DE19529096A1 - Frusto-conical type wind-power generator with boundary layer division - Google Patents

Frusto-conical type wind-power generator with boundary layer division

Info

Publication number
DE19529096A1
DE19529096A1 DE19529096A DE19529096A DE19529096A1 DE 19529096 A1 DE19529096 A1 DE 19529096A1 DE 19529096 A DE19529096 A DE 19529096A DE 19529096 A DE19529096 A DE 19529096A DE 19529096 A1 DE19529096 A1 DE 19529096A1
Authority
DE
Germany
Prior art keywords
cone
turbine
air
speed
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19529096A
Other languages
German (de)
Other versions
DE19529096C2 (en
Inventor
Alfred Frohnert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19529096A priority Critical patent/DE19529096C2/en
Publication of DE19529096A1 publication Critical patent/DE19529096A1/en
Application granted granted Critical
Publication of DE19529096C2 publication Critical patent/DE19529096C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

A cone-shaped wind-power generator with boundary later division and in which about half the length of the cone's lateral surface is cut through, with the cone seated in front of the turbine. The frontal part of the cone is movable forward and back on a horizontal axle in one plane in the direction cone-apex-cone base surface (8) and is connected with it by bars and lever arms (9, 10). The centrifugal force varies, in a speed-dependent manner, the position of the lever arm and thereby the opening between the cone-apex and cone frustum (11).

Description

Bei Kleinanlagen mit einem Durchmesser bis etwa 5 m ist der Repeller-Rotor wegen seiner schlechten Anlauf-Eigenschaften im Binnenland nur sehr bedingt einsatzfähig. Andererseits ergeben Ausführungen mit vielflügeligen Rotoren, z. B. die Western-Rotoren, nicht nur Vorteile wegen deren gutem Anlauf­ verhalten, sie beinhalten zugleich den Nachteil des schlechten Wirkungsgrades bei großen Windstärken. In der Windkrafttechnik werden für Klein-Anlagen deshalb Turbinen mit Kegel-Abdeckungen benutzt, um den Luftstrom aus der Mitte an den Rand zu den Flügeln zu leiten, der dadurch komprimiert und deshalb leistungs­ fähiger wird. Um den Luftstau bei größeren Windgeschwindigkeiten und damit eine Leistungsminderung weitgehend zu vermeiden, sind bisher einige technische Vorrichtungen erdacht worden. In DE-OS 38 36 325 z. B. sind auf die Turbinenummantelung mehrere hohle Flügel gesetzt, die Luft aus dem Bereich der Turbinen-Innenflügel absaugen. Dazu ist der Kegel mit einem Abstand vor die Turbine gesetzt, so daß die Luft bei einem plötzlichen Druck­ anstieg (Böen) zur Mitte ausweisen kann. Nachteilig könnte bei dieser Anordnung die Vermischung der Grenzschicht-Luft vor und hinter den Turbinenflügeln sein, d. h., die Luft, die zur Mitte der Turbine ausweicht, kann ungeregelt hinter die Turbinenflügel gelanten und damit den Sog anderen Saugseite unterbrechen.For small systems with a diameter of up to about 5 m Repeller rotor because of its poor start-up properties Can only be used to a very limited extent inland. On the other hand result in designs with multi-bladed rotors, e.g. B. the Western rotors, not only advantages because of their good start behave, they also have the disadvantage of the bad Efficiency in high winds. In wind power engineering are therefore turbines with cone covers for small systems used to flow the airflow from the center to the edge To direct wings, which thereby compresses and therefore performs well becomes more capable. The air congestion at higher wind speeds and thus a reduction in performance should be largely avoided So far, some technical devices have been devised. In DE-OS 38 36 325 z. B. are several hollow on the turbine shroud Wing set, the air from the area of the turbine inner wing suck off. For this, the cone is at a distance in front of the Turbine set so that the air at a sudden pressure increase (gusts) to the middle. Could be a disadvantage with this arrangement the mixing of the boundary layer air and be behind the turbine blades, d. that is, the air to the middle the turbine evades, can go uncontrolled behind the turbine blades gelanten and thus interrupt the suction of the other suction side.

Es stellt sich die erfindungsgemäße Aufgabe, diese ungeregelten Luftströmungen zu vermeiden:The task according to the invention arises, these unregulated Avoid air currents:

Die Turbinenflügel werden peripher, Fig. 1 (3), und axial umwandelt. Dieser axiale Mantel wird mit dem Kegelmantel verbunden, Fig. 1 (2). Die von der Kegelspitze zur Kegelgrundfläche strömende Luftschicht wird dabei komprimiert und teilt sich im Bereich der Turbinenflügel, Fig. 1 (1). Der Teil, der in die Turbinenflügel strömt, legt einen längeren Weg zurück und bekommt deshalb eine höhere Geschwindigkeit, Fig. 1 (4), als die außen um die Turbine strömende Luftschicht, Fig. 1 (5), wo sich hinter der Turbine die zuvor geteilten Luftschichten vereinen und gemeinsam abströmen. Weil aber hinter der Turbine die Luft verdünnt ist und deshalb Wirbel entstehen könnten, muß zur Vermeidung dieser Gegenströmungen (hinter der Turbine in Richtung Kegelspitze) Luft zugeführt werden, in diesem Fall von der Kegelspitze aus, Fig. 1 (6). Einfach die Kegelspitze abzunehmen, wäre nicht zweckmäßig, denn diese wird für das "Aufdrehen" der Luft benötigt. Außerdem sind die Regelmöglichkeiten dieser Öffnung konstruktiv aufwendig. Die erfindungsmäßig beste Möglichkeit besteht in der Teilung des Kegels, Fig. 1 (7), mit dem Vorteil, daß diese Öffnung drehzahlabhängig mit Hilfe der Fliehkraft regelbar ist, wobei diese Konstruktion einfach auszuführen ist und zuverlässig funktioniert. Zu diesem Zweck wird die Kegelspitze beweglich auf der Horizontalachse gelagert, so daß sie sich darauf vor- und zurückschieben läßt, Fig. 2 (8). Gestänge halten die Kegel­ spitze fest und verhindern unwillkürliche Bewegungen: Haltearme, Fig. 2 (9), sind fest auf der Achse angebracht. (Die Zeichnung zeigt nur eine Anordnung. Zur Vermeidung der Unwucht sollten mindestens zwei Hebelanordnungen angebracht werden, wenn nicht ein Gegengewicht verwendet wird.) Die Fliehkraft richtet die Winkel-Hebelarme mehr oder weniger auf, Fig. 2 (10), und regelt die Größe der Öffnung zwischen Kegelspitze und Kegelstumpf, Fig. 2 (11). Federn (nicht gezeigt) regulieren die Bewegungen besonders bei geringer Drehzahl. Platz für den Einbau aller Konstruktionsteile ist in der Kegelspitze genügend vorhanden. Behindert wird dort auch der Luftstrom nicht, der sich auch nicht mit dem Luftstrom des Turbinen-Schachtes mischen kann, sondern nur hinter die Turbine gelangen kann, Fig. 1 (6). Da der Luft­ strom aus der Kegelspitze in Abhängigkeit der Drehzahl (die wiederum von der Windgeschwindigkeit abhängt), volumengeregelt ist, wird ein Sogabriß an der Saugseite der Turbinenflügel vermieden, so daß die erfindungsmäßige Aufgabe damit erfüllt ist.The turbine blades are peripheral, Fig. 1 ( 3 ), and axially converted. This axial jacket is connected to the cone jacket, Fig. 1 ( 2 ). The air layer flowing from the cone tip to the cone base is compressed and divides in the area of the turbine blades, Fig. 1 ( 1 ). The part that flows into the turbine blades travels a longer distance and therefore gets a higher speed, Fig. 1 ( 4 ), than the air layer flowing around the outside of the turbine, Fig. 1 ( 5 ), where behind the turbine there are the combine previously divided air layers and flow together. However, because the air behind the turbine is diluted and vortices could arise, air must be supplied to avoid these countercurrents (behind the turbine in the direction of the cone tip), in this case from the cone tip, Fig. 1 ( 6 ). Simply removing the tip of the cone would not be advisable, because it is needed to "open" the air. In addition, the control options of this opening are structurally complex. The best possibility according to the invention consists in the division of the cone, Fig. 1 ( 7 ), with the advantage that this opening can be regulated by the centrifugal force as a function of speed, this construction being simple to carry out and functioning reliably. For this purpose, the cone tip is movably mounted on the horizontal axis so that it can be pushed back and forth, Fig. 2 ( 8 ). Poles hold the cone at the tip and prevent involuntary movements: holding arms, Fig. 2 ( 9 ), are firmly attached to the axle. (The drawing shows only one arrangement. To avoid imbalance, at least two lever arrangements should be installed unless a counterweight is used.) The centrifugal force more or less straightens the angle lever arms, Fig. 2 ( 10 ), and regulates the size the opening between the tip of the cone and the truncated cone, Fig. 2 ( 11 ). Springs (not shown) regulate the movements especially at low speed. There is enough space for the installation of all construction parts in the cone tip. The air flow, which cannot mix with the air flow of the turbine shaft, but can only get behind the turbine, is also not obstructed there, FIG. 1 ( 6 ). Since the air flow from the tip of the cone is volume-controlled depending on the speed (which in turn depends on the wind speed), a suction break on the suction side of the turbine blades is avoided, so that the object of the invention is thus achieved.

Claims (1)

Kegelförmige Windkraftanlage mit Grenzschicht-Teilung, dadurch gekennzeichnet, daß
  • 1. vor eine Turbine gesetzter Kegel auf etwa der Hälfte der Länge seiner Seitenfläche durchtrennt ist. Der vordere Kegelteil wird auf der Horizontalachse in einer Ebene beweglich vor und zurück in Richtung Kegelspitze-Kegel­ grundfläche (Fig. 2 (8)) angebracht und mit Gestänge und Hebelarmen mit diesem verbunden (Fig. 2 (9 und 10). Die Fliehkraft verändert drehzahlabhängig die Lage der Hebelarme und damit die Öffnung zwischen Kegelspitze und Kegelstumpf (Fig. 2 (11));
  • 2. der Bereich zwischen Turbinenflügeln und Kegelstumpf so ausgestaltet ist, daß die in die Turbinenflügel (Fig. 1 (1)) strömende Luftschicht einen längeren Weg (Fig. 1 (4)) zurücklegt als die außen über den Turbinenmantel (Fig. 1 (5)) strömende Luft und deshalb eine höhere Geschwindigkeit erhält. Die für die Abflußenergie notwendige Luftmenge strömt drehzahlabhängig durch die fliehkraftgesteuerte Öffnung in der Kegelmitte (Fig. 1 (6)), ohne den Bereich der Tur­ binenflügel direkt zu berühren.
Cone-shaped wind turbine with boundary layer division, characterized in that
  • 1. a cone placed in front of a turbine is severed to about half the length of its side surface. The front cone part is mounted on the horizontal axis in a plane movable back and forth in the direction of the cone tip-cone base ( Fig. 2 ( 8 )) and connected to it with rods and lever arms ( Fig. 2 ( 9 and 10 ). The centrifugal force changes depending on the speed, the position of the lever arms and thus the opening between the cone tip and the truncated cone ( Fig. 2 ( 11 ));
  • 2. The area between the turbine blades and the truncated cone is designed such that the air layer flowing into the turbine blades ( Fig. 1 ( 1 )) covers a longer distance ( Fig. 1 ( 4 )) than the outside via the turbine jacket ( Fig. 1 ( 5 )) flowing air and therefore receives a higher speed. The amount of air required for the discharge energy flows depending on the speed through the centrifugal force-controlled opening in the center of the cone ( Fig. 1 ( 6 )) without directly touching the area of the turbine blades.
DE19529096A 1995-08-08 1995-08-08 Wind turbine with boundary layer division Expired - Fee Related DE19529096C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19529096A DE19529096C2 (en) 1995-08-08 1995-08-08 Wind turbine with boundary layer division

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19529096A DE19529096C2 (en) 1995-08-08 1995-08-08 Wind turbine with boundary layer division

Publications (2)

Publication Number Publication Date
DE19529096A1 true DE19529096A1 (en) 1996-03-14
DE19529096C2 DE19529096C2 (en) 1998-01-22

Family

ID=7768967

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19529096A Expired - Fee Related DE19529096C2 (en) 1995-08-08 1995-08-08 Wind turbine with boundary layer division

Country Status (1)

Country Link
DE (1) DE19529096C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754858A1 (en) * 1996-10-22 1998-04-24 Martinet Pierre Wind powered turbine
WO1998017912A1 (en) * 1996-10-22 1998-04-30 Veken Germaine V D Hooded wind power engine
DE10016513A1 (en) * 2000-04-03 2001-10-11 Eugen Radtke Centrifugal wind power wheel for optimized utilization of energy of wind, has direct or indirect utilization of centrifugal force for displacement/movement of solid/fluid materials and for change of center of gravity
DE10105864A1 (en) * 2001-02-06 2002-08-14 Eugen Radtke Centrifugal wind-powered energy plant has weight lifted via centrifugal force dropped for providing rotary torque which can support rotor rotation
WO2004090346A1 (en) * 2003-04-11 2004-10-21 Karl Maurenbrecher Method and apparatus for modifying the flow properties of a fluid medium in the vicinity of a propeller, fan, turbine or engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836325A1 (en) * 1988-09-16 1989-08-03 Alfred Frohnert Small conical wind power station having aerodynamic speed regulation and starting aid
DE4014685A1 (en) * 1988-09-16 1991-12-12 Alfred Frohnert Propeller wind power machine - has aerofoil blades with hinged flap on ŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸ leading edge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836325A1 (en) * 1988-09-16 1989-08-03 Alfred Frohnert Small conical wind power station having aerodynamic speed regulation and starting aid
DE4014685A1 (en) * 1988-09-16 1991-12-12 Alfred Frohnert Propeller wind power machine - has aerofoil blades with hinged flap on ŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸ leading edge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754858A1 (en) * 1996-10-22 1998-04-24 Martinet Pierre Wind powered turbine
WO1998017912A1 (en) * 1996-10-22 1998-04-30 Veken Germaine V D Hooded wind power engine
US6246126B1 (en) 1996-10-22 2001-06-12 Germaine Van Der Veken Hooded wind power engine
DE10016513A1 (en) * 2000-04-03 2001-10-11 Eugen Radtke Centrifugal wind power wheel for optimized utilization of energy of wind, has direct or indirect utilization of centrifugal force for displacement/movement of solid/fluid materials and for change of center of gravity
DE10105864A1 (en) * 2001-02-06 2002-08-14 Eugen Radtke Centrifugal wind-powered energy plant has weight lifted via centrifugal force dropped for providing rotary torque which can support rotor rotation
WO2004090346A1 (en) * 2003-04-11 2004-10-21 Karl Maurenbrecher Method and apparatus for modifying the flow properties of a fluid medium in the vicinity of a propeller, fan, turbine or engine

Also Published As

Publication number Publication date
DE19529096C2 (en) 1998-01-22

Similar Documents

Publication Publication Date Title
DE3022712C2 (en) Device for venting rooms and chimneys
DE2852554A1 (en) ROTOR FOR USE IN A FLOW MEDIUM
US6239506B1 (en) Wind energy collection system
EP1177381A1 (en) Wind power facility with a vertical rotor
DE102016105409B4 (en) Wind turbine and method for controlling a wind turbine
WO2011020458A2 (en) Rotor element for a fluid to flow around and rotor
DE3315439C2 (en)
US4537559A (en) Venturi rotor apparatus for the generation of power
WO1987007328A1 (en) Wind force plant
DE19529096A1 (en) Frusto-conical type wind-power generator with boundary layer division
DE102011122140A1 (en) Delta eddy current generator for generating eddies at rotor blade of wind power plant, has support provided with wing such that eddies are producible over main surface, where eddies comprise axis that is directed parallel to surface
EP0020402A1 (en) Wind motor
DE3390497C2 (en) Piezoelectric generator for extracting energy from a fluid stream
DE2757266C2 (en) Wind turbine system with main rotor and one or more auxiliary start-up motors
EP1253317A2 (en) Wind turbine
DE3707723C2 (en)
DE867380C (en) Wind turbine
DE112017004377B4 (en) wind turbine plant
EP1387954A1 (en) Wind turbine comprising a vertical axis
CH714302B1 (en) Aerodynamically optimized rotor blade.
DE2930073A1 (en) Wind driven power generator - has rotor within casing profiled to increase air velocity to utilise low wind speeds
EP2699797B1 (en) Wind turbine
DE3217359C2 (en) turbine
EP0103042B1 (en) Fan comprising automatically adjustable blades about its longitudinal axis to avoid undesirable rotational speed
DE102007062483A1 (en) Flow power plant with a rotor carrying several wings, which is approximately radially fed to the rotor axis, and with a plurality of fixed Strömungsleitblechen, and method for operating this flow power plant

Legal Events

Date Code Title Description
OAV Publication of unexamined application with consent of applicant
8122 Nonbinding interest in granting licences declared
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee