DE1241507B - Thermoelectric semiconductor device and method for its manufacture - Google Patents
Thermoelectric semiconductor device and method for its manufactureInfo
- Publication number
- DE1241507B DE1241507B DES79386A DES0079386A DE1241507B DE 1241507 B DE1241507 B DE 1241507B DE S79386 A DES79386 A DE S79386A DE S0079386 A DES0079386 A DE S0079386A DE 1241507 B DE1241507 B DE 1241507B
- Authority
- DE
- Germany
- Prior art keywords
- percent
- weight
- semiconductor
- addition
- semiconductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000011669 selenium Substances 0.000 claims description 9
- 229910052714 tellurium Inorganic materials 0.000 claims description 8
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 8
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 3
- 230000005679 Peltier effect Effects 0.000 claims description 2
- 229910002899 Bi2Te3 Inorganic materials 0.000 claims 3
- 229910017629 Sb2Te3 Inorganic materials 0.000 claims 3
- 238000002194 freeze distillation Methods 0.000 claims 2
- 239000010453 quartz Substances 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- 239000000654 additive Substances 0.000 claims 1
- 238000004857 zone melting Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
DeutscheKl.: 21b-27/06German class: 21b-27/06
AUSLEGESCHRIFTEDITORIAL
Nummer: 1241507Number: 1241507
Aktenzeichen: S 79386 VIII c/21 bFile number: S 79386 VIII c / 21 b
1241507 Anmeldetag: 10.Mail9621241507 Filing date: 10th Mail962
Auslegetag: 1. Juni 1967Open date: June 1, 1967
Die Erfindung betrifft eine thermoelektrische Halbleiteranordnung zur Ausnutzung des Peltiereffektes, bei der als p-leitender Halbleiterkörper ein p-leitender Mischkristall mit 20 bis 27 Molprozent Bi2Te3 und 80 bis 73 Molprozent Sb2Te3 und einem überstöchiometrischen Zusatz von Tellur, der 2 bis 8 Gewichtsprozent der Gesamteinwaage beträgt, vorgesehen ist, und ein Verfahren zu ihrer Herstellung.The invention relates to a thermoelectric semiconductor arrangement for utilizing the Peltier effect, in which the p-conductive semiconductor body is a p-conductive mixed crystal with 20 to 27 mol percent Bi 2 Te 3 and 80 to 73 mol percent Sb 2 Te 3 and a superstoichiometric addition of tellurium, the 2 up to 8 percent by weight of the total weight is provided, and a process for their production.
Zur Anwendung in der Peltierkühltechnik werden in bekannter Weise Halbleiterbauelemente benutzt, deren Schenkel n- bzw. p-leitend sind. Die Eignung eines Halbleiters für die Anwendung in den genannten Halbleiterbauelementen ist durch eine möglichst große thermoelektrische EffektivitätSemiconductor components are used in a known manner for application in Peltier cooling technology, whose legs are n- or p-conductive. The suitability of a semiconductor for use in the above Semiconductor components is through the greatest possible thermoelectric effectiveness
α2 σα 2 σ
Ζ = ~ΊΓ Ζ = ~ ΊΓ
charakterisiert, wobei α die Thermokraft, a die elektrische und k die thermische Leitfähigkeit bedeutet.characterized, where α is the thermal force, a is the electrical and k is the thermal conductivity.
Es ist bekannt, daß für den p-leitenden Schenkel von Peltierkühlelementen Legierungen aus dem System Bi2Te3 — Sb2Te3 in stöchiometrischer Zusammensetzung im Gebiet von 40 bis 20 Molprozent Bi2Te3 und von 60 bis 80 Molprozent Sb2Te3 benutzt werden. Z+, die Effektivität des p-leitenden Materials, ist bei diesen Legierungen etwa 2 · IO-3 Grad-1. Weiterhin wurden p-leitende Schenkel der Zusammensetzung von 25 Molprozent Bi2Te3 und 75 Molprozent Sb2Te3 mit einem überstöchiometrischen Zusatz von Tellur von 4 Gewichtsprozent (Z+ = 3,5 · IO-3 Grad-1) oder einem kleinen überstöchiometrischen Zusatz von Selen (Z+ < 2,8 · 10~3 Grad"1) verwendet. It is known that alloys from the system Bi 2 Te 3 - Sb 2 Te 3 in a stoichiometric composition in the range from 40 to 20 mol percent Bi 2 Te 3 and from 60 to 80 mol percent Sb 2 Te 3 are used for the p-conducting leg of Peltier cooling elements to be used. Z + , the effectiveness of the p-conducting material, is around 2 · IO -3 degrees -1 in these alloys. Furthermore, p-type legs of the composition of 25 mol percent Bi 2 Te 3 and 75 mol percent Sb 2 Te 3 with a superstoichiometric addition of tellurium of 4 percent by weight (Z + = 3.5 · IO -3 degrees -1 ) or a small superstoichiometric Added selenium (Z + <2.8 · 10 ~ 3 degrees " 1 ) used.
Für die Anwendung eines Halbleiters in einem Kühlelement ist aber auch besonders wichtig die Temperaturabhängigkeit der Effektivität Z im Arbeitsbereich, der im allgemeinen von +40° C bis zu möglichst tiefen Temperaturen reicht. Die Qualität eines Peltierelements kann durch die maximal erreichbare TemperaturdifFerenz ATmax bezeichnet werden, die ein p- und ein η-Schenkel in einem Kühlversuch von etwa +40° C abwärts erreicht. Es gilt dabei die BeziehungFor the use of a semiconductor in a cooling element, however, the temperature dependency of the effectiveness Z in the working range, which generally ranges from + 40 ° C. to the lowest possible temperatures, is also particularly important. The quality of a Peltier element can be characterized by the maximum achievable temperature difference AT max , which a p- and η-leg reaches from about + 40 ° C downwards in a cooling test. The relationship is what counts
AT - Z-Tl*AT - Z - Tl *
1 max — 2 ' 1 max - 2 '
Tk ist hierbei die Temperatur der kalten Lötstelle. Ein guter Peltier-Halbleiter soll deshalb nicht nur bei
Zimmertemperatur eine möglichst große Effektivität haben, sondern diese soll auch im gesamten Arbeitsbereich
so groß wie möglich sein. Diese Forderung wird von den bekannten Materialien nur teilweise
Thermoelektrische Halbleiteranordnung und
Verfahren zu ihrer Herstellung Tk is the temperature of the cold solder joint. A good Peltier semiconductor should therefore not only be as effective as possible at room temperature, but it should also be as effective as possible in the entire working area. This requirement is only partially met by the known materials and thermoelectric semiconductor devices
Process for their manufacture
Anmelder:Applicant:
Siemens Aktiengesellschaft, Berlin und München, Erlangen, Werner-von-Siemens-Str. 50Siemens Aktiengesellschaft, Berlin and Munich, Erlangen, Werner-von-Siemens-Str. 50
Als Erfinder benannt:Named as inventor:
Dr. Joachim Rupprecht, NürnbergDr. Joachim Rupprecht, Nuremberg
erfüllt. Es ist daher ein Material zu finden, dessen Effektivität über einen weiten TemperaturbereichFulfills. It is therefore necessary to find a material that is effective over a wide temperature range
so konstant und groß ist. so constant and big.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß neben dem Tellurzusatz ein Zusatz an Selen von 0,5 bis 3 Gewichtsprozent der Gesämteinwaage vorgesehen ist, wobei das Gewichtsverhältnis des Tellurzusatzes zu dem Selenzusatz 2:1 bis 5:1 beträgt.According to the invention, this object is achieved in that, in addition to the tellurium addition, an addition to Selenium from 0.5 to 3 percent by weight of the total weight is provided, with the weight ratio of the tellurium addition to the selenium addition is 2: 1 to 5: 1.
Überraschenderweise werden bei der Erfindung durch die Überstöchiometrie in Tellur bei gleichzeitigem Selenzusatz im Zusammensetzungsbereich von 73 bis 80 Molprozent Sb2Te3 und 20 bis 27 Molprozent Bi2Te3 sowohl bei Zimmertemperatur als auch im Arbeitsbereich von +40° C abwärts h'ohe Werte für die thermoelektrische Effektivität erreicht. Die maximalen Temperaturdifferenzen AT sind größer als bei den vorbekannten Legierungen.Surprisingly, with the invention, the excess stoichiometry in tellurium with simultaneous addition of selenium results in high values in the composition range from 73 to 80 mol percent Sb 2 Te 3 and 20 to 27 mol percent Bi 2 Te 3 both at room temperature and in the working range from + 40 ° C downwards for thermoelectric effectiveness. The maximum temperature differences AT are greater than in the case of the previously known alloys.
Die gemäß der Erfindung zusammengesetzten und hergestellten p-leitenden Halbleiterkörper ergaben in Kombination mit einem η-leitenden Schenkel der Zusammensetzung 80 Molprozent Bi2Te3 und 20 Molprozent Bi2Se8 die in der nachfolgenden Tabelle angeführten Werte für die maximal erreichbare Temperaturabsenkung ATmax'. The p-conducting semiconductor bodies assembled and produced according to the invention, in combination with an η-conducting leg of the composition 80 mol percent Bi 2 Te 3 and 20 mol percent Bi 2 Se 8, gave the values listed in the table below for the maximum achievable temperature drop ATmax '.
Die Temperatur der warmen Lötstellen lag hierbei in allen Fällen bei +40° CThe temperature of the warm solder joints was + 40 ° C in all cases
709 588/150709 588/150
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES79386A DE1241507B (en) | 1962-05-10 | 1962-05-10 | Thermoelectric semiconductor device and method for its manufacture |
FR932438A FR1413866A (en) | 1962-05-10 | 1963-04-23 | Semiconductor device and method for its manufacture |
GB18726/63A GB995176A (en) | 1962-05-10 | 1963-05-10 | Improvements in or relating to semi-conducting materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES79386A DE1241507B (en) | 1962-05-10 | 1962-05-10 | Thermoelectric semiconductor device and method for its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1241507B true DE1241507B (en) | 1967-06-01 |
Family
ID=7508163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DES79386A Pending DE1241507B (en) | 1962-05-10 | 1962-05-10 | Thermoelectric semiconductor device and method for its manufacture |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE1241507B (en) |
GB (1) | GB995176A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4588520A (en) * | 1982-09-03 | 1986-05-13 | Energy Conversion Devices, Inc. | Powder pressed thermoelectric materials and method of making same |
-
1962
- 1962-05-10 DE DES79386A patent/DE1241507B/en active Pending
-
1963
- 1963-05-10 GB GB18726/63A patent/GB995176A/en not_active Expired
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
GB995176A (en) | 1965-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69919276T2 (en) | Thermoelectric module and solder joint for its production | |
DE112012003038T5 (en) | Thermoelectric stack converter module | |
DE1054519B (en) | Thermocouple and process for its manufacture | |
US3238134A (en) | Method for producing single-phase mixed crystals | |
DE1294677B (en) | Thermoelectric semiconductor material | |
US3211656A (en) | Mixed-crystal thermoelectric composition | |
DE1241507B (en) | Thermoelectric semiconductor device and method for its manufacture | |
DE112011104153B4 (en) | An n-type thermoelectric conversion material comprising a metal material or a sintered body thereof | |
DE1106968B (en) | Tellurium and selenium or selenium and sulfur-containing lead-based alloys are suitable as legs of thermocouples | |
DE1162436B (en) | Thermoelectric arrangement | |
DE1200400B (en) | Thermoelectric arrangement | |
DE1240288B (en) | Thermoelectric semiconductor device and method for its manufacture | |
DE2054542A1 (en) | Tin-rich brazing alloy - for joining thermocouple members | |
DE1131763B (en) | Material for legs of thermocouples or Peltier elements | |
DE1064537B (en) | Thermocouple, especially for electrothermal refrigeration, and process for its manufacture | |
DE69913230T2 (en) | P-type thermoelectric conversion substance and manufacturing method therefor | |
DE1414622B2 (en) | METHOD FOR MANUFACTURING MOELEMENT LEGS | |
DE2165169C3 (en) | Alloy, manufacture thereof and use thereof for devices for direct thermoelectric energy conversion | |
DE1277967C2 (en) | Method for producing a semiconductor arrangement, in particular a thermoelectric semiconductor arrangement | |
DE1489288C (en) | P conductive thermoelectronic material | |
DE1639502B1 (en) | Thermoelectric arrangement | |
DE1298286B (en) | Method of making a thermoelectric connection for use at high temperatures | |
DE1290613B (en) | Thermoelectric semiconductor device and method for its manufacture | |
DE2754266A1 (en) | CERAMIC BODY WITH VOLTAGE DEPENDENT RESISTANCE | |
DE1223564B (en) | Tellurium-based thermoelectric alloy and method of making the alloy |