenden Füllmaterialien des PTC-Polymermaterials auch weitere Bestand­ teile zur mechanischen Stabilisierung vorhanden sein. Ein bevorzugtes Material ist z. B. ein Kompositmaterial aus Kohlenstoffasern und einem PEEK (Polyether­ etherketon) als Polymer (Schmelzpunkt bei 334°C), wobei als Füllstoffe z. B. TiC, TiB2 oder TiN verwendet sein kann. Weitere bevorzugte Polymere sind PPS (Polyphenylensulfid, Schmelzpunkt 288°C) und s-PS (syndiotaktisches Polystyrol, Schmelzpunkt 263°C).In favor of compounds that are reliable even at somewhat higher temperatures, the invention is particularly aimed at high-temperature PTC polymer materials which have their PTC effect and melting point above 140 ° C., preferably above 200 ° C. In addition to the electrically conductive filler materials of the PTC polymer material, other constituent parts for mechanical stabilization can also be present in the connecting material. A preferred material is e.g. B. a composite material of carbon fibers and a PEEK (polyether ether ketone) as a polymer (melting point at 334 ° C), with fillers such. B. TiC, TiB 2 or TiN can be used. Other preferred polymers are PPS (polyphenylene sulfide, melting point 288 ° C) and s-PS (syndiotactic polystyrene, melting point 263 ° C).

Es wurde bereits ausgeführt, daß wegen der Ausbildung von "PTC-Effekt-Ebe­ nen" quer zur Stromrichtung längere Strompfade durch das PTC-Poly­ mermaterial nachteilig sein können. Eine Alternative zur Ausbildung der be­ reits erwähnten flächig ausgedehnten oder kammartig ineinandergreifenden Stromzuleitungsstrukturen besteht darin, daß an einer Außenseite des Verbin­ dungsmaterials eine leitfähige Polymerkontaktschicht mit besserer elektrischer Leitfähigkeit als die des PTC-Polymermaterials im Volumen des Verbindungsma­ terials vorgesehen ist. Diese Kontaktschicht kann dann den von einer nur am Rand der Außenseite vorgesehenen metallischen oder Kohlenstoffstromzuleitung zugeführten Strom flächig verteilen, so daß sich im eigentlichen PTC-Poly­ mermaterial wiederum kurze Strompfade ergeben. Ein Beispiel für eine Ma­ terialkombination ist PEEK als Polymermatrix mit Ruß als leitendem Füllmaterial für das PTC-Polymermaterial sowie PEEK mit einem Metallpulver, z. B. Ni oder Ag als gut leitfähigem Füllmaterial für das Kontaktmaterial. Wesentlich ist dabei, daß das metallische Füllmaterial eine deutlich höhere Leitfähigkeit des Kontakt­ materials ergibt als die des Ruß-gefüllten PEEK im Verbindungsmaterialvolumen.It has already been stated that because of the formation of "PTC effect level longer current paths through the PTC poly material can be disadvantageous. An alternative to training the be already mentioned extensive or interdigitated comb-like Power supply structures is that on an outside of the connec a conductive polymer contact layer with better electrical Conductivity than that of the PTC polymer material in the volume of the connection measure terials is provided. This contact layer can then only from the one Edge of the outside provided metallic or carbon current supply Distribute the current supplied so that the actual PTC poly material in turn result in short current paths. An example of a Ma Material combination is PEEK as a polymer matrix with carbon black as a conductive filler for the PTC polymer material and PEEK with a metal powder, e.g. B. Ni or Ag as a highly conductive filling material for the contact material. It is essential  that the metallic filling material has a significantly higher conductivity of the contact materials results as that of the soot-filled PEEK in the connection material volume.

Entsprechendes gilt mit derselben Zielrichtung für die Leitfähigkeiten im Bereich des PTC-Effekts. Wenn nämlich für die Kontaktschicht ein leitfähiges Polymer verwendet wird, das entweder keinen, einen vergleichsweise schwächeren oder in der Temperatur höher liegenden PTC-Effekt im Vergleich zu dem PTC-Poly­ mermaterial im Verbindungsmaterialvolumen zeigt, ergibt sich letztlich die gleiche Wirkung wie bei der vorherigen Alternative, wenn der Widerstand im Ver­ bindungsmaterialvolumen wegen des PTC-Effekts ansteigt. Umgekehrt darf das Verhältnis der Leitfähigkeiten im obigen Beispiel natürlich nicht durch einen PTC-Effekt verkehrt werden.The same applies with the same aim for the conductivity in the area the PTC effect. If a conductive polymer for the contact layer is used that either none, a comparatively weaker or in the temperature higher PTC effect compared to the PTC poly shows material in the volume of connecting material, the final result is same effect as the previous alternative if the resistance in the ver binding material volume increases due to the PTC effect. Conversely, that is allowed The ratio of the conductivities in the example above is of course not by one PTC effect can be reversed.

Die Erfindung wird im Folgenden anhand zweier Ausführungsbeispiele beschrie­ ben, die in den Figuren dargestellt sind. Dabei offenbarte Einzelmerkmale können auch einzeln oder in anderen als den dargestellten Kombinationen erfindungswe­ sentlich sein. Im einzelnen zeigt bzw. zeigen:The invention is described below using two exemplary embodiments ben, which are shown in the figures. Individual features disclosed can also individually or in other combinations than those shown be substantial. In detail shows:

Fig. 1 ein erstes Ausführungsbeispiel für das erfindungsgemäße Verbindungs­ verfahren in einer schematischen Ansicht; Figure 1 shows a first embodiment of the connection method according to the invention in a schematic view.

Fig. 2 ein in dem Verfahren aus Fig. 1 verwendetes Verbindungsmaterial in schematischer Querschnittsansicht; FIG. 2 shows a schematic cross-sectional view of a connecting material used in the method from FIG. 1;

Fig. 3 und Fig. 4 schematische Draufsichten auf ein Verbindungsmaterial mit zwei Stromzuführungsstrukturen und einer PTC-Polymermaterialschicht nach ei­ nem zweiten Ausführungsbeispiel in getrenntem Zustand; ., Figures 3 and 4 are schematic plan views of a connecting material having two power supply structures and a polymeric PTC material layer after egg nem second embodiment in a separated state;

Fig. 4 die Elemente aus Fig. 3 in zusammengefügtem Zustand; . Figure 4 shows the elements of Figure 3 in the assembled state.

Fig. 5 eine alternative Stromzuführungsstruktur für das zweite Ausführungsbei­ spiel aus den Fig. 3 und 4; FIG. 5 shows an alternative power supply structure for the second game Ausführungsbei from Figures 3 and 4.

Fig. 6 eine perspektivische Ansicht einer mit dem erfindungsgemäßen Verbin­ dungsverfahren hergestellten Bodenplatte nach dem zweiten Ausführungsbei­ spiel; sowie Fig. 6 is a perspective view of a bottom plate manufactured with the connec tion process according to the invention after the second embodiment; such as

Fig. 7 einen Ausschnitt aus einer Querschnittsdarstellung durch die Bodenplatte aus Fig. 6. Fig. 7 shows a detail from a cross section through the baseplate of Fig. 6.

Fig. 1 zeigt ein einfaches schematisches Beispiel für das erfindungsgemäße Verbindungsverfahren. Zwei zu verbindende Teile 1 und 2 aus PEEK werden, wie durch die Pfeile angedeutet, auf eine Verbindungsmaterialzwischenschicht 3 und gegeneinander gedrückt. Die Verbindungsmaterialzwischenschicht 3 wird anhand Fig. 2 weiter beschrieben. Sie ist über zwei elektrische Kontakte 4 und 5 in ei­ nen äußeren Stromkreis geschaltet und wird von einer Stromversorgung 6 unter Strom gesetzt. Fig. 1 shows a simple schematic example of the inventive connecting method. As indicated by the arrows, two parts 1 and 2 made of PEEK are pressed onto an intermediate connecting material layer 3 and against one another. The connecting material intermediate layer 3 is further described with reference to FIG. 2. It is connected via two electrical contacts 4 and 5 in an external circuit and is energized by a power supply 6 .

Die Joulesche Verlustwärme erwärmt das Verbindungsmaterial 3 bis zum Tempe­ raturbereich seines PTC-Effekts und läßt es dort in der Verbindungsfläche (d. h. in der Figur vertikal und senkrecht zur Zeichenebene) aufschmelzen. Dadurch ergibt sich eine Schweißverbindung mit den ebenfalls aufschmelzenden äußer­ sten Randschichten der zu verbindenden Teile 1 und 2. Der leichte Druck auf den Teilen bleibt beim Abkühlen erhalten bis zu einer Temperatur, die soweit unter dem Schmelzpunkt von PEEK liegt, daß die Teile 1 und 2 stabil verbunden sind.The Joule heat loss heats the connecting material 3 up to the temperature range of its PTC effect and lets it melt there in the connecting surface (ie vertically and perpendicular to the plane of the drawing in the figure). This results in a welded connection with the likewise melting outer most outer layers of the parts 1 and 2 to be connected . The slight pressure on the parts is maintained during cooling down to a temperature which is so far below the melting point of PEEK that parts 1 and 2 are stably connected.

Fig. 2 zeigt schematisch den Aufbau des Verbindungsmaterials 3. Es besteht aus zwei dünnen äußeren Kontaktschichten 7 und 8 aus Ag-gefülltem PEEK und einer PTC-Polymermaterialschicht 9 dazwischen aus Ruß-gefülltem PEEK. Fig. 2 shows schematically the structure of the compound material 3. It consists of two thin outer contact layers 7 and 8 made of Ag-filled PEEK and a PTC polymer material layer 9 between them made of soot-filled PEEK.

Die Kontaktschichten 7 und 8 sind jeweils nur am Rand mit den Stromzufüh­ rungskontakten 4 und 5 für den äußeren Stromkreislauf verbunden. Wegen der Ag-Pulverfüllung haben sie jedoch schon bei Raumtemperatur einen wesentlich geringeren spezifischen Widerstand als das PTC-Polymermaterial 9. Daher wird die von dem äußeren Stromkreislauf zur Verfügung gestellte elektrische Span­ nung im wesentlichen planar an die großen Begrenzungsflächen der PTC-Polymermaterialschicht 9 angelegt und die Strompfade durch die PTC-Polymermaterialschicht 9 entsprechend den (in der Figur waagerechten) direkten Wegen zwischen diesen beiden großen Begrenzungsflächen.The contact layers 7 and 8 are in each case connected only at the edge to the current supply contacts 4 and 5 for the external circuit. Because of the Ag powder filling, however, they already have a significantly lower specific resistance than the PTC polymer material 9 at room temperature. Therefore, the electrical voltage provided by the external circuit is applied essentially planar to the large boundary surfaces of the PTC polymer material layer 9 and the current paths through the PTC polymer material layer 9 corresponding to the (horizontal in the figure) direct paths between these two large boundary surfaces .

Darüber hinaus ist Ag ein "weiches" Füllmaterial und zeigt daher praktisch keinen nennenswerten PTC-Effekt (vergl. R. Strümpler, aaO). Dementsprechend ver­ stärkt sich der Unterschied zwischen den spezifischen Widerständen der Schich­ ten 7 und 8 einerseits und 9 andererseits extrem, wenn die PTC-Poly­ mermaterialschicht 9 bei zunehmender Erwärmung in den Bereich des PTC-Effekts gelangt. Die Kontaktschichten 7 und 8 wirken dann praktisch als Kurz­ schluß der großen Oberflächen.In addition, Ag is a "soft" filler and therefore shows practically no appreciable PTC effect (see R. Strümpler, loc. Cit.). Accordingly, the difference between the specific resistances of layers 7 and 8, on the one hand, and 9, on the other hand, increases extremely if the PTC polymer material layer 9 reaches the region of the PTC effect with increasing heating. The contact layers 7 and 8 then act practically as a short circuit of the large surfaces.

Da sie eine PEEK-Matrix aufweisen, stören diese Kontaktschichten 7 und 8 die Verschweißung der beiden zu verbindenden PEEK-Teile 1 und 2 in keiner Weise. Dadurch sind sie gegenüber alternativen Kontaktmöglichkeiten z. B. Metallnetzen oder Folien, Metallpasten oder leitfähigen Fremdpolymeren von deutlichem Vor­ teil, solange das Füllmaterial nicht stört und die Leitfähigkeit in Anbetracht der Abmessungen der Verbindungsfläche ausreicht.Since they have a PEEK matrix, these contact layers 7 and 8 in no way interfere with the welding of the two PEEK parts 1 and 2 to be connected. This makes them compared to alternative contact options such. B. metal nets or foils, metal pastes or conductive foreign polymers of clear before part, as long as the filler does not interfere and the conductivity is sufficient in view of the dimensions of the connection surface.

Geeignete PTC-Materialien für die PTC-Polymermaterialschicht 9 finden sich in der verschiedentlich zitierten Veröffentlichung von R. Strümpler (aaO), deren Of­ fenbarung hier durch in Bezugnahme mit eingeschlossen ist.Suitable PTC materials for the PTC polymer material layer 9 can be found in the variously cited publication by R. Strümpler (loc. Cit.), The disclosure of which is hereby incorporated by reference.

Bei dem in den Fig. 3, 4, 6 und 7 dargestellten zweiten Ausführungsbeispiel werden demgegenüber netzförmige Kontaktstrukturen 10 und 11 verwendet, die in Fig. 3 zusammen mit einer dazwischenliegenden PTC-Polymermateriallage 12 dargestellt sind. Fig. 3 zeigt die Lagen im getrennten Zustand in schemati­ scher Draufsicht. Die netzförmigen Kontaktstrukturen 10 und 11 bestehen aus Kohlenstoffasern und weisen an einem Rand einen angelöteten Metallkontakt 13 bzw. 14 auf. Diese Anschlüsse 13 und 14 sind in Fig. 3 an den schmalen Seiten der rechteckigen Verbindungsfläche eingezeichnet, können jedoch nach prakti­ schen Erwägungen an eine beliebige Stelle des Randes des Rechtecks gelegt werden.In contrast, in the second exemplary embodiment shown in FIGS. 3, 4, 6 and 7, network-shaped contact structures 10 and 11 are used, which are shown in FIG. 3 together with an intermediate PTC polymer material layer 12 . Fig. 3 shows the layers in the separated state in schematic plan view. The network-shaped contact structures 10 and 11 consist of carbon fibers and have a soldered-on metal contact 13 and 14 on one edge. These connections 13 and 14 are shown in Fig. 3 on the narrow sides of the rectangular connecting surface, but can be placed at any point on the edge of the rectangle after practical considerations.

Die PTC-Polymermaterialschicht 12 besteht aus PEEK mit einer Rußfüllung. Ruß ist als Füllstoff hier vorteilhaft, weil es einen ausreichend hohen Widerstand hat, damit nicht die größten Verluste in den Kontakten auftreten.The PTC polymer material layer 12 consists of PEEK with a soot filling. Soot is advantageous here as a filler because it has a sufficiently high resistance so that the greatest losses do not occur in the contacts.

In Fig. 4 ist die Struktur aus Fig. 3 in zusammengepreßtem Zustand zu sehen. Die Kohlenstoffaser-Kontaktstrukturen 10 und 11 werden einfach in die Polymer­ schicht 12 eingedrückt, wobei darauf zu achten ist, daß am Rand keine Kurz­ schlüsse entstehen. Die PTC-Polymermaterialschicht 12 sollte also etwas über­ stehen. Insgesamt zeigt Fig. 4 eine vorgefertigte Verbindungsmateriallage 15. FIG. 4 shows the structure from FIG. 3 in the compressed state. The carbon fiber contact structures 10 and 11 are simply pressed into the polymer layer 12 , taking care that no short circuits occur at the edge. The PTC polymer material layer 12 should therefore protrude somewhat. Overall, FIG. 4 shows a pre-bonding material layer 15.

Fig. 5 zeigt eine alternative Stromzuführungsstruktur gegenüber der in den Fig. 3 und 4 gezeigten Struktur. Dabei sind in einer Ebene zwei kammartige Lei­ terbahnen miteinander verzahnt angeordnet, so daß sich jeweils kurze Strecken zwischen den Leiterbahnen über eine größere rechteckige Fläche ergeben. Diese Struktur ist mechanisch weniger stabil als die aus den Fig. 3 und 4, hat je­ doch den Vorteil, daß sie nur auf einer Seite einer dünnen PTC-Poly­ mermaterialschicht aufgebracht werden muß. Sie könnte bei dem zweiten Ausführungsbeispiel ebenfalls verwendet werden. FIG. 5 shows an alternative power supply structure compared to the structure shown in FIGS. 3 and 4. Here, two comb-like Lei terbahnen are arranged interlocked with each other, so that there are short distances between the conductor tracks over a larger rectangular area. This structure is mechanically less stable than that of FIGS. 3 and 4, but has the advantage that it only has to be applied to one side of a thin PTC polymer material layer. It could also be used in the second embodiment.

Die Verbindungsmateriallage 15 aus Fig. 4 wird für ein in den Fig. 6 und 7 dargestelltes Verbindungsproblem verwendet. Fig. 6 zeigt eine Bodenplatte aus faserverstärktem Kunststoff, die im Schnitt A-A in Fig. 7 dargestellt ist. Sie be­ steht aus einer kohlenstoffaserverstärkten Oberplatte 16 und einer ebensolchen Unterplatte 17, die durch Doppel-T-trägerartige Zwischenprofile 18 verbunden sind.The connection material layer 15 from FIG. 4 is used for a connection problem shown in FIGS. 6 and 7. Fig. 6 shows a base plate made of fiber-reinforced plastic, which is shown in section AA in Fig. 7. It consists of a carbon fiber reinforced top plate 16 and a similar bottom plate 17 , which are connected by double T-beam-like intermediate profiles 18 .

Solche Bodenplatten werden als vorgefertigte Standardbauteile im Industriebau, bei Flughäfen und in anderen Bereichen der Bauindustrie verwendet und haben erhebliche Längenabmessungen von mehreren Metern in der Länge und in der Breite. Bei ihrer Herstellung müssen die Doppel-T-Profile 18 an den Verbin­ dungsstellen 19 mit der Oberseite des oberen T-Querschenkels und an den Ver­ bindungsstellen 20 mit der Unterseite des unteren T-Querschenkels jeweils mit der Oberplatte 16 bzw. der Unterplatte 17 verbunden werden. Durch die große Länge der Verbindungsflächen 19 und 20 in Richtung der Doppel-T-Profile 18 ergeben sich dabei große Schwierigkeiten mit den konventionellen Verfahren.Such floor slabs are used as prefabricated standard components in industrial construction, at airports and in other areas of the construction industry and have considerable length dimensions of several meters in length and width. In their manufacture, the double-T profiles 18 at the connec tion points 19 with the top of the upper T-cross leg and at the Ver connection points 20 with the underside of the lower T-cross leg are each connected to the top plate 16 and the bottom plate 17 . The large length of the connecting surfaces 19 and 20 in the direction of the double-T profiles 18 results in great difficulties with the conventional methods.

Insbesondere sind die Bodenplatten so groß, daß Induktionsschweißverfahren sehr große Induktionsspulen und damit einen erheblichen Kostenaufwand not­ wendig machen. Konventionelle Kunststoffschweißverfahren mit Widerstandshei­ zung konnten keine über die gesamte Fläche der Verbindungsflächen 19 und 20 gleichmäßig zufriedenstellenden Verbindungen herstellen. Andere Techniken, etwa Ultraschall- oder Vibrationsschweißen scheiden ebenfalls aus Gründen der Größe der Strukturen aus.In particular, the base plates are so large that induction welding processes make very large induction coils and thus a considerable expense necessary. Conventional plastic welding processes with resistance heating could not produce uniformly satisfactory connections over the entire area of the connecting surfaces 19 and 20 . Other techniques, such as ultrasonic or vibration welding, are also ruled out because of the size of the structures.

Erfindungsgemäß werden nun an den Verbindungsflächen 19 und 20 die in der Fig. 4 (vergleichsweise etwas verkürzt) dargestellten rechteckigen Verbin­ dungsmaterialschichten 15 zwischengelegt und über die Anschlüsse 13 und 14 geheizt, die bei diesem Beispiel vorteilhafterweise an den kürzeren Seiten der Verbindungsflächen 19 und 20 angeordnet und damit gut zugänglich sind.According to the invention, the rectangular connection material layers 15 shown in FIG. 4 (comparatively somewhat shortened) are now interposed at the connection surfaces 19 and 20 and heated via the connections 13 and 14 , which in this example are advantageously arranged on the shorter sides of the connection surfaces 19 and 20 and are therefore easily accessible.

Im Bereich des PTC-Effekts, d. h. bei PEEK bei 334°C, schmilzt die PTC-Polymermaterialschicht 12 in der Verbindungsmaterialschicht 15 auf, wobei der unmittelbar angrenzende Bereich der Oberplatte 16 bzw. der Unterplatte 17 mit angeschmolzen wird. Dabei ergibt sich eine innige Schweißverbindung zwischen den Doppel-T-Profilen 18 und den Platten 16 und 17, wobei die Kohlenstoffaser-Kon­ taktnetze 10 und 11 quasi eingegossen werden. Dabei stören sie die Qualität der hergestellten Verbindung praktisch nicht. Sie bieten im Gegenteil im Bereich der Verbindungsflächen 19 und 20 eine zusätzliche Verstärkung der Faserver­ stärkung der Platten 16 und 17. Insbesondere stellen sie trotz der Länge der Verbindungsflächen 19 und 20 einen niedrigen Widerstand zur Verfügung.In the area of the PTC effect, ie at PEEK at 334 ° C., the PTC polymer material layer 12 melts in the connecting material layer 15 , the immediately adjacent area of the top plate 16 and the bottom plate 17 also being melted on. This results in an intimate welded connection between the double-T profiles 18 and the plates 16 and 17 , the carbon fiber contact networks 10 and 11 being virtually cast in. They practically do not disturb the quality of the connection. On the contrary, they offer additional reinforcement of the fiber reinforcement of the plates 16 and 17 in the area of the connecting surfaces 19 and 20 . In particular, despite the length of the connecting surfaces 19 and 20, they provide a low resistance.

Insgesamt ergibt sich ein schnelles, einfaches und zuverlässiges Verbindungsver­ fahren, das ohne weiteres für sehr große geometrische Abmessungen der Ver­ bindungsflächen geeignet ist. Durch die verbesserte Festigkeit und Zuverlässig­ keit der Verbindungen an den Verbindungsflächen 19 und 20 ist die Stabilität der gesamten in Fig. 6 gezeigten Bodenplatte wesentlich verbessert.Overall, there is a fast, simple and reliable Verbindungsver driving, which is suitable for very large geometric dimensions of the connecting surfaces Ver. Due to the improved strength and reliability of the connections at the connecting surfaces 19 and 20 , the stability of the entire base plate shown in FIG. 6 is significantly improved.

Claims (12)

1. Verfahren zum Verbinden zumindest zweier Teile (1, 2, 16, 17) durch ein Verbindungsmaterial (3, 15),
wobei das Verbindungsmaterial (3, 15) ein Polymermaterial (9, 12) enthält und
die Verbindung durch Einwirkung Joulescher Verlustwärme elektrischer Ströme in dem Verbindungsmaterial (3, 15) hergestellt wird, dadurch gekennzeichnet, daß das Polymermaterial (9, 12) ein PTC-Polymermaterial ist und
daß die elektrischen Ströme die Joulesche Verlustwärme durch den durch den PTC-Effekt erzeugten Widerstand in dem PTC-Polymermaterial (9, 12) erzeugen.
1. Method for connecting at least two parts ( 1 , 2 , 16 , 17 ) using a connecting material ( 3 , 15 ),
wherein the connecting material ( 3 , 15 ) contains a polymer material ( 9 , 12 ) and
the connection is produced by the action of Joule heat loss from electrical currents in the connecting material ( 3 , 15 ), characterized in that the polymer material ( 9 , 12 ) is a PTC polymer material and
that the electrical currents generate the Joule heat loss through the resistance generated by the PTC effect in the PTC polymer material ( 9 , 12 ).
2. Verfahren nach Anspruch 1, bei dem die elektrischen Ströme durch Anlegen einer Spannung an das Verbindungsmaterial (3, 15) erzeugt werden.2. The method according to claim 1, wherein the electrical currents are generated by applying a voltage to the connecting material ( 3 , 15 ). 3. Verfahren nach Anspruch 2, bei dem das PTC-Polymermaterial (9, 12) eine Schicht zwischen zwei im Vergleich zu der Dicke der PTC-Polymermate­ rialschicht (9, 12) flächig ausgedehnten Kontaktflächen (7, 8) bildet.3. The method according to claim 2, wherein the PTC polymer material ( 9 , 12 ) forms a layer between two in comparison to the thickness of the PTC polymer material rialschicht ( 9 , 12 ) extensive contact surfaces ( 7 , 8 ). 4. Verfahren nach Anspruch 2 oder 3, bei dem die zu verbindenden Teile (1, 2, 16, 17) elektrisch leitfähig sind und zum Zuführen der elektrischen Ströme verwendet werden.4. The method according to claim 2 or 3, wherein the parts to be connected ( 1 , 2 , 16 , 17 ) are electrically conductive and are used to supply the electrical currents. 5. Verfahren nach Anspruch 2 oder 3, bei dem das Verbindungsmaterial (3, 15) Kohlenstoffasern (10, 11) enthält, die zur Zuleitung der elektrischen Ströme verwendet werden. 5. The method according to claim 2 or 3, wherein the connecting material ( 3 , 15 ) contains carbon fibers ( 10 , 11 ) which are used for supplying the electrical currents. 6. Verfahren nach Anspruch 1, bei dem die elektrischen Ströme durch Ein­ kopplung einer elektromagnetischen Welle in das Verbindungsmaterial (3, 15) erzeugt werden.6. The method according to claim 1, wherein the electrical currents are generated by coupling an electromagnetic wave into the connecting material ( 3 , 15 ). 7. Verfahren nach einem der vorstehenden Ansprüche, bei dem zumindest eines der zu verbindenden Teile (1, 2, 16, 17) aus einem Polymermaterial besteht.7. The method according to any one of the preceding claims, wherein at least one of the parts to be connected ( 1 , 2 , 16 , 17 ) consists of a polymer material. 8. Verfahren nach Anspruch 7, bei dem zumindest das Polymermaterial dieses Teils (1, 2, 16, 17) oder das Polymermaterial (9, 12) in dem Verbindungsma­ terial bei der Herstellung der Verbindung zumindest teilweise schmilzt.8. The method according to claim 7, wherein at least the polymer material of this part ( 1 , 2 , 16 , 17 ) or the polymer material ( 9 , 12 ) in the connection material at least partially melts in the production of the connection. 9. Verfahren nach Anspruch 7 oder 8, bei dem das Polymermaterial dieses Teils (1, 2, 16, 17) im wesentlichen dem Polymermaterial (9, 12) in dem Verbindungsmaterial (3, 15) gleich ist.9. The method according to claim 7 or 8, wherein the polymer material of this part ( 1 , 2 , 16 , 17 ) is substantially the same as the polymer material ( 9 , 12 ) in the connecting material ( 3 , 15 ). 10. Verfahren nach einem der vorstehenden Ansprüche, bei dem das PTC-Polymermaterial (9, 12) ein Hochtemperaturpolymer mit einer Temperatur des PTC-Effekts von mehr als 200°C ist.10. The method according to any one of the preceding claims, wherein the PTC polymer material ( 9 , 12 ) is a high temperature polymer with a temperature of the PTC effect of more than 200 ° C. 11. Verfahren nach einem der vorstehenden Ansprüche in Verbindung mit An­ spruch 2, bei dem das Verbindungsmaterial (3) an einer Außenseite eine Kontaktschicht (7, 8) aus einem leitfähigen Polymer mit gegenüber dem PTC-Polymer im Volumen des Verbindungsmaterials (3) höherer elektri­ scher Leitfähigkeit aufweist.11. The method according to any one of the preceding claims in connection with claim 2, in which the connecting material ( 3 ) on an outside of a contact layer ( 7 , 8 ) made of a conductive polymer with higher than the PTC polymer in the volume of the connecting material ( 3 ) has electrical conductivity. 12. Verfahren nach einem der vorstehenden Ansprüche in Verbindung mit An­ spruch 2, bei dem das Verbindungsmaterial (3) an einer Außenseite eine Kontaktschicht (7, 8) aus einem leitfähigen Polymer aufweist, das bei dem Verbindungsverfahren keinen PTC-Effekt oder einen schwächeren PTC-Effekt im Vergleich zum Volumen des Verbindungsmaterials (3) zeigt.12. The method according to any one of the preceding claims in conjunction with claim 2, in which the connecting material ( 3 ) on an outer side has a contact layer ( 7 , 8 ) made of a conductive polymer, which has no PTC effect or a weaker PTC in the connecting method -Effect compared to the volume of the connecting material ( 3 ) shows.
DE19805650A 1998-02-12 1998-02-12 Joining method using a PTC polymer Withdrawn DE19805650A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19805650A DE19805650A1 (en) 1998-02-12 1998-02-12 Joining method using a PTC polymer
PCT/FI1999/000105 WO1999041059A1 (en) 1998-02-12 1999-02-11 Joining method using a ptc polymer
AU24263/99A AU2426399A (en) 1998-02-12 1999-02-11 Joining method using a ptc polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19805650A DE19805650A1 (en) 1998-02-12 1998-02-12 Joining method using a PTC polymer

Publications (1)

Publication Number Publication Date
DE19805650A1 true DE19805650A1 (en) 1999-08-19

Family

ID=7857447

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19805650A Withdrawn DE19805650A1 (en) 1998-02-12 1998-02-12 Joining method using a PTC polymer

Country Status (3)

Country Link
AU (1) AU2426399A (en)
DE (1) DE19805650A1 (en)
WO (1) WO1999041059A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047465A1 (en) * 2005-09-30 2007-04-05 Conti Temic Microelectronic Gmbh Joining together two plastic parts, especially car key halves, comprises passing current through a conductor on a joining surface so that the surfaces adjacent to the conductor are melted and bonded together
DE102015205656A1 (en) * 2015-03-27 2016-09-29 Bayerische Motoren Werke Aktiengesellschaft Resistance element, component arrangement and method for resistance welding of thermoplastic components and composite component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895870B1 (en) * 2006-01-04 2011-10-28 Chomarat Composites TEXTILE COMPLEX
DE102019204472A1 (en) 2019-03-29 2020-10-01 Eberspächer Catem Gmbh & Co. Kg Heat-generating element and electrical heating device containing such

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543338A1 (en) * 1974-09-27 1976-04-15 Raychem Corp HEAT RECOVERABLE OBJECT FOR COVERING AND SEALING A LADDER CONNECTION
CH576326A5 (en) * 1974-12-06 1976-06-15 Fischer Ag Georg
US5137591A (en) * 1988-09-08 1992-08-11 Raychem Ltd. Conductive polymeric heater
WO1993019926A1 (en) * 1992-03-30 1993-10-14 United Technologies Corporation Heating means for thermoplastic bonding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543474A (en) * 1979-09-24 1985-09-24 Raychem Corporation Layered self-regulating heating article
US5470622A (en) * 1990-11-06 1995-11-28 Raychem Corporation Enclosing a substrate with a heat-recoverable article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543338A1 (en) * 1974-09-27 1976-04-15 Raychem Corp HEAT RECOVERABLE OBJECT FOR COVERING AND SEALING A LADDER CONNECTION
CH576326A5 (en) * 1974-12-06 1976-06-15 Fischer Ag Georg
US5137591A (en) * 1988-09-08 1992-08-11 Raychem Ltd. Conductive polymeric heater
WO1993019926A1 (en) * 1992-03-30 1993-10-14 United Technologies Corporation Heating means for thermoplastic bonding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047465A1 (en) * 2005-09-30 2007-04-05 Conti Temic Microelectronic Gmbh Joining together two plastic parts, especially car key halves, comprises passing current through a conductor on a joining surface so that the surfaces adjacent to the conductor are melted and bonded together
DE102015205656A1 (en) * 2015-03-27 2016-09-29 Bayerische Motoren Werke Aktiengesellschaft Resistance element, component arrangement and method for resistance welding of thermoplastic components and composite component

Also Published As

Publication number Publication date
AU2426399A (en) 1999-08-30
WO1999041059A1 (en) 1999-08-19

Similar Documents

Publication Publication Date Title
DE2543314C2 (en) Self-regulating electrical device
DE69934581T2 (en) COMPOSITE CIRCUIT PROTECTION DEVICE AND METHOD FOR THE PRODUCTION THEREOF
DE69434557T2 (en) Circuit protection device, electrical assembly and manufacturing process
EP0022919A2 (en) Method for the impregnation of tissues by resin injection
EP2984701B1 (en) Heat exchanger component
DE102006058198A1 (en) Electrically heated mold in plastic construction
DE10304761B4 (en) Flexible heating element
EP2839717A2 (en) Electric heating device, component and method for the production thereof
EP2005795B1 (en) Electrical heating element
DE102007058497A1 (en) Laminated multilayer printed circuit board
DE4009677C2 (en) Organic thermistor with positive temperature coefficient and process for its manufacture
DE19805650A1 (en) Joining method using a PTC polymer
DE102008036835A1 (en) Heating device and method for producing the heating device
EP1730996A1 (en) Electric fluid heater
DE102018215398A1 (en) Electric heater
EP3274154B1 (en) Component arrangement and method for resistance welding of thermoplastic components
DE4010743C2 (en) Organic thermistor with positive temperature coefficient
WO2007118498A1 (en) Heatable, shaped component part and method for producing such a component part and its use
WO2007031324A1 (en) Heating element arrangement
EP2144546B1 (en) Trolley for ready-to-eat meals
WO2011131174A2 (en) Method and device for hot forming and heat treatment of coated sheet metal
DE202015105146U1 (en) Polygonal spacer frames and spacer profiles for the production of such frames
DE3936218C2 (en) Method and device for welding and / or separating welding thermoplastic plastic films
EP1082876B1 (en) Device for heating media
DE102004045735B3 (en) Laminating press with refined steel plate as heating element in each press plate, with increasd heating power in edge regions of heating element

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee