DE19730509A1 - Energy recovery in air separation process - Google Patents

Energy recovery in air separation process

Info

Publication number
DE19730509A1
DE19730509A1 DE1997130509 DE19730509A DE19730509A1 DE 19730509 A1 DE19730509 A1 DE 19730509A1 DE 1997130509 DE1997130509 DE 1997130509 DE 19730509 A DE19730509 A DE 19730509A DE 19730509 A1 DE19730509 A1 DE 19730509A1
Authority
DE
Germany
Prior art keywords
liquid
feed mixture
vapor fraction
storage tank
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1997130509
Other languages
German (de)
Inventor
Siegfried Piehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE1997130509 priority Critical patent/DE19730509A1/en
Publication of DE19730509A1 publication Critical patent/DE19730509A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/08Internal refrigeration by flash gas recovery loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

An air separation process comprises passing liquefied gas into a storage vessel, and passing the resultant vapour (flash gas) through a heat exchanger which is used to cool the incoming air. Also claimed is the equipment required for the process.

Description

Die Erfindung betrifft ein Verfahren zur Gewinnung eines tiefkalten Flüssigprodukts aus einem Einsatzgemisch, wobei ein erster Flüssigstrom in einen Speichertank geleitet wird, aus dem das tiefkalte Flüssigprodukt sowie eine Dampffraktion abgezogen werden.The invention relates to a process for obtaining a cryogenic liquid product from a feed mixture, wherein a first liquid stream into a storage tank from which the cryogenic liquid product and a vapor fraction subtracted from.

Ein derartiger Prozeß ist aus der DE 43 03 771 A1 bekannt. Dort wird flüssiger Stickstoff durch Tieftemperaturzerlegung von Luft gewonnen und in einen Speichertank eingeführt. Dampf, der durch Wärmeeintrag in den Tank entsteht, wird aus dem Speichertank abgezogen. Obwohl durch die in der DE 43 03 771 A1 beschriebenen Maßnahmen die Verluste an Flüssigprodukt durch Verdampfen (Flashgas) bereits stark verringert werden, ist eine weitere Verbesserung der Wirtschaftlichkeit wünschenswert.Such a process is known from DE 43 03 771 A1. There it gets more fluid Nitrogen obtained by cryogenic decomposition of air and into one Storage tank introduced. Steam that is created by heat input into the tank is withdrawn from the storage tank. Although by DE 43 03 771 A1 described measures the losses of liquid product by evaporation (Flash gas) are already greatly reduced, is another improvement of Economics desirable.

Der Erfindung liegt daher die Aufgabe zugrunde, eine wirtschaftlich besonders günstiges Verfahren und eine entsprechende Vorrichtung zu finden.The invention is therefore based on the object, an economically particular to find favorable method and a corresponding device.

Diese Aufgabe wird dadurch gelöst, daß die Dampffraktion in indirektem Wärmetaustausch mit dem Einsatzgemisch angewärmt wird.This object is achieved in that the vapor fraction in indirect Heat exchange is warmed with the feed mixture.

Auf diese Weise wird die in der Dampffraktion enthaltene Kälte für das Verfahren zurückgewonnen.In this way, the cold contained in the vapor fraction for the process recovered.

Vorzugsweise wird das Einsatzgemisch verdichtet und gereinigt und anschließend dem indirekten Wärmetaustausch mit der Dampffraktion zugeführt.Preferably, the feed mixture is compacted and cleaned and then the indirect heat exchange with the vapor fraction supplied.

Bei dem Einsatzgemisch handelt es sich beispielsweise um atmosphärische Luft, bei dem tiefkalten Flüssigprodukt um flüssigen Stickstoff, flüssigen Sauerstoff oder flüssiges Argon.The feed mixture is, for example, atmospheric air at the cryogenic liquid product to liquid nitrogen, liquid oxygen or liquid argon.

Die Erfindung betrifft außerdem eine Vorrichtung gemäß den Patentansprüchen 5 bis 7. The invention also relates to a device according to claims 5 to 7.  

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.The invention and further details of the invention are described below an embodiment schematically shown in the drawing explained.

Atmosphärische Luft 29 wird verdichtet (30), in einer Molekularsiebanlage (31) gereinigt, tritt über Leitung 1 in das Hauptwärmetauschersystem 2 ein und wird dort im Gegenstrom zu Produktströmen auf etwa Taupunkt abgekühlt. Das Hauptwärmetauschersystem ist in dem Schema als ein Block dargestellt, kann aber in Wirklichkeit aus mehreren Wärmetauschern bestehen. Die kalte Luft wird einer Rektifikation zugeführt, und zwar mindestens zum Teil der Drucksäule 4, die über einen bei 6 angedeuteten Kondensator-Verdampfer mit einer Niederdrucksäule 5 verbunden ist.Atmospheric air 29 is compressed ( 30 ), purified in a molecular sieve unit ( 31 ), enters the main heat exchanger system 2 via line 1 , where it is cooled to about dewpoint in countercurrent to product streams. The main heat exchanger system is shown in the diagram as a block, but may in fact consist of several heat exchangers. The cold air is supplied to a rectification, at least in part, the pressure column 4 , which is connected via a indicated at 6 condenser-evaporator with a low-pressure column 5 .

Die Drucksäule wird unter einem Druck von 5,5 bis 6,5 bar, vorzugsweise etwa 6,0 bar betrieben. Sauerstoff angereicherte Sumpfflüssigkeit 7 und flüssiger Stickstoff 8 werden in die Niederdrucksäule 5 (1,25 bis 1,35 bar, vorzugsweise etwa 1,30 bar) weitergeleitet. Zusätzlich kann über die Leitungen 9 und 10 ein nicht dargestellter Stickstoffkreislauf zur Erzeugung der für die Produktverflüssigung benötigten Kälte angeschlossen sein. Über Leitung 9 kann außerdem gasförmiger Druckstickstoff als Produkt abgeführt werden.The pressure column is operated under a pressure of 5.5 to 6.5 bar, preferably about 6.0 bar. Oxygen-enriched bottom liquid 7 and liquid nitrogen 8 are passed on to the low-pressure column 5 (1.25 to 1.35 bar, preferably about 1.30 bar). In addition, via the lines 9 and 10, a nitrogen cycle, not shown, may be connected to generate the refrigeration required for the product liquefaction. Via line 9 can also be removed gaseous pressure nitrogen as a product.

Als Produkte können der Niederdrucksäule 5 gasförmiger Stickstoff 11, unreiner Stickstoff 12, gasförmiger Sauerstoff 13 und flüssiger Sauerstoff 14 entnommen werden. Das Stickstoffgas in den Produktgasleitungen 11 und 12 wird in einem Unterkühlungsgegenströmer 15 gegen die Zwischenproduktströme 7 und 8 aus der Drucksäule 4 und gegen flüssiges Sauerstoffprodukt 14 aus der Niederdrucksäule geführt und anschließend parallel zum Sauerstoffproduktgas 13 im Hauptwärmetauschersystem 2 auf etwa Umgebungstemperatur angewärmt.As products of the low pressure column 5 gaseous nitrogen 11 , impure nitrogen 12 , gaseous oxygen 13 and liquid oxygen 14 can be removed. The nitrogen gas in the product gas lines 11 and 12 is passed in a subcooling countercurrent 15 against the intermediate streams 7 and 8 from the pressure column 4 and against liquid oxygen product 14 from the low pressure column and then heated parallel to the oxygen product gas 13 in the main heat exchanger system 2 to about ambient temperature.

Der bereits erwähnte flüssige Stickstoff 8 aus der Drucksäule 4 wird in einen Abscheider 16 entspannt, der praktisch unter dem Druck der Niederdrucksäule 5 steht. (Der Druck im Abscheider 16 ist in der Regel ein bis einige hundertstel Bar höher als am Kopf der Niederdrucksäule, um ein ungehindertes Strömen der Fraktionen zu ermöglichen.) Die dampfförmige Fraktion aus dem Abscheider 16 wird dem gasförmigen Stickstoffprodukt 11 aus der Niederdrucksäule zugespeist (Leitung 17), während die flüssige Fraktion 18 zum einem Teil über Leitung 19 als Rücklauf auf die Niederdrucksäule 5 aufgegeben wird und zu einem anderen Teil die flüssige Stickstofffraktion 20 bildet, aus der das Flüssigprodukt gewonnen werden soll.The already mentioned liquid nitrogen 8 from the pressure column 4 is released into a separator 16 , which is practically below the pressure of the low-pressure column 5 . (The pressure in the separator 16 is usually one to a few hundredths of bar higher than at the top of the low pressure column to allow unimpeded flow of the fractions.) The vapor fraction from the separator 16 is fed to the gaseous nitrogen product 11 from the low pressure column (line 17 ), while the liquid fraction 18 is partly fed via line 19 as reflux to the low-pressure column 5 and to another part forms the liquid nitrogen fraction 20 , from which the liquid product is to be obtained.

Diese flüssige Stickstofffraktion 20 wird nicht direkt in den Speichertank 24 eingedrosselt, sondern zunächst unter einem geringfügig oberhalb des Tankdrucks liegenden Druck (0,05 bis 0,10, vorzugsweise etwa 0,07 bar über Atmosphärendruck) einem Zwischenabscheider 21 zugeführt. Der Druck im Zwischenabscheider 21 muß einerseits möglichst nahe beim Tankdruck liegen, um die Entstehung weiteren Flashgases stromabwärts des Zwischenabscheiders weitestgehend zu vermeiden; andererseits muß dieser Druck gerade hoch genug sein, um das Flashgas aus dem Zwischenabscheider über die Flashgasleitung 22 am Gegenströmer vorbei zu führen und auf etwa Umgebungstemperatur anwärmen zu können (hier im Hauptwärmetauscher 2). Da die Flashgasmenge in Leitung 22 sehr klein ist, kann ein relativ großer Rohrquerschnitt gewählt werden, ohne daß nennenswerte Mehrkosten entstünden. Dadurch reicht der geringe Überdruck des Zwischenabscheiders aus, um den Leitungswiderstand zu überwinden. Durch den indirekten Wärmetausch, hier mit zu zerlegender Luft, bleibt die im Flashgas 22 enthaltene Kälte im Verfahren; das erwärmte Flashgas kann an die Atmosphäre abgegeben werden.This liquid nitrogen fraction 20 is not throttled directly to the storage tank 24 but at a slightly initially located above the tank pressure pressure (0.05 to 0.10, preferably about 0.07 bar above atmospheric pressure) supplied to an intermediate separator 21st On the one hand, the pressure in the intermediate separator 21 must be as close as possible to the tank pressure in order to largely avoid the formation of further flash gas downstream of the intermediate separator; On the other hand, this pressure just has to be high enough to lead the flash gas from the intermediate separator over the flash gas line 22 past the countercurrent and to be able to warm to approximately ambient temperature (here in the main heat exchanger 2 ). Since the amount of flash gas in line 22 is very small, a relatively large tube cross-section can be selected without significant additional costs. As a result, the low overpressure of the intermediate separator is sufficient to overcome the line resistance. Due to the indirect heat exchange, here with air to be decomposed, the cold gas contained in the flash gas 22 remains in the process; the heated flash gas can be released to the atmosphere.

Der bei der Entspannung auf den Zwischenabscheiderdruck flüssig verbliebene Anteil (erster Flüssigstrom im Sinne der Patentansprüche) 23 der flüssigen Stickstofffraktion 20 braucht nun zur Einspeisung in den Speichertank 24 kaum mehr abgedrosselt werden. In Leitung 23 befindet sich lediglich ein Auslaß- beziehungsweise Absperrventil. Die Flashgasmenge, die für den Prozeß verlorengeht, ist damit äußerst gering. Die Gesamtverluste durch Verdampfen (aus dem Speichertank 24 abgezogene Dampffraktion 25) werden damit hauptsächlich von den Isolationsverlusten des vakuumisolierten Speichertanks 24 bestimmt; die Flashgasverluste sind nur noch weniger als halb so hoch wie die Isolationsverluste.The liquid which remains liquid during the expansion to the intermediate separator pressure (first liquid stream in the sense of the claims) 23 of the liquid nitrogen fraction 20 now no longer needs to be throttled for feeding into the storage tank 24 . In line 23 is only an outlet or shut-off valve. The amount of flash gas lost to the process is thus extremely low. The total losses due to evaporation (vapor fraction 25 withdrawn from the storage tank 24 ) are thus mainly determined by the insulation losses of the vacuum-insulated storage tank 24 ; the Flashgasverluste are only less than half as high as the insulation losses.

Erfindungsgemäß wird die Dampffraktion in indirekten Wärmetaustausch 27 mit der verdichteten und gereinigten Einsatzluft 32 gebracht und damit Kälte für den Zerlegungsprozeß zurückgewonnen.According to the invention, the vapor fraction is brought into indirect heat exchange 27 with the compressed and purified feed air 32 and thus recovered cold for the decomposition process.

Das hier beschriebene Ausführungsbeispiel geht von dem Verfahren der Fig. 1 der DE 43 03 771 A1 aus. Die Erfindung kann analog bei den übrigen Ausführungsbeispielen dieses Dokuments eingesetzt werden. The embodiment described here is based on the method of FIG. 1 of DE 43 03 771 A1. The invention can be used analogously to the other embodiments of this document.

Bei einem konkreten Zahlenbeispiel für das Ausführungsform der Zeichnung herrschen folgende Drücke:In a concrete numerical example of the embodiment of the drawing the following pressures prevail:

Kopf der Niederdrucksäule|1,28 barHead of the low-pressure column | 1,28 bar Gasraum des Abscheiders 16 Gas space of the separator 16 1,30 bar1.30 bar Gasraum des Zwischenabscheiders 21 Gas space of the intermediate separator 21 1,07 bar1.07 bar Gasraum des Speichertanks 24 Gas space of the storage tank 24 1,01 bar1.01 bar

Die Durchsatzmengen der Fraktionen sindThe flow rates of the fractions are

Zerlegungsluft 1 Decomposition air 1 16900 Nm3/h16900 Nm3 / h Flüssige Stickstofffraktion 20 Liquid nitrogen fraction 20 9100 Nm3/h9100 Nm3 / h Flüssigkeit 23 aus Zwischenabscheider 21 Liquid 23 from intermediate separator 21 8945 Nm3/h8945 Nm3 / h Flashgas 22 aus Zwischenabscheider 21 Flash gas 22 from intermediate separator 21 155 Nm3/h155 Nm3 / h Tankverluste (Leitung 25)Tank losses (line 25 ) 145 Nm3/h145 Nm3 / h davon: Flashverlusteof which: Flash losses 45 Nm3/h45 Nm3 / h Isolationsverlusteinsulation losses 100 Nm3/h100 Nm3 / h Stationäre Flüssigproduktion (26)Stationary liquid production ( 26 ) 8800 Nm3/h8800 Nm3 / h

Claims (7)

1. Verfahren zur Gewinnung eines tiefkalten Flüssigprodukts aus einem Einsatzgemisch (29, 32, 1), wobei ein erster Flüssigstrom (23) in einen Speichertank (24) geleitet wird, aus dem das tiefkalte Flüssigprodukt (26) sowie eine Dampffraktion (25) abgezogen werden, dadurch gekennzeichnet, daß die Dampffraktion (25) in indirektem Wärmetaustausch (27) mit dem Einsatzgemisch (32) angewärmt wird.A process for recovering a cryogenic liquid product from a feed mixture ( 29 , 32 , 1 ), wherein a first liquid stream ( 23 ) is passed into a storage tank ( 24 ) from which the cryogenic liquid product ( 26 ) and a vapor fraction ( 25 ) are withdrawn be characterized in that the vapor fraction ( 25 ) in indirect heat exchange ( 27 ) with the feed mixture ( 32 ) is warmed. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Einsatzgemisch (29) verdichtet (30) und gereinigt (32) und anschließend dem indirekten Wärmetaustausch (27) mit der Dampffraktion (25) zugeführt wird.2. The method according to claim 1, characterized in that the feed mixture ( 29 ) compacted ( 30 ) and cleaned ( 32 ) and then the indirect heat exchange ( 27 ) with the vapor fraction ( 25 ) is supplied. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Einsatzgemisch (29) durch atmosphärische Luft gebildet wird.3. The method according to claim 1 or 2, characterized in that the feed mixture ( 29 ) is formed by atmospheric air. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das tiefkalte Flüssigprodukt (26) durch flüssigen Stickstoff, flüssigen Sauerstoff oder flüssiges Argon gebildet wird.4. The method according to any one of claims 1 to 3, characterized in that the cryogenic liquid product ( 26 ) is formed by liquid nitrogen, liquid oxygen or liquid argon. 5. Vorrichtung zur Gewinnung eines tiefkalten Flüssigprodukts aus einem Einsatzgemisch (29, 32, 1) mit einem Speichertank (24) der eine Zuführleitung (23) für einen ersten Flüssigstrom, eine Flüssigkeitsleitung (26) zum Abziehen von tiefkaltem Flüssigprodukt und eine Gasleitung (25) zum Abziehen einer Dampffraktion aufweist, gekennzeichnet durch einen Wärmeaustauscher (27) zur Anwärmung der Dampffraktion (25) in indirektem Wärmetaustausch mit dem Einsatzgemisch (32).5. A device for obtaining a cryogenic liquid product from a feed mixture ( 29 , 32 , 1 ) with a storage tank ( 24 ) of a supply line ( 23 ) for a first liquid stream, a liquid line ( 26 ) for withdrawing cryogenic liquid product and a gas line ( 25 ) for removing a vapor fraction, characterized by a heat exchanger ( 27 ) for heating the vapor fraction ( 25 ) in indirect heat exchange with the feed mixture ( 32 ). 6. Vorrichtung nach Anspruch 5, gekennzeichnet durch eine Einsatzleitung (29, 32, 1), die durch einen Verdichter (30), eine Reinigungseinrichtung (31) und anschließend durch den Wärmeaustauscher (27) zur Anwärmung der Dampffraktion (25) in indirektem Wärmetaustausch mit dem Einsatzgemisch (32) führt.6. Apparatus according to claim 5, characterized by an insert line ( 29 , 32 , 1 ) by a compressor ( 30 ), a cleaning device ( 31 ) and then by the heat exchanger ( 27 ) for heating the vapor fraction ( 25 ) in indirect heat exchange with the feed mixture ( 32 ) leads. 7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Wärmeaustauscher (27) auf dem Dach des Speichertanks (24) angeordnet ist.7. Apparatus according to claim 5 or 6, characterized in that the heat exchanger ( 27 ) on the roof of the storage tank ( 24 ) is arranged.
DE1997130509 1997-07-16 1997-07-16 Energy recovery in air separation process Withdrawn DE19730509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1997130509 DE19730509A1 (en) 1997-07-16 1997-07-16 Energy recovery in air separation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997130509 DE19730509A1 (en) 1997-07-16 1997-07-16 Energy recovery in air separation process

Publications (1)

Publication Number Publication Date
DE19730509A1 true DE19730509A1 (en) 1998-03-12

Family

ID=7835908

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1997130509 Withdrawn DE19730509A1 (en) 1997-07-16 1997-07-16 Energy recovery in air separation process

Country Status (1)

Country Link
DE (1) DE19730509A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005722A1 (en) * 2000-02-09 2001-08-16 Linde Ag Low temperature decomposition of a hydrogen, methane and lower hydrocarbon stream comprises cooling and partial condensation of the reactant stream
CN114777012A (en) * 2022-04-22 2022-07-22 铜陵秦风气体有限公司 Oxygen safety recovery system based on liquid oxygen storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005722A1 (en) * 2000-02-09 2001-08-16 Linde Ag Low temperature decomposition of a hydrogen, methane and lower hydrocarbon stream comprises cooling and partial condensation of the reactant stream
CN114777012A (en) * 2022-04-22 2022-07-22 铜陵秦风气体有限公司 Oxygen safety recovery system based on liquid oxygen storage

Similar Documents

Publication Publication Date Title
EP1376037B1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
DE102007014643A1 (en) Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102009048456A1 (en) Method and apparatus for the cryogenic separation of air
EP2313724A2 (en) Process and device for cryogenic air fractionation
DE102008007925A1 (en) Separating helium, comprises condensing helium-containing fraction, separating into e.g. helium-enriched gas fraction, condensing the gas fraction, evaporating liquid fraction, separating into e.g. helium-rich gas fraction and heating
EP2322888B1 (en) Method and device for generating a helium-neon concentrate from air
WO2016058666A1 (en) Method and device for variably obtaining argon by means of low-temperature separation
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
DE202009004099U1 (en) Apparatus for the cryogenic separation of air
DE19730509A1 (en) Energy recovery in air separation process
EP1134524B1 (en) Process for producing gaseous nitrogen
EP1189001B1 (en) Process and apparatus for the production of high purity nitrogen through cryogenic air separation
EP1001236B1 (en) Process for producing ultra pure nitrogen
DE10015605A1 (en) Process and assembly for the production of xenon by cryogenic fractionated distillation of oxygen and xenon
DE10153919A1 (en) Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device
DE10332862A1 (en) Cryogenic assembly to extract krypton and/or xenon gas from air has intermediate pipe on the methane removal column alongside a base panel above the sump
DE1911765A1 (en) Method and device for the cryogenic separation of air
DE102010056569A1 (en) Method for recovery of pressurized nitrogen product in distilling column system, involves making secondary portion of vaporized/pseudo-vaporized nitrogen flow in indirect heat exchange with oxygen-enriched liquid of high pressure column
DE202008013445U1 (en) Apparatus for the cryogenic separation of air
EP3255366A1 (en) Method and device for generating a gaseous compressed oxygen product
DE10248656A1 (en) Krypton and/or xenon recovery by low temperature air decomposition is improved by passing the product-containing fraction to a separation column and drawing-off an enriched mixture from a lower section of this column
DE19725821A1 (en) Air separation process
WO2016128111A1 (en) Method for recovering helium
DE19623310A1 (en) Low pressure single column air sepn. plant

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
8139 Disposal/non-payment of the annual fee