DE1151162B - Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical means - Google Patents
Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical meansInfo
- Publication number
- DE1151162B DE1151162B DES69133A DES0069133A DE1151162B DE 1151162 B DE1151162 B DE 1151162B DE S69133 A DES69133 A DE S69133A DE S0069133 A DES0069133 A DE S0069133A DE 1151162 B DE1151162 B DE 1151162B
- Authority
- DE
- Germany
- Prior art keywords
- semiconductor
- processing
- gas
- cutting
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 35
- 239000013078 crystal Substances 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 14
- 238000005520 cutting process Methods 0.000 title claims description 12
- 238000007493 shaping process Methods 0.000 title claims description 8
- 239000000126 substance Substances 0.000 title claims description 4
- 239000007789 gas Substances 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 150000002366 halogen compounds Chemical class 0.000 claims description 2
- 238000003754 machining Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- -1 hydrogen halides Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/04—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
- B24C1/045—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F3/00—Severing by means other than cutting; Apparatus therefor
- B26F3/004—Severing by means other than cutting; Apparatus therefor by means of a fluid jet
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/16—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising cuprous oxide or cuprous iodide
- H01L21/168—Treatment of the complete device, e.g. electroforming, ageing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Plasma & Fusion (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Drying Of Semiconductors (AREA)
Description
DEUTSCHESGERMAN
PATENTAMTPATENT OFFICE
S 69133 VIb/48dS 69133 VIb / 48d
BEKANNTMACHUNG DEK ANMELDUNG UNDAUSGABE DER AUSLEGESCHRIFT: 4. JULI 1963NOTICE DEK REGISTRATION AND ISSUE OF EDITORIAL: JULY 4, 1963
Die formgebende Bearbeitung von Halbleiterkristallen wird üblicherweise entweder mittels mechanischer Werkzeuge oder mittels flüssiger Ätzmittel vorgenommen. Es ist dabei bekannt, ein flüssiges elektrolytisches Ätzmittel in Form eines feinen Strahles gegen die zu bearbeitende Halbleiteroberfläche zu richten, die als Anode geschaltet ist, während die Düse, aus der der ätzende Flüssigkeitsstrahl austritt, als Kathode geschaltet wird. Ein derartiges Verfahren kann jedoch nicht zum Zerschneiden von Halbleiterkristallen verwendet werden.The shaping processing of semiconductor crystals is usually carried out either by means of mechanical Tools or made by means of liquid etchant. It is known to be a liquid electrolytic etchant in the form of a fine beam against the semiconductor surface to be processed to be directed, which is connected as the anode, while the nozzle from which the caustic jet of liquid comes from emerges, is connected as a cathode. However, such a method cannot be used to cut Semiconductor crystals are used.
Die bekannten Verfahren zum mechanischen Zerschneiden von Halbleiterkristallen sind immer mit hohen Schnittverlusten und einer Zerstörung des Halbleitergitters in den Oberflächenschichten der erhaltenen Kristallteilstücke verbunden. So belaufen sich die Schnittverluste bei der Herstellung von Halbleiterscheiben aus Halbleiterstäben, wie sie für kleine Kristalldioden und kleine Transistoren benötigt werden, mit Diamantsägen auf etwa 8O10A). Ferner ist die Oberfläche der hergestellten Scheibchen häufig bis zu Tiefen von 20 bis 40 μ so gestört, daß sie weggeätzt werden muß. Die Verwendung eines Drahtes zum Schneiden könnte zwar die Schnittverluste etwas reduzieren. Da aber andererseits die gleichmäßige Führung des Drahtes erhebliche Schwierigkeiten bereitet, können auch hierdurch die Schnittverluste in der Praxis gegenüber dem angegebenen Wert kaum reduziert werden. Die formgebende Bearbeitung mittels Elektronenstrahlen erfordert einen verhältnismäßig großen technischen Aufwand und führt dazu, daß das Halbleitermaterial an der Schnittstelle aufschmilzt und zum Teil verdampft, also ebenfalls hochgradig gestört wird.The known methods for mechanically cutting up semiconductor crystals are always associated with high cutting losses and destruction of the semiconductor lattice in the surface layers of the crystal pieces obtained. The cutting losses in the manufacture of semiconductor wafers from semiconductor rods, such as those required for small crystal diodes and small transistors with diamond saws, amount to around 80 10 A). Furthermore, the surface of the wafers produced is often so disturbed to depths of 20 to 40 μ that it has to be etched away. Using a wire for cutting could reduce the cutting losses somewhat. Since, on the other hand, the uniform guidance of the wire causes considerable difficulties, the cutting losses can hardly be reduced in practice compared to the specified value. The shaping processing by means of electron beams requires a relatively large technical effort and leads to the semiconductor material melting at the interface and partly evaporating, that is to say is also severely disturbed.
Die Erfindung bezieht sich auf ein Verfahren zum formgebenden Bearbeiten, insbesondere zum Zerschneiden, von Halbleiterkristallen, welches dadurch gekennzeichnet ist, daß die gegebenenfalls auf eine höhere, jedoch unterhalb des Schmelzpunktes des Halbleiters liegende Temperatur vorgewärmte Bearbeitungsstelle der Wirkung eines aus einer feinen Düse unter hohem Druck bzw. hoher Geschwindigkeit in Form eines Strahles austretenden Gases ausgesetzt wird, welches das von dem Strahl getroffene Halbleitermaterial bei der unterhalb des Schmelzpunktes des Halbleiters liegenden Bearbeitungstemperatur in eine bei dieser Temperatur gasförmige Verbindung überführt.The invention relates to a method for shaping processing, in particular for cutting, of semiconductor crystals, which is characterized in that the optionally on a higher temperature, but below the melting point of the semiconductor, preheated processing point the effect of a fine nozzle under high pressure or high speed in the form of a jet exiting gas is exposed, which is the struck by the jet Semiconductor material at the processing temperature below the melting point of the semiconductor converted into a compound which is gaseous at this temperature.
Bei diesem Verfahren wird also aus einer sehr feinen Düse mit sehr hohem Druck, z. B. mehreren Atmosphären bis 100 Atmosphären und darüber, ein solches Gas gegen die Halbleiteroberfläche geblasen, Verfahren zum formgebenden Bearbeiten,In this process, a very fine nozzle with very high pressure, e.g. B. several Atmospheres up to 100 atmospheres and above, such a gas blown against the semiconductor surface, Process for shaping processing,
insbesondere zum Zerschneiden,
von Halbleiterkristallen auf chemischem Wegeespecially for cutting,
of semiconductor crystals by chemical means
Anmelder:Applicant:
Siemens & Halske Aktiengesellschaft,Siemens & Halske Aktiengesellschaft,
Berlin und München,
München 2, Witteisbacherplatz 2Berlin and Munich,
Munich 2, Witteisbacherplatz 2
Dr.-Ing. Heinz Henker, München,
ist als Erfinder genannt wordenDr.-Ing. Heinz Henker, Munich,
has been named as the inventor
welches bei der Bearbeitungstemperatur mit dem Halbleiter reagiert und eine bei der Behandlungstemperatur verdampfende Verbindung bildet. Nur dort, wo der Gasstrahl auftrifft, wird das Halbleitermaterial durch die Wirkung des Gasstrahles in eine gasförmige Verbindung des Halbleiters übergeführt. Damit werden die darunterliegenden Stellen der Halbleiteroberfläche der weiteren Bearbeitung, also der Einwirkung des Gasstrahles, zugänglich.which reacts with the semiconductor at the processing temperature and one at the treatment temperature forms evaporating compound. The semiconductor material is only used where the gas jet strikes converted into a gaseous compound of the semiconductor by the action of the gas jet. So be the underlying areas of the semiconductor surface for further processing, i.e. the effect of the gas jet, accessible.
Als Gase eignen sich bei der formgebenden Bearbeitung von Halbleitermaterial, insbesondere von Germanium und Silizium, in erster Linie elementare Halogene, insbesondere Chlor oder Brom, oder Halogenverbindungen, insbesondere Halogenwasserstoffe, z. B. HCl. Die entstehenden Reaktionsprodukte sind noch weit unterhalb des Schmelzpunktes dieser Halbleiter gasförmig und werden deshalb durch den bearbeitenden Gasstrahl weggetrieben.Suitable gases are suitable for the shaping processing of semiconductor material, in particular of Germanium and silicon, primarily elemental halogens, especially chlorine or bromine, or Halogen compounds, especially hydrogen halides, e.g. B. HCl. The resulting reaction products are still far below the melting point of these semiconductors in gaseous form and are therefore caused by the processing gas jet driven away.
Die Reaktion zwischen Germanium und Silizium mit HCl setzt bereits bei 250 bzw. 380° C unter Bildung von GeHCl3 bzw. SiHCl3 ein. Es ist deshalb erforderlich, das Germanium auf 200 bis 600° C (gegebenenfalls auch darüber), das Silizium auf 400 bis 800° C (gegebenenfalls auch darüber) zu erhitzen. Die erforderliche Temperatur kann durch Erhitzen des Halbleiterkristalls und/oder durch Anwendung eines auf die entsprechende Temperatur erhitzten Strahles aus dem betreffenden Gas erzielt werden. Durch zusätzliche, gegebenenfalls gerichtete Belichtung, z. B. Anwendung von kurzwelligem Ultrarotlicht oder von sichtbarem Licht, kann der Bearbei- The reaction between germanium and silicon with HCl starts at 250 or 380 ° C with the formation of GeHCl 3 or SiHCl 3 . It is therefore necessary to heat the germanium to 200 to 600 ° C (possibly also above) and the silicon to 400 to 800 ° C (possibly also above). The required temperature can be achieved by heating the semiconductor crystal and / or by using a jet of the gas in question that is heated to the appropriate temperature. By additional, optionally directed exposure, e.g. B. Application of short-wave ultrared light or visible light, the processing
309 619/246309 619/246
tungsvorgang beschleunigt und auch auf bestimmte Stellen der Halbleiteroberfläche konzentriert werden. Auch bei Verwendung von Sauerstoff oder Ozon lassen sich z. B. bei Silizium Reaktionsprodukte erhalten, die unterhalb des Schmelzpunktes des Halbleiters im Vakuum verdampfen.The processing process can be accelerated and also concentrated on certain points on the semiconductor surface. Even when using oxygen or ozone, z. B. obtained with silicon reaction products, which evaporate below the melting point of the semiconductor in a vacuum.
Das Düsenmaterial richtet sich nach der Natur des verwendeten Gases, Gegen Fluorgas sind bei Normaltemperatur gewiße Metalle, ζ. Β. Kupfer, relativ beständig, . da sich diese mit einer Schutzschicht aus Fluorid überziehen, welche das Düsenmaterial gegen den weiteren Angriff des Halogens schützt. Andere den Halbleiter angreifende Gase, die weniger schwierig als Fluor zu handhaben sind, wie z. B. Cl2, Bromdampf, O2, O3 oder Halogenwasserstoffverbindungen, können durch Düsen aus Quarz, Rubin, Aluminiumoxyd, Diamant, V2A-Stahl, Borkarbid oder Siliziumkarbid und ähnlichen resistenten Stoffen, unter Umständen auch Glas, der zu bearbeitenden Halbleiteroberfläche zugeführt werden. Die Düsenweiten betragen zweckmäßig 5 bis 100 μ und sind vorteilhaft, um den Austritt eines scharf begrenzten Gasstrahles zu ermöglichen, als Strömungskanal mit sich stetig verjüngendem Querschnitt, insbesondere als Lavaldüsen ausgebildet.The nozzle material depends on the nature of the gas used. Certain metals are against fluorine gas at normal temperature, ζ. Β. Copper, relatively resistant,. because they are covered with a protective layer of fluoride, which protects the nozzle material against further attack by the halogen. Other gases that attack the semiconductor and are less difficult to handle than fluorine, e.g. B. Cl 2 , bromine vapor, O 2 , O 3 or hydrogen halide compounds can be fed to the semiconductor surface to be processed through nozzles made of quartz, ruby, aluminum oxide, diamond, V2A steel, boron carbide or silicon carbide and similar resistant substances, possibly also glass . The nozzle widths are expediently 5 to 100 μ and are advantageously designed as a flow channel with a continuously tapering cross section, in particular as Laval nozzles, in order to enable the exit of a sharply delimited gas jet.
Um eine Verbreitung des Gasstrahles durch Wirbel zu vermeiden und die Wirkung des Gases möglichst auf die Behandlungsstellen zu lokalisieren, empfiehlt es sich, den Behandlungsvorgang in einem unter vermindertem Gasdruck stehenden Behandlungsgefäß, insbesondere unter Vakuum vorzunehmen, wobei bei Anwendung einer laufenden Evakuierung des Behandlungsgefäßes die Reaktionsprodukte und das nicht verbrauchte Behandlungsgas laufend von der Halbleiteroberfläche entfernt werden, so daß praktisch nur die Bearbeitungsstelle mit dem Gas in Berührung gelangt. Insbesondere ist dies notwendig, wenn der bearbeitende Gasstrahl aus Sauerstoff besteht, damit das bei der Reaktion entstehende GeO oder SiO wegdampfen kann. Um diese gasförmigen Oxyde bei der Behandlung mit einem Sauerstoffstrom zu erzielen, muß die Temperatur der Behandlungsstelle möglichst hoch, also dicht unterhalb des Schmelzpunktes von Germanium bzw. Silizium liegen.In order to avoid spreading of the gas jet through eddies and the effect of the gas as much as possible To localize the treatment sites, it is recommended to reduce the treatment process in an under Treatment vessel under gas pressure, in particular under vacuum, with Use of an ongoing evacuation of the treatment vessel the reaction products and the unused treatment gas continuously from the semiconductor surface be removed so that practically only the processing point comes into contact with the gas. In particular, this is necessary if the processing gas jet consists of oxygen, with it the GeO or SiO formed during the reaction can evaporate. To these gaseous oxides at the To achieve treatment with a stream of oxygen, the temperature of the treatment site must be as close as possible high, i.e. just below the melting point of germanium or silicon.
Eine zur Durchführung des Verfahrens gemäß der Erfindung geeignete Apparatur ist in der Zeichnung dargestellt. Der zu zerschneidende SiHziumkristall 1, der längs der gestrichelt dargestellten Schnittlinie/ί-B aufgetrennt werden soll, ist im Abstand von einigen Zehntelmillimetern bis wenigen Millimetern von einer Düse entfernt angebracht, welche den bearbeitenden, z. B. aus HCl bestehenden Gasstrahl 3 austreten läßt. Der innerhalb der Düse zu überwindende Druck kann einige Atmosphären, aber auch mehr als 100 Atmosphären betragen, wenn dies die Natur des betreffenden Gases zuläßt. Der Gasstrahl wird dann längs der Schnittlinie A-B so lange hin und her geführt, bis der durch eine nicht dargestellte Heizvorrichtung auf etwa 500° C erhitzte Siliziumkristall an der Schnittfläche auseinandergetrennt ist. Aus technischen Gründen empfiehlt es sich, die Düse festzuhalten und die erforderliche Bewegung des Halbleiterkristalls mittels einer beweglichen Kristallhalterung vorzunehmen, deren Bewegung relativ zur Düse durch außerhalb des Behandlungsgefäßes hegende Steuermittel geregelt wird.An apparatus suitable for carrying out the method according to the invention is shown in the drawing. The SiHziumkristall 1 to be cut, which is to be separated along the dashed line / ί-B, is attached at a distance of a few tenths of a millimeter to a few millimeters from a nozzle, which the machining, z. B. from HCl existing gas jet 3 can escape. The pressure to be overcome within the nozzle can be a few atmospheres, but also more than 100 atmospheres, if the nature of the gas in question allows this. The gas jet is then guided back and forth along the cutting line AB until the silicon crystal, which is heated to about 500 ° C. by a heating device (not shown), is separated at the cut surface. For technical reasons, it is advisable to hold the nozzle firmly and to carry out the required movement of the semiconductor crystal by means of a movable crystal holder, the movement of which is regulated relative to the nozzle by control means located outside the treatment vessel.
Die Schnittbreiten können bei entsprechend engen Düsen erheblich unter 50 μ liegen, wobei eine vollkommen ungestörte Halbleiteroberfläche an der Schnittstelle gebildet wird. Dieser Vorteil kommt auch dann zugute, wenn die formgebende Bearbeitung zur Herstellung von Vertiefungen, insbesondere Bohrungen, in Halbleiterkristallen oder grabenförmige Vertiefungen, wie sie zum Herausätzen einer Mesa gebraucht werden, verwendet wird. Sie läßt sich deshalb auch zum lokalisierten Abschätzen von Halbleiterkristallen mit Vorteil verwenden.With correspondingly narrow nozzles, the cutting widths can be considerably less than 50 μ, with one being completely undisturbed semiconductor surface is formed at the interface. This advantage comes also benefit when the shaping processing for the production of depressions, in particular holes, in semiconductor crystals or trench-shaped depressions, such as those used for etching out a mesa used is used. It can therefore also be used for localized estimation of semiconductor crystals use with advantage.
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES69133A DE1151162B (en) | 1960-06-27 | 1960-06-27 | Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical means |
CH647061A CH401634A (en) | 1960-06-27 | 1961-06-02 | Process for the shaping processing of semiconductor crystals |
NL266108D NL266108A (en) | 1960-06-27 | 1961-06-19 | |
GB2243861A GB935307A (en) | 1960-06-27 | 1961-06-21 | Improvements in or relating to methods of shaping solid semi-conductor crystals |
FR866070A FR1292871A (en) | 1960-06-27 | 1961-06-26 | Method for shaping semiconductor crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES69133A DE1151162B (en) | 1960-06-27 | 1960-06-27 | Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical means |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1151162B true DE1151162B (en) | 1963-07-04 |
Family
ID=7500749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DES69133A Pending DE1151162B (en) | 1960-06-27 | 1960-06-27 | Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical means |
Country Status (4)
Country | Link |
---|---|
CH (1) | CH401634A (en) |
DE (1) | DE1151162B (en) |
GB (1) | GB935307A (en) |
NL (1) | NL266108A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1283641B (en) * | 1964-12-23 | 1968-11-21 | Siemens Ag | Method for shaping processing, in particular for cutting, of semiconductor crystals |
WO1999044793A1 (en) * | 1998-03-02 | 1999-09-10 | Egon Evertz Kg (Gmbh & Co.) | Method for cutting metal bodies with a water jet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2647049B1 (en) * | 1989-05-18 | 1995-04-14 | Grudzinski Richard | METHOD FOR CUTTING MATERIALS USING A JET OF VOLATILE LIQUID |
RU2475350C2 (en) * | 2010-12-30 | 2013-02-20 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" | Method of hydroabrasive cutting of metal sheets |
-
1960
- 1960-06-27 DE DES69133A patent/DE1151162B/en active Pending
-
1961
- 1961-06-02 CH CH647061A patent/CH401634A/en unknown
- 1961-06-19 NL NL266108D patent/NL266108A/xx unknown
- 1961-06-21 GB GB2243861A patent/GB935307A/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1283641B (en) * | 1964-12-23 | 1968-11-21 | Siemens Ag | Method for shaping processing, in particular for cutting, of semiconductor crystals |
WO1999044793A1 (en) * | 1998-03-02 | 1999-09-10 | Egon Evertz Kg (Gmbh & Co.) | Method for cutting metal bodies with a water jet |
US6315640B1 (en) | 1998-03-02 | 2001-11-13 | Egon Evertz Kg (Gmbh & Co.) | Method for cutting metal bodies with a water jet |
Also Published As
Publication number | Publication date |
---|---|
CH401634A (en) | 1965-10-31 |
NL266108A (en) | 1964-07-10 |
GB935307A (en) | 1963-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3013679C2 (en) | ||
DE69634194T2 (en) | PROCESS FOR MACHINING A SURFACE | |
DE1614999A1 (en) | Method of manufacturing semiconductor devices having a dielectric layer corresponding to a predetermined surface pattern on the surface of a semiconductor body | |
DE69216637T2 (en) | METHOD FOR TREATING THE SURFACE OF A WORKPIECE | |
EP0216954B1 (en) | Method of aluminium doping a semiconductor device | |
DE112004002374T5 (en) | Method and apparatus for laser dicing | |
DE2023936C3 (en) | Semiconductor device and method for manufacturing the same | |
DE102014002600A1 (en) | Combined wafer fabrication process with laser treatment and temperature-induced stresses | |
WO2003000456A2 (en) | Method for carrying out local laser-induced etching of solid materials | |
DE60106577T2 (en) | Removable umbrella device for plasma reactors | |
DE1151162B (en) | Process for the shaping processing, in particular for cutting, of semiconductor crystals by chemical means | |
EP1979122B1 (en) | Method for removing material from solids and use thereof | |
DE1646804B2 (en) | PROCESS FOR IMPROVING THE SURFACE QUALITY OF INORGANIC OXIDE MATERIALS | |
CH630961A5 (en) | METHOD FOR THE ETCH TREATMENT OF A BODY BY MEANS OF A PLASMA, AND DEVICE PRODUCED BY THE METHOD. | |
DE3029792A1 (en) | METHOD FOR DIVIDING A SEMICONDUCTOR CRYSTAL IN DISKS | |
DE102004062355A1 (en) | Process for treating a semiconductor wafer with a gaseous medium and semiconductor wafer treated therewith | |
DE2357913A1 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE | |
DE102015119325A1 (en) | Method for smoothing surfaces of a workpiece | |
DE102005040596A1 (en) | A method of removing a doped surface layer on backs of crystalline silicon solar wafers | |
DE3935189A1 (en) | Ionic etching substrates of silicon di:oxide coated - with poly-silicon or silicide layers-using etching gas of chlorine, silicon chloride and nitrogen | |
DE2930200A1 (en) | METHOD FOR ETCHING METAL FILMS WITH A GAS PLASMA | |
AT225749B (en) | Process for shaping processing, e.g. B. for cutting, of semiconductor crystals | |
DE1809683A1 (en) | Diffusion process for boron in a semiconductor body made of silicon | |
DE1044287B (en) | Alloying process for the production of semiconductor devices with p-n junctions | |
DE2334658C3 (en) | Process for dicing semiconductor wafers |