DE10361143A1 - Intrakardiale Impedanzmessanordnung - Google Patents

Intrakardiale Impedanzmessanordnung Download PDF

Info

Publication number
DE10361143A1
DE10361143A1 DE10361143A DE10361143A DE10361143A1 DE 10361143 A1 DE10361143 A1 DE 10361143A1 DE 10361143 A DE10361143 A DE 10361143A DE 10361143 A DE10361143 A DE 10361143A DE 10361143 A1 DE10361143 A1 DE 10361143A1
Authority
DE
Germany
Prior art keywords
impedance
electrode
ventricular
implant according
evaluation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10361143A
Other languages
English (en)
Inventor
Gerald Dr.-Ing. Czygan
Michael Dr. Lippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotronik SE and Co KG
Original Assignee
Biotronik SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotronik SE and Co KG filed Critical Biotronik SE and Co KG
Priority to DE10361143A priority Critical patent/DE10361143A1/de
Priority to EP04090233.0A priority patent/EP1510173B1/de
Priority to US10/923,117 priority patent/US7395114B2/en
Publication of DE10361143A1 publication Critical patent/DE10361143A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0535Impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36521Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Die Erfindung betrifft ein Implantat mit Elektrodenleitungsanschlüssen zum Anschluss intrakardialer und/oder epikardialer Elektrodenleitungen, wobei die Elektrodenleitungsanschlüsse zusammen wenigstens drei elektrische Kontakte aufweisen, von denen wenigstens einer einer rechtsventrikulären Elektrode und ein anderer einer linksventrikulären Elektrode zugeordnet ist, mit einer Impedanzbestimmungseinheit (MIP), die eine Strom- oder Spannungsquelle (I) und eine Messeinrichtung (U) für eine entsprechende Spannungs- bzw. Strommessung aufweist, die derart mit den elektrischen Kontakten und gegebenenfalls einer Gehäuseelektrode des Implantats verbunden sind, dass sich eine tri- oder quadropolare Impedanzmessanordnung ergibt, die ausschließlich ventrikuläre Elektroden und darüber hinaus gegebenenfalls die Gehäuseelektrode umfasst, wobei die Impedanzmessanordnung Impedanzmesswerte liefert und mit einer Auswerteeinheit (EVAL) verbunden ist und die Auswerteeinheit (EVAL) ausgebildet ist, ein Minimum der Impedanzmesswerte innerhalb eines ersten (relativ zu einem ventrikulären Ereignis definierten) Zeitfensters als enddiastolische Impedanz (EDZ) und ein Maximum der Impedanzmesswerte innerhalb eines zweiten Zeitfensters als endsystolische Impedanz (ESZ) zu ermitteln.

Description

  • Die Erfindung betrifft ein Implantat mit Elektrodenleitungsanschlüssen zum Anschluss intrakardialer und/oder epikardialer Elektrodenleitungen, wobei die Elektrodenleitungsanschlüsse zusammen wenigstens drei elektrische Kontakte aufweisen, von denen wenigstens einer einer rechtsventrikulären Elektrode und ein anderer einer linksventrikulären Elektrode zugeordnet ist. Das Implantat weist eine Impedanzmesseinheit auf, die eine Strom- oder Spannungsquelle und eine Messeinrichtung für eine entsprechende Spannungs- bzw. Strommessung aufweist, die derart mit den elektrischen Kontakten und gegebenenfalls einer Gehäuseelektrode des Implantats verbunden sind, dass sich eine tri- oder quadrupolare Impedanzmessanordnung ergibt.
  • Derartige Implantate sind als Herzschrittmacher beispielsweise aus der WO 00/78391 oder der US 2001/0012953 grundsätzlich bekannt.
  • Dennoch besteht nach wie vor ein Bedürfnis nach einem Implantat, welches eine verbesserte Erfassung und Nutzung von Impedanzwerten ermöglicht.
  • Erfindungsgemäß wird dies mit einem Implantat der Eingangs genannten Art erreicht, bei dem die Impedanzmessanordnung ausschließlich ventrikuläre Elektroden und darüber hinaus gegebenenfalls die Gehäuseelektrode umfassen, wobei die Impedanzmessanordnung Impedanzmesswerte liefert und mit einer Auswerteeinheit verbunden ist und die Auswerteeinheit ausgebildet ist, ein Minimum der Impedanzmesswerte innerhalb eines ersten (relativ zu einem ventrikulären Ereignis definierten) Zeitfensters als enddiastolische Impedanz (EDZ) und ein Maximum der Impedanzmesswerte innerhalb eines zweiten Zeitfensters als endsystolische Impedanz (ESZ) zu ermitteln.
  • Ein derartiges Implantat erlaubt es in vorteilhafter Weise, mittels Impedanzmessung hämodynamische Größen wie beispielsweise das Schlagvolumen zu ermitteln.
  • Hämodynamische Größen werden augenblicklich mit Hilfe von Echokardiographie, über Thoraximpedanzkardiographie, mit Hilfe von Thermodilutionskathetern oder mit invasiven Druckmessungen während elektrophysiologischer Untersuchungen ermittelt. Diese Verfahren verlangen einen hohen klinischen Aufwand. Zu Forschungszwecken werden gelegentlich Schrittmacher implantiert, die ventrikuläre Druckmessungen mit Hilfe eines Sensors durchführen, der in eine Stimulationselektrodenleitung integriert ist. Dies bedeutet, dass spezielle Elektrodenleitungen für ein derartiges Gerät erforderlich sind.
  • Hämodynamische Größen des Blutkreislaufs insbesondere das Schlagvolumen (SV), das enddiastolische Volumen (EDV), das endsystolische Volumen (ESV) oder die Kontraktilität des Herzens sowie die Abmessungen des Ventrikels liefern wichtige Informationen über den Zustand des kardiovaskularen Systems. Die Elektrotherapie des Herzens mit Hilfe von Implantaten kann durch einen Sensor, der hämodynamische und geometrische Größen erfasst, verbessert werden.
  • Kontinuierliches Überwachen von Patienten kann erzielt werden, indem hämodynamische oder geometrische Daten zum Zwecke des Homemonitorings telemetrisch übermittelt werden. Insbesondere für Patienten, die an einem Herzversagen leiden, ist die Beobachtung des hämodynamischen Zustands wesentlich, insbesondere die Beobachtung des Fortschreitens (oder der Besserung) der Erkrankung oder die Überwachung des Patientenzustands im Rahmen einer Resynchronisations- oder einer Medikamententherapie.
  • Erfindungsgemäß umfasst die intrakardiale Impedanzmessvorrichtung ein elektrotherapeutisches Implantat, beispielsweise einen implantierbaren Schrittmacher oder Kardioverter/Defibrillator, der eine Messeinrichtung zum Bestimmen einer intrakardialen Impedanz oder eines intrakardialen Impedanzverlaufs (Impedanzsignals) aufweist. Die Elektroden des Implantats sind vorzugsweise in drei oder vier Kammern des Herzens angeordnet, so dass die Anordnung auch für die Mehrkammerstimulation und/oder Defibrillation geeignet ist. Zumindest eine bipolare Elektrode sollte geeignet sein im rechten Ventrikel (RV) angeordnet zu werden und eine zweite bipolare Elektrode in der Nähe des linken Ventrikels (LV), und zwar entweder durch Anordnung in einer vom Koronarsinus abzweigenden Lateralvene oder am Epikard. Die linksventrikuläre Elektrode ist somit eine Koronarsinus-Elektrode oder eine epikardiale Elektrode.
  • Das erste und das zweite Zeitfenster sind vorzugsweise kürzer als ein jeweiliges Herzzyklus-Intervall und relativ zu einem ventrikulären Ereignis in einem Herzzyklus orientiert. Zwei gleichermaßen vorteilhafte Varianten sind hierbei bevorzugt:
    In einer ersten Variante beginnt ein erstes Zeitfenster zu einem ersten Anfangszeitpunkt (X1) vor dem jeweiligen ventrikulären Ereignis und endet zu einem ersten Endzeitpunkt (X2) nach diesem ventrikulären Ereignis, während ein zweites Zeitintervall zu einem zweiten Anfangszeitpunkt (Y1) nach jenem ventrikulären Ereignis beginnt und zu einem zweiten Endzeitpunkt (Y2) nach dem ventrikulären Ereignis endet. In einer alternativen Variante kann der erste Anfangszeitpunkt (X1) auch nach dem jeweiligen ventrikulären Ereignis liegen. Als Bezugszeitpunkt für den zweiten Anfangszeitpunkt (Y1) und den zweiten Endzeitpunkt (Y2) kann auch ein nachfolgendes ventrikuläres Ereignis gewählt werden.
  • Die Auswerteeinheit ist vorzugsweise ausgebildet, aus einer Differenz der enddiastolischen Impedanz (EDZ) und der endsystolischen Impedanz (ESZ) eine ein Schlagvolumen repräsentierende Schlagimpedanz (SZ) zu ermitteln.
  • Alternativ oder zusätzlich ist die Auswerteeinheit ausgebildet, aus der Schlagimpedanz (SZ) und der enddiastolischen Impedanz (EDZ) eine einen Auswurfanteil (EF = Ejektionsfraktion) repräsentierende EF-Größe zu ermitteln. Anstelle der enddiastolischen Impedanz EDZ und der endsystolischen Impedanz ESZ können auch deren Kehrwerte ausgewertet werden, nämlich die enddiastolische Leitfähigkeit EDC (EDC = 1/EDZ) und die endsystolische Leitfähigkeit ESC (ESC = 1/ESZ). Der Auswurfanteil EF = SV/EDV ist dann annähernd proportional zu (EDC-ESC)/EDC.
  • Ebenso ist eine Ausführungsvariante vorteilhaft realisierbar, bei der die Auswerteeinheit ausgebildet ist, ein sich aus einem zeitlichen Verlauf der Impedanzmesswerte ergebendes Impedanzsignal zu bestimmen und aus der ersten oder zweiten Ableitung des Impedanzsignals eine eine Kontraktilität eines Herzens repräsentierende Kontraktilitätsgröße zu ermitteln.
  • Die zuletzt genannten drei hämodynamischen Größen sind für den Arzt besonders interessant. Grundsätzlich ist jede Art von Implantat vorteilhaft, mit dem sich interessante hämodynamische Größen mittels Impedanzmessung ermitteln lassen.
  • Das Implantat weist vorzugsweise einen Speicher für einen oder mehrere der Werte für die Schlagimpedanz, die EF-Größe oder die Kontraktilität auf. In diesem Zusammenhang ist die Auswerteeinheit vorzugsweise ausgebildet, die Werte für die Schlagimpedanz, die enddiastolische Impedanz (EDZ), die EF- Größe und/oder die Kontraktilität zu regelmäßig wiederkehrenden Speicherzeitpunkten zu speichern.
  • Besonders interessant ist es, wenn die Auswerteeinheit ausgebildet ist, für einen Zeitraum zwischen zwei aufeinander folgenden Speicherzeitpunkten Mittelwerte für die Schlagimpedanz, die enddiastolische Impedanz (EDZ), die EF-Größe und/oder die Kontraktilität zu bilden und einen oder mehrere dieser Mittelwerte zu speichern.
  • Darüber hinaus ist die Auswerteeinheit vorzugsweise dazu ausgebildet, aus der zeitlichen Entwicklung der Schlagimpedanz, der enddiastolischen Impedanz (EDZ), der EF-Größe oder der Kontraktilität einen jeweiligen Trendwert für einen oder mehrere dieser Größen zu ermitteln. Auch diese Trendwerte werden vorzugsweise zu einem jeweiligen Speicherzeitpunkt durch die Auswerteeinheit in dem Speicher gespeichert.
  • Außerdem weist das Implantat vorzugsweise eine Telemetrieeinheit auf, die wenigstens einen Telemetriesender umfasst und mit dem Speicher verbunden sowie ausgestaltet ist, auf eine Abfrage hin oder zu regelmäßigen Sendezeitpunkten Werte für Schlagimpedanz, enddiastolische Impedanz (EDZ), EF-Größe, Kontraktilität oder einen oder mehrere Mittel- oder Trendwerte an ein externes Gerät zu senden.
  • Im Übrigen weist das Implantat vorzugsweise alle bekannte und vorteilhaften Merkmale eines Herzschrittmachers, Cardioverters und/oder Defibrillators auf. Zu diesen Merkmalen zählt insbesondere wenigstens eine ventrikuläre oder eine artriale Stimulationseinheit sowie eine Steuereinheit, mit der sich Stimulationsgrößen wie beispielsweise die Stimulationsimpulsstärke, eine Stimulationsfrequenz oder ähnlichen einstellen lassen. Ein derartiges Implantat ist vorzugsweise als ratenvariabler Herzschrittmacher ausgebildet, der einen Sensor für den physiologischen Bedarf eines Patienten aufweist, mit dessen Hilfe die Stimulationsrate an den physiologischen Bedarf eines Patienten durch das Implantat automatisch anzupassen ist.
  • Weitere bevorzugte Ausführungsvarianten ergeben sich beispielsweise aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.
  • In einer bevorzugten Ausführungsform weist das Implantat eine Auswerteeinheit auf, die zum Bestimmen der Änderungen des linksventrikulären Durchmessers ausgebildet ist. Optional kann die Auswerteeinheit auch ausgebildet sein, hämodynamische Größen anderer Herzkammern via Impedanzmessung zu ermitteln. Ein wichtiger Vorteil der Erfindung ist es, dass die intrakardiale Impedanzmessanordnung für die Impedanzmessung lediglich übliche Stimulations- oder Defibrillationselektrodenleitungen benötigt.
  • Es hat sich herausgestellt, dass eine quadrupolare Impedanzmessanordnung mit zwei Elektroden im rechten Ventrikel zur Stromeinspeisung und zwei weiteren Elektroden im Koronarsinus, die dem linken Ventrikel zugeordnet sind, für die Messung einer aus dem eingespeisten Strom resultierenden Spannung besonders vorteilhaft und störunanfällig ist. Dementsprechend ist ein Implantat besonders bevorzugt, welches eine quadrupolare Impedanzmessanordnung aufweist, die für den Anschluss an zwei rechtsventrikuläre Elektroden zur Stromeinspeisung und zwei linksventrikuläre, in einer vom Koronarsinus abzweigenden Lateralvene angeordnete Elektroden zur Messung der aus dem eingespeisten Strom resultierenden Spannung ausgebildet ist
  • Die Erfindung soll nun anhand von Ausführungsbeispielen mit Hilfe der beigefügten Figuren näher erläutert werden. Von den Figuren zeigt:
  • 1a und 1b: zwei schematische Darstellungen zwei sehr ähnlicher bevorzugter Ausführungsvarianten eines Implantats;
  • 2a und 2b: zwei bevorzugte Messkonfigurationen für die Bestimmung des linken Ventrikels
  • 3: eine alternative Impedanzmesskonfiguration für den linken Ventrikel
  • 4: eine weitere Alternative einer Impedanzmessanordnung für den linken Ventrikel
  • 5: ein intrakardiales Elektrokardiogramm, eine Darstellung des Ventrikelvolumens sowie eine Darstellung der daraus resultierenden Impedanz in zeitlicher Zuordnung zueinander;
  • 6: ein Beispiel für ein gemessenes Impedanzsignal.
  • Die 1a und 1b zeigen in schematischer Darstellung ein Implantat 10 bzw. 10' mit einer Impedanzmessanordnung, die eine Stromquelle 1 und eine Spannungsmesseinheit U sowie Impedanzbestimmungseinheit IMP aufweist.
  • Die Spannungsmesseinheit U ist bei der Ausführungsvariante in 1a mit einer in einer vom Koronarsinus abzweigenden Lateralvene angeordneten, linksventrikulären Spitzenelektrode sowie einer ebenfalls in einer vom Koronarsinus abzweigenden Lateralvene angeordneten, linksventrikulären Ringelektrode verbunden. Die Stromeinspeisungseinheit I ist mit einer rechtsventrikuläre Tip- und mit einer rechtsventrikulären Ringelektroden – oder genauer gesagt mit Kontakten für den Anschluss dieser Elektroden – verbunden.
  • In der Ausführungsvariante gemäß 1b ist die Spannungsmesseinheit U auf einerseits wie bei 1a mit linksventrikulären Tip-Elektrode und abweichend von 1a andrerseits mit dem Implantatsgehäuse als vierter Elektrode verbunden.
  • Die Impedanzbestimmungseinheit IMP ist für die Impedanzbestimmung sowohl mit der Stromeinspeisungseinheit I als auch mit der Spannungsmesseinheit U verbunden. Der jeweils ermittelte Impedanzwert wird seitens der Impedanzbestimmungseinheit IMP an eine Auswerteeinheit EVAL weitergegeben. Die Auswerteeinheit EVAL bestimmt auf die nachfolgend beschriebene Art und Weise aus den von der Impedanzbestimmungseinheit IMP ermittelten Werten eine enddiastolische Impedanz EDZ und eine endsystolische Impedanz ESZ.
  • Außerdem leitet die Auswerteeinheit EVAL aus diesen Werten eine Schlagimpedanz SZ als Differenz aus endsystolischer Impedanz und enddiastolischer Impedanz (SZ = ESZ – EDZ) ab. Dies geschieht in Verbindung mit einem Plausibilitätscheck, währenddessen geprüft wird, ob die enddiastolische Impedanz (EDZ) kleiner ist als die endsystolische Impedanz (ESZ).
  • Weitere von der Auswerteeinheit EVAL ermittelte Werte sind für jeden Herzzyklus einen Auswurfanteil (Ejection Fraction = EF), der aus der Schlagimpedanz und der enddiastolischen Impedanz (EF ~ SZ·EDZ, da EF = SV/EDV und SV ~ SZ sowie EDV ~ 1/EDZ) oder der enddiastolischen Leitfähigkeit (EDC) und der endsystolischen Leitfähigkeit (ESC) zu bilden ist, sowie eine eine Kontraktilität eines Herzens repräsentierende Kontraktilitätsgröße. All diese Werte werden von der Auswerteeinheit EVAL in einem Speicher MEM gespeichert, und zwar vorzugsweise zu regelmäßig wiederkehrenden Speicherzeitpunkten.
  • Die Auswerteeinheit EVAL ist weiterhin dazu ausgebildet, Mittelwerte für die Schlagimpedanz, die EF-Größe oder die Kontraktilität für einen jeweiligen zwischen zwei Speicherzeitpunkten liegenden Zeitraum zu bilden und diese Mittelwerte ebenfalls in dem Speicher zu speichern.
  • Weiterhin ist die Auswerteeinheit EVAL ausgebildet, Trends für die von der Auswerteeinheit EVAL ermittelten Größen zu bestimmen und entsprechende Trendwerte in dem Speicher MEM zu speichern.
  • Der Speicher MEM ist ausgangsseitig mit einer Telemetrieeinheit TEL verbunden, die so ausgebildet ist, dass die in dem Speicher jeweils gespeicherten Werte zu einem regelmäßig wiederkehrenden Sendezeitpunkt von der Telemetrieeinheit mittels einer der Telemetrieeinheit zugeordneten Sendeeinheit derart ausgesandt werden, dass die entsprechenden Werte von einem exter nen Gerät empfangen und beispielsweise an ein Servicecenter, einen Arzt oder dergleichen weitergeleitet werden können.
  • Gestrichelt eingezeichnet sind Beispiele für übliche Bestandteile eines derartigen Implantates nämlich eine Steuereinheit CTRL, die mit der Impedanzbestimmungseinheit IMP verbunden ist und eine Stimulationseinheit SDIM steuert. Im dargestellten Beispiel ist die Stimulationseinheit SDIM eine rechtsventrikuläre Stimulationseinheit und somit mit dem Anschluss für die rechtsventrikuläre Ring- und die rechtsventrikuläre Tipelektrode verbunden.
  • Zur Impedanzmessung injiziert die Impedanzmesseinheit einen unterschwelligen Strom zwischen zwei Elektroden der an das Implantat angeschlossenen Elektrodenleitungen und/oder das Implantatsgehäuse. Der Strom hat die Form biphasischer Impulse mit konstanter Amplitude. Der durch den Strom hervorgerufene Spannungsabfall (die Spannung) wird über ein anderes Elektrodenpaar der zur Verfügung stehenden Elektroden gemessen. Die gemessene Spannung ist proportional zur Impedanz des Gewebes, welches sich im Messbereich befindet. In einer alternativen Ausführungsvariante können die strominjizierenden Elektroden und die Elektroden zur Spannungsmessung dieselben Elektroden sein.
  • Die gemessene Spannung wird zunächst verstärkt und mittels einer programmierbaren Filteranordnung gefiltert, bevor sie analog/digital gewandelt wird. Der programmierbare Filter kann ein Tiefpassfilter sein, ein Hochpassfilter oder ein Bandpassfilter. In dem nachfolgend beschriebenen Ausführungsbeispiel ist der Filter ein Tiefpassfilter. Die Messelektrodenanordnung ist wie zuvor erläutert vorzugsweise quadrupolar, um insbesondere Durchmesseränderungen des Ventrikels mittels Impedanzmessung zu erfassen. Dementsprechend wird der Strom über zwei Elektroden injiziert und die Spannung über zwei andere, von den strominjizierenden Elektroden verschiedene Elektroden gemessen.
  • Von den verschiedenen möglichen Konfigurationen sind zwei Konfigurationen für die Messung im linken Ventrikel besonders bevorzugt:
    • 1. Der Strom für die Impedanzmessung wird zwischen einer rechtsventrikulären Spitzenelektrode und einer rechtsventrikulären Ringelektrode eingespeist. Die daraus resultierende Spannung wird zwischen einer linksventrikulären Tipelektrode und einer linksventrikulären Ringelektrode gemessen. Die linksventrikulären Elektroden können sich dabei in einer vom Koronarsinus abzweigenden Lateralvene befinden oder epikardial angeordnet sein. (2a)
    • 2. Alternativ ist eine Stromeinspeisung ebenfalls über die rechtsventrikuläre Spitzenelektrode und die rechtsventrikuläre Ringelektrode vorgesehen, jedoch die Spannungsmessung zwischen einer linksventrikulären Spitzenelektrode und dem Implantatsgehäuse. (2b)
  • Das Impedanzsignal, das mit diesen Konfigurationen gemessen wird, hängt kubisch vom Abstand zwischen den beiden Elektrodenleitungen ab. Für ein Dipolfeld in einem homogenen Medium gilt: 1/Z ≈ d3, wobei Z die Impedanz ist und d der Abstand zwischen den Elektrodenleitungen. Dementsprechend ist der Kehrwert der Impedanz ein indirektes Maß für das linksventrikuläre Volumen, weil das linksventrikuläre Volumen annähernd proportional zur dritten Potenz des linksventrikulären Durchmessers ist. Dem liegt die Annahmezgrunde, dass der Abstand a der beiden einen Elektroden eines stromeinspeisenden Dipols zueinander sehr viel kleiner ist, als der Abstand d der spannungsmessenden Elektrode(n) von dem stromeinspeisenden Dipol.
  • Zwei alternative Elektrodenkonfigurationen umfassen:
    • 3. Eine Stromeinspeisung zwischen rechtsventrikulärer Ringelektrode und linksventrikulärer Ringelektrode und eine Spannungsmessung zwischen rechtsventrikulärer Spitzenelektrode und linksventrikulärer Spitzenelektrode (3); oder
    • 4. Stromeinspeisung zwischen rechtsventrikulärer Ringelektrode und Implantatsgehäuse sowie Spannungsmessung zwischen rechtsventrikulärer Spitzenelektrode und linksventrikulärer Spitzenelektrode (4).
  • Bei diesen Anordnungen entspricht der Kehrwert der Impedanz dem Abstand zwischen den Elektrodenleitungen, falls – wie in den Konfigurationen 3 und 4 vorgesehen – a sehr viel kleiner ist als d.
  • Die zuvor genannten Konfigurationen 2 (2b) und 4 (4) bieten sich dann an, wenn nur eine unipolare linksventrikuläre Elektrodenleitung zur Verfügung steht.
  • Die Auswertung des Impedanzsignals erfolgt durch die Auswerteeinheit im Implantat, die mit der Messeinheit verbunden ist. Die Auswerteeinheit ist ausgebildet, aus dem gemessenen Impedanzsignal Parameter abzuleiten, insbesondere den zeitlichen Verlauf der Impedanz Z f(t) der vom enddiastolischen und endsystolischen Durchmesser des Ventrikels abhängt und damit vom enddiastolischen Volumen (EDV), vom endsystolischen Volumen (ESV) und vom Schlagvolumen (SV) der entsprechenden Kammer. Die Auswertung gilt Relativwerten dieser Größen und nicht deren Absolutwerten.
  • Der der Bestimmung des relativen Volumens zu Grunde liegende, allgemeine Gedanke fußt auf den Unterschieden in den Abständen zwischen rechtsventrikulärer und linksventrikulärer Elektrodenleitungen während eines Kontraktionszykluses. Der Ventrikel dehnt sich während der Diastole aus und erreicht seine maximalen Durchmesser am Ende dieser Phase. Dementsprechend ist die Impedanz am Ende der Diastole minimal, weil die Distanz zwischen den beiden Elektrodenleitungen maximal ist. Die enddiastolische Impedanz wird im folgenden auch mit EDZ bezeichnet. Auf der anderen Seite ist die Impedanz am Ende der Systole maximal, weil der Abstand zwischen den Elektrodenleitungen wegen der Kontraktion des Ventrikels minimal ist. Die dementsprechende endsystolische Impedanz wird im folgenden auch als ESZ bezeichnet. Als Schlagimpedanz SZ wird die Differenz zwischen endsystoli scher Impedanz und enddiastolischer Impedanz bezeichnet: SZ = ESZ – EDZ. Die Schlagimpedanz SZ ist proportional zum Schlagvolumen SV des Ventrikels. Außerdem tragen die verschiedenen Leitfähigkeiten des Blutes und des umgebenden Myokards zur Änderung des Impedanzsignals bei. Die Leitfähigkeit des Blutes ist etwa um den Faktor 1,5 bis 2 höher als die Leitfähigkeit des Myokards. Die Blutmenge im Messbereich ist während der enddiastolischen Phase maximal und während der endsystolischen Phase minimal. Dieser Effekt trägt zu den Impedanzänderungen bei, die durch den alternierenden ventrikulären Durchmesser verursacht sind.
  • In 5 ist der ideale Verlauf des Impedanzsignals dargestellt. In der Praxis wird das Signal vom idealen Verlauf abweichen, weil es durch andere Einflüsse gestört wird. Ein Verfahren zur Verarbeitung realer Impedanzsignale zum Extrahieren der relevanten Parameter ist Teil der Erfindung.
  • Das Verfahren umfasst die folgenden Auswertungsschritte:
    • 1. Die Messung wird durch ein eindeutiges Signal ausgelöst, welches den Beginn eines Herzzyklusses charakterisiert. Ein Herzzyklus beginnt mit einer ventrikulären Kontraktion, d.h. mit einem ventrikulären Event in einem intrakardialen EKG und endet mit dem nächstfolgenden Ereignis. Das auslösende Signal kann entweder direkt aus dem ventrikulären intrakardialen Elektrokardiogramm abgeleitet werden oder alternativ oder zusätzlich durch den Markerkanal des Implantats gewonnen werden. Als ventrikuläres Ereignis oder ventrikulärer Event wird hierbei ein elektrisches Signal verstanden, das mit einer ventrikulären Kontraktion einhergeht oder diese auslöst. Dies kann ein Stimulationsimpuls des Schrittmachers sein oder ein intrinsisches, natürliches Ereignis. Ein solches intrinsisches oder natürliches Ereignis ist bekanntermaßen durch den QRS-Komplex in einem intrakardialen Elektrokardiogramm gegeben.
    • 2. Die Impedanzsignale von n aufeinanderfolgenden Herzzyklen werden ermittelt, um Rauschen und Atmungsartefakte (durch die Respiration bedingte Signalanteile) zu eliminieren.
    • 3. Die enddiastolische Impedanz wird als die minimale Impedanz Z des gemittelten Impedanzsignals innerhalb eines vorgegebenen Zeitfensters bestimmt, welches x1 ms (ms = Millisekunden) vor dem ventrikulären Ereignis startet und x2 ms nach dem ventrikulären Ereignis endet. x1 kann dabei negativ sein, so dass das Zeitfenster auch nach dem ventrikulären Ereignis starten kann. Die endsystolische Impedanz wird als der Maximalwert der Impedanz Z des gemittelten Impedanzsignals während eines zweiten Zeitfensters zwischen y1 ms und y2 ms nach einem ventrikulären Ereignis bestimmt. y1 und y2 können negative Werte haben, d.h. dass das Zeitfenster auch relativ zum nächstfolgenden ventrikulären Ereignis bestimmt sein kann.
    • 4. Die Schlagimpedanz SZ wird aus der enddiastolischen Impedanz EDZ und der endsystolischen Impedanz ESZ berechnet. Das Vorzeichen der Schlagimpedanz SZ wird einer Plausibilitätsprüfung unterzogen, d.h. die enddiastolische Impedanz muss kleiner sein als die endsystolische Impedanz. Wenn dies nicht der Fall ist, beispielsweise aufgrund umgekehrter Messpolarität, wird das Vorzeichen berichtigt.
  • In 6 ist ein Beispiel für ein gemessenes Impedanzsignal dargestellt. Auf der Zeitskala entsprechen 0 ms hier dem Punkt 50 ms vor der R-Zacke des rechtsventrikulären intrakardialen Elektrokardiogramms im Falle eines Stimulus. Das erste Maximum tritt nicht am Ende der Systole auf, sondern ist durch andere Einflüsse bedingt. Es sollte daher nicht innerhalb des systolischen Zeitfensters liegen.
  • In 6 sind zwei Beispiele eingezeichnet. Die durchgezogene Linie entspricht dabei dem Ruhezustand eines Patienten und die gestrichelte Linie dem Zustand bei körperlicher Anstrengung. Die körperliche Anstrengung führt zu einem vergrößerten Schlagvolumen und somit zu einer bis auf 12 Ω vergrößerten endsystolischen Impedanz.
  • Alternativ zum vorstehenden Verfahren kann das Impedanzsignal auch durch Berechnen der ersten und zweiten Ableitungen ausgewertet werden. Die Maximalwerte (möglicherweise innerhalb eines vorgegebenen Zeitfensters) der Ableitung des Kehrwertes der Impedanz korreliert mit der Kontraktilität des Ventrikels.
  • Zur Bestimmung von belastungsinduzierten Änderungen wird die Signalauswertung im Rahmen einer Langzeitüberwachung separat für den Ruhezustand und den Belastungszustand des Patienten durchgeführt. Auf diese Weise können Langzeitänderungen des Schlagvolumens und des enddiastolischen Volumens oder der Kontraktilität im Ruhezustand und zusätzlich Änderungen der Belastbarkeit ermittelt werden. Ruhezustand und Belastungszustand werden mit Hilfe eines Akzelerometers unterschieden, welcher in einer bevorzugten Ausführungsvariante in das Implantat integriert ist. Das Akzelerometer erzeugt ein der Beschleunigung des Akzelerometers entsprechendes Beschleunigungssignal. Wenn das Beschleunigungssignal als Ausgangssignal des Akzelerometers einen vorgegebenen Schwellwert für eine vorgegebene Zeitspanne überschreitet, wird dies als Belastungszustand gewertet. Wenn die Amplitude des Beschleunigungssignals für eine vorgegebene Zeitspanne unterhalb des Schwellwertes verbleibt, wird dies als Ruhezustand des Patienten gewertet.
  • Weitere Auswertungen des Signals betreffen Änderungen des enddiastolischen Volumens, des Schlagvolumens, des Ejektionsanteils EF (Ejection fraction) als Quotient aus Schlagvolumen und enddiastolischem Volumen: EF = SV/EDV, oder der Kontraktilität können überwacht werden um den hämodynamischen Zustand eines Patienten zu ermitteln, die Wirkung einer Resynchronisationstherapie oder Medikamentenbehandlung zu beobachten oder bestimmte Betriebsparametereinstellungen eines Implantats zu ermitteln und zu optimieren. Zusätzlich kann der linksventrikuläre Durchmesser beobachtet werden, um beispielsweise Änderungen der Ventrikelabmessungen bei Patienten mit dilatierter oder hypertropher Kardiomyopathie zu ermitteln.
  • Es sind verschiedene Wege vorgesehen, um den Arzt mit den relevanten Informationen zu versorgen:
  • 1. Homemonitoring:
  • Zusammengefasste Impedanzparameter werden mittels einer Homemonitoring-Langstrecken-Telemetrie an ein Servicecenter übermittelt, wo die Daten gespeichert und Trends berechnet werden. Die zusammengefassten Impedanzparameter können beispielsweise Mittelwerte über jeweils 24 h darstellen. Die Datenübertragung kann beispielsweise auf täglicher Basis erfolgen. In dem Servicecenter werden die diagnostischen Daten mit anderen Daten aus dem Implantat kombiniert, zum Beispiel mit der Entwicklung der Herzrate, den Zählerständen verschiedener (Ereignis-) Zähler usw. Die Trends können als Kardio-Reports via Fax oder Internet an einen verantwortlichen Arzt übermittelt und von diesem inspiziert werden. Außerdem können Alarme ausgelöst werden, wenn ein unerwartetes Verhalten der hämodynamischen Werte detektiert wird.
  • 2. Trendaufzeichnungen
  • Die aus dem Impedanzsignal extrahierten Parameter werden in dem Implantat als Langzeittrends gespeichert. Diese Trends können beispielsweise anlässlich einer nächstfolgenden Nachsorgeuntersuchung abgefragt und angezeigt werden. Für die abzuspeichernden Trendwerte werden die Impedanzparameter gemittelt, beispielsweise über 24 h, so dass Langzeitänderungen der Hämodynamik zu beobachten sind. Diese Änderungen können beispielsweise aufgrund der Remodellierung in Folge einer Resynchronisationstherapie auftreten.
  • 3. Online-Signalübertragung
  • Die Rohdaten des Impedanzsignals und die extrahierten Parameter werden von einem Implantat zu einem externen Gerät, beispielsweise einem Programmiergerät oder einem anderen Datenaufzeichnungsgerät via Telemetrie online übermittelt. Die Daten werden in Echtzeit angezeigt und von dem externen Gerät gespeichert. Der Arzt kann die hämodynamischen Änderungen in Folge bestimmter Interventionen, wie beispielsweise verschiedener Betriebsparametereinstellungen für einen Herzschrittmacher oder Kardioverter/Defibrillator mittels des externen Gerätes beobachten.
  • Die Auswertung des Impedanzsignals kann außerdem die folgenden Schritte umfassen:
  • 1. Parameteroptimierung
  • Verschiedene Betriebsparameter des Implantats können durch Bestimmen des hämodynamischen Zustands optimiert werden. Beispiele hierfür sind die AV-Verzögerungszeit, die VV-Verzögerungszeit oder der Stimulationsmodus eines beispielsweise biventrikulären Schrittmachers. Diese Parameteroptimierung kann interaktiv durch einen Arzt während einer Nachsorgeuntersuchung erfolgen oder automatisch durch das Implantat. Ein Beispiel für eine kontinuierliche, automatische Parameteroptimierung ist die Ratenadaption auf Basis des Schlagvolumens oder der Schlagimpedanz.
  • 2. Tachykardiedetektion oder -diskriminierung
  • Im Falle eines implantierbaren Kardioverters/Defibrillators ist die hämodynamische Information wesentlich, um eine ventrikuläre Fibrillation zu bestätigen oder eine ventrikuläre Tachykardie zu detektieren. Es ist insbesondere wichtig, hämodynamisch stabile und hämodynamisch instabile ventrikuläre Tachykardien voneinander zu unterscheiden (zu diskriminieren) um eine unnötige Schockabgabe zu vermeiden. Zu diesem Zweck wird eine Tachykardieepisode zusätzlich durch einen hämodynamischen Sensor ermittelt.

Claims (15)

  1. Implantant mit Elektrodenleitungsanschlüssen zum Anschluss intrakardialer und/oder epikardialer Elektrodenleitungen, wobei die Elektrodenleitungsanschlüsse zusammen wenigstens drei elektrische Kontakte aufweisen, von denen wenigstens einer einer rechtsventrikulären Elektrode und ein anderer einer linksventrikulären Elektrode zugeordnet ist, mit einer Impedanzbestimmungseinheit (IMP), die eine Strom- oder Spannungsquelle (I) und eine Messeinrichtung (U) für eine entsprechende Spannungs- bzw. Strommessung aufweist, die derart mit den elektrischen Kontakten und gegebenenfalls einer Gehäuseelektrode des Implantats verbunden sind, dass sich eine tri- oder quadrupolare Impedanzmessanordnung ergibt, die ausschließlich ventrikuläre Elektroden und darüber hinaus gegebenenfalls die Gehäuseelektrode umfasst, wobei die Impedanzmessanordnung Impedanzmesswerte liefert und mit einer Auswerteeinheit (EVAL) verbunden ist und die Auswerteeinheit (EVAL) ausgebildet ist, ein Minimum der Impedanzmesswerte innerhalb eines ersten (relativ zu einem ventrikulären Ereignis definierten) Zeitfensters als enddiastolische Impedanz (EDZ) und ein Maximum der Impedanzmesswerte innerhalb eines zweiten Zeitfensters als endsystolische Impedanz (ESZ) zu ermitteln oder eine enddiastolische Leitfähigkeit (EDC) als Kehrwert der enddiastolischen Impedanz (EDZ) und eine endsystolische Leitfähigkeit (ESC) als Kehrwert der endsystolischen Impedanz (ESZ) zu bilden.
  2. Implantat nach Anspruch 1, dadurch gekennzeichnet, dass das erste und das zweite Zeitfenster kürzer als ein jeweiliges Herzzyklusintervall und relativ zu einem ventrikulären Ereignis in einem Herzzyklus orientiert sind.
  3. Implantat nach Anspruch 2, dadurch gekennzeichnet, dass das erste Zeitfenster zu einem ersten Anfangszeitpunkt (x1) vor dem jeweiligen ventrikulären Ereignis beginnt und zu einem ersten Endzeitpunkt (x2) nach die sem ventrikulären Ereignis endet, während das zweite Zeitintervall zu einem zweiten Anfangszeitpunkt (y1) nach jenem ventrikulären Ereignis beginnt und zu einem zweiten Endzeitpunkt (y2) nach dem ventrikulären Ereignis endet.
  4. Implantat nach Anspruch 2, dadurch gekennzeichnet, dass das ein erster Anfangszeitpunkt (x1) und ein erster Endzeitpunkt (x2) eines ersten Zeitfenster wie auch ein zweiter Anfangszeitpunkt (y1) und ein zweiter Endzeitpunkt (y2) eines zweiten Zeitintervall vor dem ventrikulären Ereignis als Bezugszeitpunkt liegen.
  5. Implantat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Auswerteeinheit (EVAL) ausgebildet ist, aus einer Differenz der enddiastolischen Impedanz (EDZ) und der endsystolischen Impedanz (ESZ) eine ein Schlagvolumen repräsentierende Schlagimpedanz (SZ) zu ermitteln.
  6. Implantat nach Anspruch 5, dadurch gekennzeichnet, dass die Auswerteeinheit ausgebildet ist, aus der Schlagimpedanz (SZ) und der enddiastolischen Impedanz (EDZ) eine einen Auswurfanteil (EF) repräsentierende EF-Größe zu ermitteln.
  7. Implantat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Auswerteeinheit zusätzlich ausgebildet ist, ein sich aus einem zeitlichen Verlauf der Impedanzmesswerte ergebendes Impedanzsignal zu bestimmen und aus der ersten oder zweiten Ableitung des Impedanzsignals eine eine Kontraktilität eines Herzens repräsentierende Kontraktilitätsgröße zu ermitteln.
  8. Implantat nach einem der Ansprüche 1 bis 7, gekennzeichnet durch einen Speicher (MEM) für Werte für die Schlagimpedanz und/oder die EF-Größe und/oder die Kontraktilität und/oder weitere der Impedanz- und Leitfähigkeitswerte aus den vorangehenden Ansprüchen.
  9. Implantat nach Anspruch 7, dadurch gekennzeichnet, dass die Auswerteeinheit (EVAL) ausgebildet ist, Werte für die Schlagimpedanz und/oder die EF-Größe und/oder die Kontraktilität zu regelmäßig wiederkehrenden Speicherzeitpunkten zu speichern.
  10. Implantat nach Anspruch 8, dadurch gekennzeichnet, dass die Auswerteeinheit (EVAL) ausgebildet ist, für einen Zeitraum zwischen zwei aufeinanderfolgenden Speicherzeitpunkten Mittelwerte für die Schlagimpedanz und/oder die EF-Größe und/oder die Kontraktilität zu bilden und den oder die Mittelwerte zu speichern.
  11. Implantat nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Auswerteeinheit ausgebildet ist, aus der zeitlichen Entwicklung der Schlagimpedanz und/oder der EF-Größe und/oder der Kontraktilität einen Trendwert für die Schlagimpedanz und/oder die EF-Größe und/oder die Kontraktilität zu ermitteln.
  12. Implantat nach Anspruch 10 und Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Auswerteinheit (EVAL) ausgebildet ist, den oder die Trendwerte zu einem jeweiligen Speicherzeitpunkt in dem Speicher zu speichern.
  13. Implantat nach Anspruch 8, gekennzeichnet durch eine Telemetrieeinheit (TEL), die wenigstens einen Telemetriesender umfasst und mit dem Speicher verbunden sowie ausgebildet ist, auf eine Abfrage hin oder zu regelmäßigen Sendezeitpunkten Werte für Schlagimpedanz und/oder die EF-Größe und/oder die Kontraktilität und/oder einen oder mehrere Mittel- oder Trendwerte an ein externes Gerät zu senden.
  14. Implantat nach einem der Ansprüche 1 und 12, gekennzeichnet durch wenigstens eine Steuer- (CTRL) und eine Stimulationseinheit (STIM), mit der Stimulations-, Kardioversions- und/oder Defibrillationsimpulse zu er zeugen und an wenigstens einen der Elektrodenleitungsanschlüsse abzugeben sind.
  15. Implantat nach einem der Ansprüche 1 und 13, gekennzeichnet durch eine quadrupolare Impedanzmessanordnung, die für den Anschluss an zwei rechtsventrikuläre Elektroden zur Stromeinspeisung und zwei linksventrikuläre, im Koronarsinus angeordnete Elektroden zur Messung der aus dem eingespeisten Strom resultierenden Spannung ausgebildet ist.
DE10361143A 2003-09-01 2003-12-16 Intrakardiale Impedanzmessanordnung Withdrawn DE10361143A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10361143A DE10361143A1 (de) 2003-09-01 2003-12-16 Intrakardiale Impedanzmessanordnung
EP04090233.0A EP1510173B1 (de) 2003-09-01 2004-06-14 Intrakardiale Impedanzmessanordnung
US10/923,117 US7395114B2 (en) 2003-09-01 2004-08-20 Intracardial impedance measuring arrangement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10340894 2003-09-01
DE10340894.0 2003-09-01
DE10361143A DE10361143A1 (de) 2003-09-01 2003-12-16 Intrakardiale Impedanzmessanordnung

Publications (1)

Publication Number Publication Date
DE10361143A1 true DE10361143A1 (de) 2005-03-24

Family

ID=34202384

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10361143A Withdrawn DE10361143A1 (de) 2003-09-01 2003-12-16 Intrakardiale Impedanzmessanordnung

Country Status (1)

Country Link
DE (1) DE10361143A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762270A1 (de) 2005-09-08 2007-03-14 BIOTRONIK CRM Patent AG Vorrichtung zur Bestimmung von Herzfunktionsparametern
DE102005047320A1 (de) * 2005-09-30 2007-04-05 Biotronik Crm Patent Ag Detektor für atriales Flimmern und Flattern
DE102009002397A1 (de) * 2009-04-15 2010-10-21 Biotronik Crm Patent Ag Herzmonitor
DE102009002399A1 (de) * 2009-04-15 2010-10-21 Biotronik Crm Patent Ag Vorrichtung und Verfahren zum Verarbeiten physiologischer Messwerte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154171A (en) * 1991-06-15 1992-10-13 Raul Chirife Rate adaptive pacemaker controlled by ejection fraction
US20010012953A1 (en) * 1999-12-17 2001-08-09 Molin Renzo Dal Active implantable medical device, in particular a pacemaker, defibrillator and/or cardiovertor of the multisite type providing resynchronization of the ventricles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154171A (en) * 1991-06-15 1992-10-13 Raul Chirife Rate adaptive pacemaker controlled by ejection fraction
US20010012953A1 (en) * 1999-12-17 2001-08-09 Molin Renzo Dal Active implantable medical device, in particular a pacemaker, defibrillator and/or cardiovertor of the multisite type providing resynchronization of the ventricles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762270A1 (de) 2005-09-08 2007-03-14 BIOTRONIK CRM Patent AG Vorrichtung zur Bestimmung von Herzfunktionsparametern
DE102005042923A1 (de) * 2005-09-08 2007-03-22 Biotronik Crm Patent Ag Vorrichtung zur Bestimmung von Herzfunktionsparametern
US7883469B2 (en) 2005-09-08 2011-02-08 Biotronik Crm Patent Ag Device for determining cardiac function parameters
DE102005047320A1 (de) * 2005-09-30 2007-04-05 Biotronik Crm Patent Ag Detektor für atriales Flimmern und Flattern
US7570990B2 (en) 2005-09-30 2009-08-04 Biotronik Crm Patent Ag Detector for atrial fibrillation and flutter
US7593766B2 (en) 2005-09-30 2009-09-22 Biotronik Crm Patent Ag Detector for atrial flutter and atrial fibrillation
DE102009002397A1 (de) * 2009-04-15 2010-10-21 Biotronik Crm Patent Ag Herzmonitor
DE102009002399A1 (de) * 2009-04-15 2010-10-21 Biotronik Crm Patent Ag Vorrichtung und Verfahren zum Verarbeiten physiologischer Messwerte
US8521265B2 (en) 2009-04-15 2013-08-27 Biotronik Crm Patent Ag Heart monitor
US8571641B2 (en) 2009-04-15 2013-10-29 Biotronik Crm Patent Ag Apparatus and method for processing physiological measurement values

Similar Documents

Publication Publication Date Title
EP1510173B1 (de) Intrakardiale Impedanzmessanordnung
EP1762270B1 (de) Vorrichtung zur Bestimmung von Herzfunktionsparametern
EP1586348B1 (de) Elektrotherapiegerät
DE602004007789T2 (de) Vorrichtung zur verwendung eines beschleunigungsmessersignals zur verbesserung der detektion von ventrikulärer arrhythmie
DE69213657T2 (de) Implantierbares Gerät zur Überwachung und Stimulation des Herzens für Diagnose und Therapie
DE69226547T2 (de) Gerät zur Dauerüberwachung des hämodynamischen Zustandes eines Patienten bei Verwendung von Doppler-Ultraschall
EP1769823B1 (de) Detektor für atriates Flimmern und Flattern
EP2060299B1 (de) Biventrikulärer Herzstimulator
DE60114507T2 (de) Verfahren und Vorrichtung zur biventrikulären Stimulation und zur Überwachung des Einfanges
EP2433565B1 (de) Implantierbares medizinischen Gerät
DE60020514T2 (de) Verfahren zur Unterscheidung von im Herzen erfassten elektrischen Ereignissen und entsprechendes System
DE10119395A1 (de) Erfassung der Ischämie-Herzkrankheit
DE60130132T2 (de) Verfahren und system zur messung einer quellenimpedanz mindestens eines elektronischen herzsignals eines säugetiers
EP2415396B1 (de) Herzmonitor
EP1955650B1 (de) Implantierbares medizinisches Gerät
EP2540341B1 (de) Herzstimulator zur Abgabe einer kardialen Konktraktilitätsmodulationstherapie
DE60031640T2 (de) Vorrichtung zur Erkennung einer natürlichen elektrischen Kohärenz im Herz und zur Verabreichung einer darauf basierenden Therapie
EP2561811A1 (de) Vergleich der rechts- und linksventrikulären Kontraktion mittels Akzelerometer in einer herznahen Arterie
EP2181648A2 (de) Einkammer-Herzstimulator
DE102007057227B4 (de) Herzstimulationsanordnung
WO2004050177A1 (de) Biventrikulärer herzschrittmacher zur kardialen resynchronisationstherapie
DE10361143A1 (de) Intrakardiale Impedanzmessanordnung
EP2135641A1 (de) Antitachykarder Herzstimulator
EP2422843B1 (de) Implantierbares elektronisches Therapiegerät
EP2111893A1 (de) Ventrikulärer Herzstimulator

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee