DE19529547A1 - Verfahren zur Steuerung von Koordinatenmeßgeräten - Google Patents

Verfahren zur Steuerung von Koordinatenmeßgeräten

Info

Publication number
DE19529547A1
DE19529547A1 DE19529547A DE19529547A DE19529547A1 DE 19529547 A1 DE19529547 A1 DE 19529547A1 DE 19529547 A DE19529547 A DE 19529547A DE 19529547 A DE19529547 A DE 19529547A DE 19529547 A1 DE19529547 A1 DE 19529547A1
Authority
DE
Germany
Prior art keywords
point
coordinate measuring
points
data
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19529547A
Other languages
English (en)
Inventor
Ulrich Staaden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Carl Zeiss AG
Original Assignee
Carl Zeiss SMT GmbH
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH, Carl Zeiss AG filed Critical Carl Zeiss SMT GmbH
Priority to DE19529547A priority Critical patent/DE19529547A1/de
Priority to DE59603138T priority patent/DE59603138D1/de
Priority to EP96111911A priority patent/EP0762250B1/de
Priority to US08/693,632 priority patent/US5726917A/en
Publication of DE19529547A1 publication Critical patent/DE19529547A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34086At fixed periods pulses from table drive plural axis in unison
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34087Enter at fixed periods distances in counter for each axis, pulse distribution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34141B-spline, NURBS non uniform rational b-spline
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34175Overlap, between two blocks, continuous, smooth speed change, movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37443Program cmm, coordinate measuring machine, use cad data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43062Maximum acceleration, limit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43066Max centrifugal acceleration, especially for cmm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43129Speed as function of curvature, in curves, corners smaller than in straight line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43184From desired speed, derive delta positions during equal intervals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43203Limitation of speed, permissible, allowable, maximum speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung von Koordinatenmeßgeräten, bei dem der Tastkopf des Koordinatenmeßgeräts nach Solldaten gesteuert verfahren wird.
Ein solches Verfahren ist beispielsweise in der DE-PS 42 12 455 beschrieben. Bei diesem bekannten Verfahren werden die Geometriedaten von Geometrieelementen des Werkstücks von einem Rechner an die Steuerung des Koordinatenmeßgeräts übergeben, dort anschließend in das Maschinenkoordinatensystem transformiert und anschließend an einen Stützpunktgenerator in der Steuerung gegeben, der die Stützpunkte generiert, auf denen der Tastkopf des Koordinatenmeßgeräts dann gesteuert verfahren wird. Außerdem wird die Sollgeschwindigkeit, mit der die Werkstückoberfläche später abgetastet werden soll, als separate Information von dem Rechner an die Steuerung übergeben.
Dieses Vorgehen ist für einfache geometrische Elemente, die im wesentlichen mit einer einzigen vorgegebenen Geschwindigkeit abgefahren werden sollen, zweckmäßig. Schwierig wird es jedoch dann, wenn kompliziertere Werkstück-Geometrien abgefahren werden müssen und sich dabei die Abtastgeschwindigkeit laufend ändert, beispielsweise aufgrund wechselnder Krümmungen der Werkstückoberfläche. In einem solchen Falle ist es relativ aufwendig, den Geschwindigkeits-Sollwert dauernd neu an die Steuerung des Koordinatenmeßgeräts zu übertragen und in die Regelung einzubeziehen.
Es ist deshalb die Aufgabe der vorliegenden Erfindung ein Verfahren zur Steuerung von Koordinatenmeßgeräten zu schaffen, mit dessen Hilfe die Information über das Geschwindigkeitsprofil der Abtastbewegung möglichst schnell und einfach an die Steuerung übergeben und dort verarbeitet werden kann.
Diese Aufgabe wird mit den im Kennzeichen des Anspruchs 1 angegebenen Maßnahmen dadurch gelöst, daß Geometriedaten der Werkstückoberfläche aufbereitet werden, indem daraus Steuerdaten in Form von Punktfolgen generiert werden, wobei die Abstände bzw. die gegenseitigen Lagen der Punkte zueinander die Information über den gewünschten Verlauf der Geschwindigkeit (Geschwindigkeitsprofil) und der Beschleunigung (Beschleunigungsprofil) enthalten, mit dem das Koordinatenmeßgerät den Tastkopf verfährt und der Abstand der Punkte stets kleiner als ein vorgegebener erster Wert und die erste Ableitung der Punktabstände an jeder Stelle kleiner als ein vorgegebener zweiter Wert ist.
Bei dem erfindungsgemäßen Verfahren ist die Information über den Verlauf der Abtastgeschwindigkeit bereits in einer Folge von Punkten enthalten, die dann anschließend von der Steuerung nur noch in einem festen Zeittakt einzeln abgefahren werden müssen. Hierdurch wird der steuerungstechnische Aufwand verringert, der anderenfalls betrieben werden müßte, um die Geschwindigkeitsinformation separat zu den Geometriedaten zu verarbeiten. Die Steuerung kann deshalb auch schneller arbeiten.
Es ist zweckmäßig, die Steuerdaten im Rechner des Koordinatenmeßgeräts entsprechend aufzubereiten und blockweise an die Steuerung zu übergeben. Das hat insbesondere dann, wenn komplizierte Geometrien mit sehr großen Punktmengen abzufahren sind, den Vorteil, daß die Daten bereits vor dem Abtasten der Werkstückoberfläche Off-Line auf dem Rechner des Koordinaten­ meßgeräts aufbereitet werden können, so daß der anschließende Scanning-Vorgang durch diese Berechnungen dann nicht mehr belastet wird.
Vorteilhaft werden die Abstände der Punkte so gewählt, daß sich bei zeitgleichem Fortschreiten von Punkt zu Punkt ein stoß- und ruckfreier Bewegungsablauf ohne Sprünge im Geschwindigkeits- bzw. im Beschleunigungsprofil des Koordinatenmeßgeräts ergibt. Ein derartiges "weiches" Fahren vermeidet Schwingungen im Maschinenaufbau und trägt damit zu einer Erhöhung der Meßgenauigkeit bei.
Hierbei werden die Abstände zwischen den Punkten der Punktfolge der Steuerdaten so gewählt, daß das Geschwindigkeitsprofil eine stetig differenzierbare Funktion der Zeit ist, vorzugsweise ein Polynom dritten Grades darstellt.
Im Hinblick auf möglichst kurze Meßzeiten ist es weiterhin zweckmäßig, das Geschwindigkeitsprofil aus Abschnitten zusammenzusetzen, die einerseits einem Polynom höherer Ordnung entsprechen und andererseits einem konstanten Wert entsprechen, nämlich vorzugsweise der Maximalgeschwindigkeit des Koordinatenmeßgeräts.
Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Fig. 1-5 der beigefügten Zeichnungen.
Fig. 1 ist eine einfache Prinzipskizze, in der die wesentlichen Komponenten einer nach dem erfindungsgemäßen Verfahren arbeitenden Koordinatenmeßeinrichtung dargestellt sind;
Fig. 2 ist eine Skizze, die den Verlauf einer Abtastbahn zeigt, auf der sich der Taster (10) des KMG aus Fig. 1 bewegen soll;
Fig. 3 und Fig. 4 sind Diagramme, in denen der zurückgelegte Weg, das Beschleunigungsprofil und das Geschwindigkeitsprofil für ein nach dem erfindungsgemäßen Verfahren gesteuertes Koordinatenmeßgerät beispielhaft dargestellt sind;
Fig. 5 ist ein Flußdiagramm, das die auf dem Rechner des Koordinatenmeßgeräts beim Aufbereiten der Steuerdaten ablaufenden Programmschritte zeigt.
In Fig. 1 ist mit (1) der Rechner des Koordinatenmeßgeräts bezeichnet, der die wie noch nachstehend beschrieben wird, aufbereiteten Steuerdaten über eine Datenleitung (9) an die Steuerung (2) des Koordinatenmeßgeräts übergibt. Die Steuerung (2) ist mit den Antrieben (3) der Meßschlitten des Koordinatenmeßgeräts verbunden, von denen der Tastkopf (7) entsprechend den übergebenen Daten entlang der Oberfläche des Werkstücks (8) verfahren wird. Ebenfalls verbunden ist die Steuerung mit den Antrieben (6) im Innern des Tastkopfs, über die sich der Taststift (10) des Tastkopfs (7) auslenken läßt bzw. mit deren Hilfe die auf das Werkstück (8) ausgeübte Meßkraft eingestellt werden kann. Die Meßsysteme, von denen die Auslenkung des Taststifts (10) gemessen wird, sind mit (5) bezeichnet und der mit dem Bezugszeichen (4) versehene Block deutet die Wegmeßsysteme, d. h. Maßstäbe und Encoder an, über die die Position des Tastkopfs (7) an die Steuerung (2) rückgemeldet wird.
Eine ausführlichere Beschreibung einer solchen Steuerung findet sich in der eingangs genannten DE-PS 42 12 455 sowie in der korrespondierenden US-PS . . . , auf die an dieser Stelle ausdrücklich Bezug genommen wird.
Dem Rechner (1) sind nun beispielsweise von einer CAD-Anlage Geometriedaten übergeben worden, die die Sollform der Oberfläche des zu prüfenden Werkstücks (8) beschreiben. Die CAD-Daten sind in der Regel Punktdaten, wobei zu jedem Punkt außerdem eine Information über die Lage der Fläche an diesem Punkt in Form eines Normalenvektors beigegeben ist.
In Fig. 2 ist beispielhaft ein solcher Satz von Geometriedaten illustriert. Es sind dies die mit (G1, G2, G3 usw.) bezeichneten Kreuze, die entsprechend den Koordinaten (x, y, z) dieser Punkte eingezeichnet wurden, zusammen mit den zugehörigen Normalenvektoren (, , usw.). Zwischen diesen Punkten ist der Verlauf der Kontur des Werkstücks unbekannt.
Die erhaltenen Daten bereitet nun der Rechner (1) für die Steuerung (2) in folgender Weise auf:
Zuerst wird durch die Punkte (G1-Gn) ein Spline (SP), beispielsweise ein Bezier-Spline gelegt. Hierbei handelt es sich um Funktionen dritten Grades, für die gilt, daß die Funktionswerte und ihre ersten und zweiten Ableitungen an den Stützstellen übereinstimmen. Außerdem sollen die Enden des Splines keine Krümmung aufweisen. Ein solcher Spline verbindet zwar die Punkte (G1-Gn) der Geometriedaten, folgt aber natürlich nicht exakt der Kontur des Werkstücks, da diese wie bereits erwähnt zwischen den Punkten ja nicht bekannt ist.
Anschließend werden im Rechner (1) die Punkte (S1-Sm) generiert, die dann Solldaten darstellen, anhand derer die Steuerung (2) den Tastkopf (7) auf seiner Bahn entlang der Werkstückoberfläche steuert. Dabei wird davon ausgegangen, daß die Steuerung die Punktfolge der Solldaten später so abfährt, daß im festen Maschinentakt von z. B. 10 msec. von einem Punkt zum anderen gefahren wird. Somit läßt sich über den Abstand der Punkte das Beschleunigungsprofil und das Geschwindigkeitsprofil des Koordinatenmeßgeräts vorgeben. Diese Profile werden nun so gewählt, daß das Koordinatenmeßgerät weich, d. h. stoß- und ruckfrei auf der vorgegebenen Bahn fährt. Um das zu erreichen, wird folgendermaßen vorgegangen:
Man geht davon aus, daß sich die Bewegung des Tastkopfs (7) beim Abarbeiten einer Meßaufgabe in drei Bewegungsarten einteilen läßt:
  • 1. eine Beschleunigungsphase,
  • 2. eine gleichförmige Bewegung mit konstanter Geschwindigkeit,
  • 3. und eine Verzögerungsphase.
Um einen stetig differenzierbaren Übergang der Geschwindigkeit von einer Bewegungsart zur anderen zu erreichen und Sprünge im Beschleunigungsprofil und im Geschwindigkeitsprofil zu vermeiden (stoß- und ruckfreier Betrieb), setzt man die Geschwindigkeit als Polynom dritter Ordnung an, so daß gilt
v(t) = b₁t³ + b₂t² + b₃t + b₄ (Gl. 1)
Daraus ergibt sich für die Beschleunigung:
a(t) = 3b₁t² + 2b₂t + b₃ (Gl. 2)
Für den Weg x (t) gilt dann
x(t) = ¼ b₁t⁴ + ¹/₃ b₂t³ + ½ b₃t² + b₄t + b₅ (Gl. 3)
Die Koeffizienten für diese Gleichungen ergeben sich aus den Randbedingungen. So ist beim Anfahren aus dem Stillstand der Startpunkt bekannt. In diesem Startpunkt ist außerdem die Geschwindigkeit v = 0. Außerdem dürfen die Beschleunigung (a) und die Geschwindigkeit (v) bestimmte Maximalwerte (amax) und (vmax) nicht überschreiten, die für die Antriebe des Koordinatenmeßgeräts vorgegeben werden.
Setzt man für das Geschwindigkeitsprofil die beschriebene Funktion an, so erlaubt die Metrik ein beliebiges Aneinanderfügen der Bewegungsarten in der Weise, daß der Geschwindigkeitsverlauf immer stetig differenzierbar bleibt, die Bewegung also stoß- und ruckfrei verläuft.
Die Fig. 3 stellt den Verlauf der Funktionen x(t), v(t) und a(t) dar, wenn die Bewegung in einem ganz einfachen Falle aus der Beschleunigung vom Stand aus auf einen vorgegebenen Geschwindigkeitswert und anschließend dem Wiederabbremsen in den Stillstand besteht. In Fig. 4 ist der Fall dargestellt, daß zwischen der Beschleunigungs- und der Bremsphase eine Bewegungsphase mit gleichförmiger Geschwindigkeit zwischengeschaltet ist. Denn im allgemeinen möchte man, daß das Koordinatenmeßgerät dort, wo möglich, mit maximaler Geschwindigkeit fährt, aber die maximal zulässige Beschleunigung nie überschreitet. Aus Fig. 4 ist ersichtlich, daß auch für diesen Fall die Beschleunigung einen stetigen Verlauf ohne Sprünge besitzt.
Würde man jetzt im wesentlichen entlang einer geradlinigen Abtastbahn steuern müssen, so würde man auf dem wie zuvor anhand von Fig. 2 erläuterten Spline (SP) die Abstände der Solldaten entsprechend dem Geschwindigkeitsprofil nach Fig. 3 oder Fig. 4 wählen, d. h. das von der Steuerung zu fahrende Geschwindigkeitsprofil würde über die Punktabstände der Sollpunkte codiert werden.
Bei gekrümmten Bahnen ist der Sachverhalt jedoch nicht so einfach. Denn aufgrund der Krümmung treten beim Durchfahren der Bahn Zentrifugalkräfte senkrecht zur Bahn und somit im wesentlichen parallel zu der Flächennormalen auf die Werkstückoberfläche auf. Die zugehörige Zentrifugalbeschleunigung darf ebenfalls vorgegebene maximale Werte nicht überschreiten. Dies kann nur so sichergestellt werden, indem die Bahngeschwindigkeit abhängig vom Krümmungsradius an der momentanen Position entsprechend limitiert bzw. zurückgenommen wird. Da für die Zentrifugalbeschleunigung gilt
az = v²/r (Gl. 4),
gilt für die maximal erlaubte Geschwindigkeit an irgendeiner Stelle i auf dem Spline
Es ist somit möglich, auch bei gekrümmten Bahnen mit Hilfe der Beziehung nach (5) und den übrigen genannten Nebenbedingungen auf dem Spline (SP) in Fig. 2 neue Punkte (S1, S2, . . . , Sm) zu generieren, deren Abstände den momentanen jeweiligen optimalen Geschwindigkeitsverlauf codieren. An den Stellen starker Krümmung der zu steuernden Bahn (das ist die durch den Pfeil K angedeutete Stelle) liegen die neu generierten Punkte entsprechend dichter, was bedeutet, daß dort langsamer gefahren werden muß, um die Zentrifugalkräfte gering zu halten.
Es ist nun außerdem noch erforderlich, für die neugenerierten Punkte die jeweiligen Flächennormalen auf die Werkstückkontur zu interpolieren. Hier geht man so vor, daß ein Satz von Hilfspunkten (H1, H2, H3, . . . , Hn) aus den Punkten (G1, G2, . . . , Gn) generiert wird, für die gilt:
Durch diese Punkte läßt sich wie durch die gestrichelte Linie angedeutet ist, ein Hilfs-Spline (HS) legen. Auf diesem Hilfs- Spline müssen dann auch die Enden der den Punkten (S1-Sm) zugeordneten neu berechneten Normalenvektoren (, , . . . , ) liegen.
Mit den vorstehend beschriebenen Ansätzen und Nebenbedingungen ist der Rechner (1) in der Lage, die Punktfolge der Steuerdaten (S1, . . . , Sm) samt den diesen Punkten zugeordneten Normalenvektoren (-) aus den von z. B. einem CAD-System erhaltenen Geometriedaten (G1-Gn, -) zu bestimmen. Die so aufbereiteten Solldaten werden anschließend blockweise beispielsweise in Blöcken von jeweils zehn Punkten in einem durch den Bus (9) bedingten, langsameren Takt von 100 msec. an die Steuerung (2) übergeben und dort wie vorstehend beschrieben abgefahren.
Der vorstehend erläuterte Ablauf ist in dem Flußdiagramm nach Fig. 5 nochmals übersichtlich dargestellt. Die Steuerung (2) fährt anschließend in ihrem Zeittakt (T₁) von z. B. 10 msec. die übergebenen Punkte einzeln ab, wodurch der in der Punktfolge codierte Bewegungsablauf in die Bewegung des Tastkopfs (7) umgesetzt wird.

Claims (11)

1. Verfahren zur Steuerung von Koordinatenmeßgeräten, bei dem der Tastkopf (7) des Koordinatenmeßgeräts nach Solldaten gesteuert verfahren wird, dadurch gekennzeichnet, daß die Geometriedaten (G1-Gn) der zu vermessenden Werkstückober­ fläche (8) aufbereitet werden, indem daraus Steuerdaten (S1-Sm) in Form von Punktfolgen generiert werden, wobei die Abstände der Punkte der Folge zueinander die Information über den gewünschten Verlauf der Geschwindigkeit (V(t)) (Geschwindigkeitsprofil) und der Beschleunigung (a(t)) (Beschleunigungsprofil) enthalten, mit der das Koordi­ natenmeßgerät den Tastkopf (7) verfährt, und der Abstand der Punkte stets kleiner als ein vorgegebener erster Wert (vmax) und die erste Ableitung der Punktabstände an jeder Stelle kleiner als ein vorgegebener zweiter Wert (amax) ist.
2. Verfahren nach Anspruch 1, wobei die aufbereiteten Punkte (G1-Gn) von der Steuerung in einem festen Zeittakt (T₁) einzeln abgefahren werden.
3. Verfahren nach Anspruch 1, wobei die Steuerdaten im Rechner (1) des Koordinatenmeßgeräts aufbereitet werden und blockweise an die Steuerung (2) des Koordinaten­ meßgeräts übergeben werden.
4. Verfahren nach Anspruch 1, wobei die Abstände (di) der Punkte (S1-Sm) so gewählt werden, daß sich bei zeit­ gleichem Fortschreiten von Punkt zu Punkt ein stoß- und ruckfreier Bewegungsverlauf ohne Sprünge im Geschwindigkeitsprofil (v(t)) und ohne Sprünge im Beschleunigungsprofil (a (t)) des Koordinatenmeßgeräts ergibt.
5. Verfahren nach Anspruch 4, wobei die Abstände so gewählt sind, daß das Geschwindigkeitsprofil (v(t)) eine stetig differenzierbare Funktion der Zeit (t) ist.
6. Verfahren nach Anspruch 5, wobei das Geschwindigkeitsprofil (v(t)) ein Polynom dritten Grades darstellt.
7. Verfahren nach Anspruch 6, wobei das Polynom höheren Grades abschnittsweise einen konstanten Wert besitzt, der vorzugsweise der Maximalgeschwindigkeit (vmax) des Koordinatenmeßgeräts entspricht.
8. Verfahren nach einem der Ansprüche 1-7, wobei die Abstände (d) der Punkte (S1-Sm) so gewählt sind, daß bei zeitgleichem Fortschreiten von Punkt zu Punkt weder der zulässige Maximalwert der Geschwindigkeit (vmax) des Koordinatenmeßgeräts noch die zulässige maximale Beschleunigung (amax) des Koordinatenmeßgeräts überschritten wird.
9. Verfahren nach Anspruch 8, wobei dann, wenn die Punkte (S1-Sm) auf einer gekrümmten Bahn liegen, die Punktabstände in Fahrtrichtung so gewählt werden, daß die Zentrifugalkräfte bzw. Zentrifugalbeschleunigungen vorgegebene Werte (azmax) nicht überschreiten.
10. Verfahren nach einem der Ansprüche 1-9, wobei die Geometriedaten eine erste Folge von Stützpunkten (G1-Gn) sind, wobei weiterhin durch die Punkte dieser ersten Punktfolge eine Splinefunktion gelegt wird und anschließend die zweite Punktfolge der Steuerdaten als auf diesem Spline liegende Punkte (S1-Sm) generiert wird.
11. Verfahren nach Anspruch 10, wobei die Geometriedaten CAD-Daten sind, von denen eine Werkstückoberfläche punktweise beschrieben ist und die eine Information (-) über die Flächennormale an dem jeweiligen Punkt (G1-Gn) beinhalten.
DE19529547A 1995-08-11 1995-08-11 Verfahren zur Steuerung von Koordinatenmeßgeräten Withdrawn DE19529547A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19529547A DE19529547A1 (de) 1995-08-11 1995-08-11 Verfahren zur Steuerung von Koordinatenmeßgeräten
DE59603138T DE59603138D1 (de) 1995-08-11 1996-07-24 Verfahren zur Steuerung von Koordinatenmessgeräten
EP96111911A EP0762250B1 (de) 1995-08-11 1996-07-24 Verfahren zur Steuerung von Koordinatenmessgeräten
US08/693,632 US5726917A (en) 1995-08-11 1996-08-09 Method for controlling a coordinate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19529547A DE19529547A1 (de) 1995-08-11 1995-08-11 Verfahren zur Steuerung von Koordinatenmeßgeräten

Publications (1)

Publication Number Publication Date
DE19529547A1 true DE19529547A1 (de) 1997-02-13

Family

ID=7769247

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19529547A Withdrawn DE19529547A1 (de) 1995-08-11 1995-08-11 Verfahren zur Steuerung von Koordinatenmeßgeräten
DE59603138T Expired - Lifetime DE59603138D1 (de) 1995-08-11 1996-07-24 Verfahren zur Steuerung von Koordinatenmessgeräten

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59603138T Expired - Lifetime DE59603138D1 (de) 1995-08-11 1996-07-24 Verfahren zur Steuerung von Koordinatenmessgeräten

Country Status (3)

Country Link
US (1) US5726917A (de)
EP (1) EP0762250B1 (de)
DE (2) DE19529547A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020777A2 (de) * 1999-01-12 2000-07-19 Carl Zeiss Koordinatenmessgerät
WO2002069061A1 (de) * 2001-02-23 2002-09-06 Carl Zeiss Vorrichtung zur erzeugung eines messablaufes
DE10050795C2 (de) * 1999-12-23 2002-11-07 Klingelnberg Gmbh Verfahren und Vorrichtung zum Scannen auf einem Koordinatenmessgerät
EP1826528A1 (de) * 2006-02-28 2007-08-29 Mitutoyo Corporation Bildmesssystem, Bildmessverfahren und Bildmessprogramm
DE102006019382A1 (de) * 2006-04-24 2007-10-25 Carl Zeiss Industrielle Messtechnik Gmbh Scanning einer Oberfläche mit einem Koordinatenmessgerät
DE102009060932A1 (de) * 2009-12-23 2011-09-01 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Bestimmen von Raumkoordinaten
DE102004038416B4 (de) * 2004-07-30 2014-02-06 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Bestimmen von Raumkoordinaten eines Messpunktes an einem Messobjekt sowie entsprechendes Koordinatenmessgerät
DE102013101931A1 (de) 2013-02-27 2014-08-28 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Vermessen eines Werkstücks
WO2016169589A1 (de) * 2015-04-21 2016-10-27 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und vorrichtung zum bestimmen von dimensionellen ist-eigenschaften eines messobjekts
DE102019110508A1 (de) * 2019-04-23 2020-10-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Steuern eines Koordinatenmessgerätes und Koordinatenmessgerät
DE102021125542A1 (de) 2021-10-01 2023-04-06 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Steuern einer Messvorrichtung und Messvorrichtung

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525592A1 (de) * 1995-07-13 1997-01-16 Zeiss Carl Fa Verfahren zur Koordinatenmessung an Werkstücken
EP0849653B1 (de) * 1996-12-21 2004-04-28 Carl Zeiss Verfahren zur Steuerung eines Koordinatenmessgerätes und Koordinatenmessgerät
DE19712029A1 (de) * 1997-03-21 1998-09-24 Zeiss Carl Fa Verfahren zur Steuerung von Koordinatenmeßgeräten nach Solldaten
JP3199684B2 (ja) * 1998-07-17 2001-08-20 政人 石井 測定装置
DE19846426A1 (de) * 1998-10-08 2000-04-13 Open Mind Software Technologie Verfahren zum Steuern der Arbeitsbewegung eines Werkzeugs zur materialabtragenden Bearbeitung eines Materialblocks
US6810597B2 (en) * 1999-04-08 2004-11-02 Renishaw Plc Use of surface measuring probes
US6470587B1 (en) 1999-07-09 2002-10-29 Vought Aircraft Industries, Inc. Method and system for part measurement and verification
GB0210990D0 (en) * 2002-05-14 2002-06-19 Rolls Royce Plc Method of generating an inspection program and method of generating a visual display
GB0508273D0 (en) * 2005-04-25 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
GB0508217D0 (en) * 2005-04-25 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
DE102005032749A1 (de) 2005-07-13 2007-01-18 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Antasten eines Werkstücks mit einem Koordinatenmessgerät und Koordinatenmessgeräte
GB0707720D0 (en) * 2007-04-23 2007-05-30 Renishaw Plc Apparatus and method for controlling or programming a measurement routine
GB0716218D0 (en) 2007-08-20 2007-09-26 Renishaw Plc Measurement path generation
KR101426360B1 (ko) * 2010-09-13 2014-08-13 헥사곤 테크놀로지 센터 게엠베하 표면 스캐닝 좌표 측정 기계를 제어하기 위한 방법 및 장치
JP6063161B2 (ja) 2012-07-20 2017-01-18 株式会社ミツトヨ 形状測定装置及び形状測定装置の制御方法
DE102013207116B4 (de) 2013-04-19 2019-01-31 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zur Steuerung eines Koordinatenmessgeräts
JP6157953B2 (ja) * 2013-06-27 2017-07-05 株式会社ミツトヨ 三次元形状測定システム及びその制御用ソフトウェア
WO2015058147A1 (en) 2013-10-17 2015-04-23 Plethora Corporation Method for quoting part production
US9367063B2 (en) 2013-10-17 2016-06-14 Plethora Corporation Method for implementing design-for-manufacturability checks
WO2016018717A1 (en) 2014-07-29 2016-02-04 Plethora Corporation System and method for automated object measurement
KR20160020918A (ko) 2014-08-14 2016-02-24 삼성전자주식회사 적응형 컴퓨터 보조 진단 장치 및 방법
US11185985B2 (en) * 2015-01-05 2021-11-30 Bell Helicopter Textron Inc. Inspecting components using mobile robotic inspection systems
CN109682826B (zh) * 2019-01-17 2023-07-21 东莞市三姆森光电科技有限公司 用于弧面外观检测的机器视觉系统及检测方法
CN110421406B (zh) * 2019-07-14 2021-04-20 深圳市烨嘉为技术有限公司 基于偏心差控制的刀具动态自适应补偿方法
DE102021102619A1 (de) 2021-02-04 2022-08-04 Carl Zeiss Industrielle Messtechnik Gmbh Steuereinheit und steuerungsverfahren
DE102022110546A1 (de) 2022-04-29 2023-11-02 Carl Zeiss Industrielle Messtechnik Gmbh Steuereinheit und Steuerungsverfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523188A1 (de) * 1985-06-28 1987-01-08 Zeiss Carl Fa Steuerung fuer koordinatenmessgeraete
DE3623602A1 (de) * 1986-07-12 1988-01-14 Zeiss Carl Fa Steuerung fuer koordinatenmessgeraete
GB8618152D0 (en) * 1986-07-25 1986-09-03 Renishaw Plc Co-ordinate measuring
US4866643A (en) * 1987-10-09 1989-09-12 Brown & Sharpe Manufacturing Company Method for automatic compensation of probe offset in a coordinate measuring machine
DE3842151A1 (de) * 1988-12-15 1990-06-21 Zeiss Carl Fa Tastkopf vom schaltenden typ
DE3908844A1 (de) * 1989-03-17 1990-09-20 Siemens Ag Numerische steuerung fuer werkzeugmaschinen oder roboter
DE58906600D1 (de) * 1989-09-11 1994-02-10 Siemens Ag Verfahren zum Betrieb einer numerisch gesteuerten Werkzeugmaschine oder eines Roboters.
GB9013744D0 (en) * 1990-06-20 1990-08-08 Renishaw Plc Measurement of a workpiece
JP2809295B2 (ja) * 1992-03-26 1998-10-08 株式会社東京精密 座標測定機及びその測定方法
DE4245012B4 (de) * 1992-04-14 2004-09-23 Carl Zeiss Verfahren zur Messung von Formelementen auf einem Koordinatenmeßgerät
DE4336863C2 (de) * 1993-10-28 1998-01-22 Zeiss Carl Fa Verfahren zur Steuerung von Koordinatenmeßgeräten

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020777A3 (de) * 1999-01-12 2006-06-28 Carl Zeiss Industrielle Messtechnik GmbH Koordinatenmessgerät
EP1020777A2 (de) * 1999-01-12 2000-07-19 Carl Zeiss Koordinatenmessgerät
DE10050795C2 (de) * 1999-12-23 2002-11-07 Klingelnberg Gmbh Verfahren und Vorrichtung zum Scannen auf einem Koordinatenmessgerät
WO2002069061A1 (de) * 2001-02-23 2002-09-06 Carl Zeiss Vorrichtung zur erzeugung eines messablaufes
DE102004038416B4 (de) * 2004-07-30 2014-02-06 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Bestimmen von Raumkoordinaten eines Messpunktes an einem Messobjekt sowie entsprechendes Koordinatenmessgerät
EP1826528A1 (de) * 2006-02-28 2007-08-29 Mitutoyo Corporation Bildmesssystem, Bildmessverfahren und Bildmessprogramm
US7822230B2 (en) 2006-02-28 2010-10-26 Mitutoyo Corporation Image measuring system, image method and computer readable medium storing image measuring program having a nonstop measuring mode for setting a measurement path
DE102006019382A1 (de) * 2006-04-24 2007-10-25 Carl Zeiss Industrielle Messtechnik Gmbh Scanning einer Oberfläche mit einem Koordinatenmessgerät
US7644507B2 (en) 2006-04-24 2010-01-12 Carl Zeiss Industrielle Messtechnik Gmbh Method for scanning a surface with the aid of a coordinate measuring machine and coordinate measuring machine
DE102009060932A1 (de) * 2009-12-23 2011-09-01 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Bestimmen von Raumkoordinaten
DE102009060932B4 (de) * 2009-12-23 2011-09-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Bestimmen von Raumkoordinaten
DE102013101931A1 (de) 2013-02-27 2014-08-28 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Vermessen eines Werkstücks
DE102013101931B4 (de) 2013-02-27 2022-02-03 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Vermessen eines Werkstücks
WO2016169589A1 (de) * 2015-04-21 2016-10-27 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und vorrichtung zum bestimmen von dimensionellen ist-eigenschaften eines messobjekts
US10767988B2 (en) 2015-04-21 2020-09-08 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for determining actual dimensional properties of a measured object
DE102019110508A1 (de) * 2019-04-23 2020-10-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Steuern eines Koordinatenmessgerätes und Koordinatenmessgerät
US11441891B2 (en) 2019-04-23 2022-09-13 Carl Zeiss Industrielle Messtechnik Gmbh Coordinate measuring machine and method for controlling a coordinate measuring machine
DE102021125542A1 (de) 2021-10-01 2023-04-06 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Steuern einer Messvorrichtung und Messvorrichtung

Also Published As

Publication number Publication date
EP0762250A1 (de) 1997-03-12
DE59603138D1 (de) 1999-10-28
EP0762250B1 (de) 1999-09-22
US5726917A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
DE19529547A1 (de) Verfahren zur Steuerung von Koordinatenmeßgeräten
EP1963935B1 (de) Ermittlungsverfahren für eine lagegeführt abzufahrende grobbahn
EP0866390B1 (de) Verfahren zur Steuerung von Koordinatenmessgeräten nach Solldaten
DE60123379T2 (de) Numerisch gesteuerte Bearbeitungseinheit für gekrümmte Flächen
DE69826808T2 (de) Maschinensteuerung
DE102013011684B4 (de) Numerische Steuervorrichtung, die eine Einfügeeinheit für Ecken mit mehreren Kurven umfasst
DE4245012B4 (de) Verfahren zur Messung von Formelementen auf einem Koordinatenmeßgerät
DE102009048252B4 (de) In eine numerisch gesteuerte Maschine eingebaute Kollisionsverhinderungsvorrichtung
DE19618332A1 (de) Numerische Steuervorrichtung mit Spline-Interpolationsfunktion
EP2156252B1 (de) Mess- oder werkzeugmaschine mit redundanten translatorisch wirksamen achsen zur kontinuierlichen bewegung an komplexen bahnkurven
EP0762247B1 (de) Koordinatenmessgerät mit einer Steuerung, die den Tastkopf des Messgeräts nach Solldaten verfährt
DE102018007773A1 (de) Numerisches Steuergerät
DE102012101979A1 (de) Verfahren und Vorrichtung zur Erzeugung einer Relativbewegung
EP3818420B1 (de) Zeitoptimierte bewegungsführung zwischen bahnabschnitten
DE10255585A1 (de) Verfahren zum Bestimmen zulässiger Geschwindigkeit eines Objektes und Steuern des Objektes
EP0706103B1 (de) Verfahren und Vorrichtung zur numerischen Bahnsteuerung von Werkzeugmaschinen oder Robotern
DE60225137T2 (de) Robotergeräte
DE112016007167T5 (de) Numerische Steuervorrichtung
DE102016008043A1 (de) Zum Kompensieren von Fehlern unter Berücksichtigung einer Achsbewegungsrichtung fähiger numerischer Controller
DE2461812C2 (de) Elektrisch gesteuerte Kopierwerkzeugmaschine
EP0417337B1 (de) Verfahren zum Betrieb einer numerisch gesteuerten Werkzeugmaschine oder eines Roboters
EP0836128B1 (de) Steuerungsverfahren zur Bewegungsführung einer numerisch gesteuerten industriellen Bearbeitungsmaschine
DE102017011602A1 (de) Numerische Steuerung
EP0643343B1 (de) Verfahren zur numerischen Bahnsteuerung von mehrachsigen Maschinen
DE102007010580A1 (de) Vorrichtung zur Bewegung einer Arbeitsplattform einer Bearbeitungsmaschine sowie Verfahren zur Steuerung einer Bewegungsbahn dieser Arbeitsplattform

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee