DE10325410B4 - Process for producing a low-nickel surface on nitinol - Google Patents

Process for producing a low-nickel surface on nitinol Download PDF

Info

Publication number
DE10325410B4
DE10325410B4 DE2003125410 DE10325410A DE10325410B4 DE 10325410 B4 DE10325410 B4 DE 10325410B4 DE 2003125410 DE2003125410 DE 2003125410 DE 10325410 A DE10325410 A DE 10325410A DE 10325410 B4 DE10325410 B4 DE 10325410B4
Authority
DE
Germany
Prior art keywords
nitinol
nickel
low
producing
nickel surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE2003125410
Other languages
German (de)
Other versions
DE10325410A1 (en
Inventor
Natalia Dr. Shevchenko
Manfred Dr. Maitz
Minh Tan Dr. Pham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Dresden Rossendorf eV
Original Assignee
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden Rossendorf eV filed Critical Forschungszentrum Dresden Rossendorf eV
Priority to DE2003125410 priority Critical patent/DE10325410B4/en
Priority to PCT/DE2004/001112 priority patent/WO2004108983A2/en
Publication of DE10325410A1 publication Critical patent/DE10325410A1/en
Application granted granted Critical
Publication of DE10325410B4 publication Critical patent/DE10325410B4/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Abstract

Verfahren zur Herstellung einer resistenten und nickelarmen Oberfläche auf Nitinol, wobei beschleunigte Stickstoff-Ionen in das Nitinol implantiert werden.method to produce a resistant and low-nickel surface Nitinol, where accelerated nitrogen ions are implanted into the nitinol become.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer nickelarmen Oberfläche auf Nitinol.The The invention relates to a process for producing a low-nickel surface on nitinol.

Die Anwendung des Verfahrens ist vorrangig in der Medizin gegeben, jedoch nicht auf dieses Gebiet beschränkt.The Application of the method is given priority in medicine, however not limited to this area.

Die Nickel-Titan-Legierung Nitinol kann als superelastische und als Formgedächtnis-Legierung hergestellt werden. Dadurch ist es für medizinische Anwendungen sehr interessant und auch bereits im Einsatz als Gefäßstents, die im aufgedehnten Gefäß selbst ihre Form halten. Als orthopädisches und Mund-Kiefer-Gesichts-chirurgisches Osteosynthesematerial wird es eingesetzt, weil die elastischen Eigenschaften denen von Knochen näher kommen und dadurch ein Krafteintrag vom Implantat in den Knochen gleichmäßiger erfolgt als es bei anderen Legierungen der Fall ist. Auch in der Orthodontie wird das Material für Spangen und Drähte wegen der guten mechanischen Eigenschaften genutzt und verdrängt Stahl.The Nickel Titanium Alloy Nitinol can be used as a super elastic and as a Shape memory alloy produced become. This is it for Medical applications very interesting and already in use as vascular stents, in the dilated vessel itself keep their shape. As orthopedic and Oral Jaw Facial Surgical Osteosynthesis Material It is used because the elastic properties of those of bones come closer and thereby a force input from the implant into the bone takes place more evenly as is the case with other alloys. Also in orthodontics will the material for Clasps and wires used because of the good mechanical properties and displaces steel.

Obwohl sich Nitinol in vielen Studien als sicher für medizinische Anwendungen erwiesen hat, gibt es von Seiten der anwendenden Ärzte noch Vorbehalte gegen das Material wegen des hohen Nickel-Gehalts von ca. 50%. Allergische Reaktionen und Gewebetoxizität von Nickel sind gut dokumentiert, eine Karzinogenität wird vermutet (Wataha J.C., O'Dell N.L., Singh B.B., Ghazi M., Whitford G.M., Lockwood P.E. Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res 58(5): 537–544 (2001)) Auch für Korrosionsprodukte von Nitinol wurden in Zellkulturversuchen schädigende Effekte nachgewiesen (Shih C.-C., Lin S.-J., Chen Y.-L., Su Y.-Y., Lai S.-T., Wu G.J., Kwok C.-F., Chung K.-H. The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res 52(2): 395–403 (2000)), und nach dem Einsetzen von Nitinol-Implantaten wurden im Tierversuch in den ersten Tagen erhöhte Nickel-Konzentrationen im Blut gefunden (Assad M., Chernyshov A.V., Jarzem P., Leroux M.A., Coillard C., Charette S., Rivard C.H. Porous titanium-nickel for intervertebral fusion in a sheep model: Part 2. Surface analysis and nickel release assessment. J Biomed Mater Res 64B(2): 121–129 (2003)). Die Korrosion von Gefäßstents aus Nitinol im Körper und damit auch die Nickel-Freisetzung ist nachgewiesen (Heintz C., Riepe G., Birken L., Kaiser E., Chakfe N., Morlock M., Delling G., Imig H. Corroded nitinol wires in explanted aortic endografts: an important mechanism of failure?, J Endovasc Ther 8(3): 248–253 (2001))Even though In many studies Nitinol is safe for medical applications has yet to be proven by the practitioner Reservations against the material due to the high nickel content of approx. 50%. Allergic reactions and tissue toxicity of nickel are well documented, carcinogenicity is suspected (Wataha J.C., O'Dell N.L., Singh B.B., Ghazi M., Whitford G.M., Lockwood P.E. Relating nickel-induced Tissue inflammation to nickel release in vivo. J Biomed Mater Res 58 (5): 537-544 (2001)) Also for Corrosive products of nitinol have been found to be harmful in cell culture experiments Effects detected (Shih C.-C., Lin S.-J., Chen Y.-L., Su Y.-Y., Lai S.-T., Wu G.J. Kwok C.-F., Chung K.-H. The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res 52 (2): 395-403 (2000)), and after the onset of Nitinol implants were in Animal experiment in the first days increased nickel concentrations found in the blood (Assad M., Chernyshov A.V., Jarzem P., Leroux M.A. Coillard C., Charette S., Rivard C.H. Porous titanium-nickel for intervertebral fusion in a sheep model: Part 2. Surface analysis and nickel release assessment. J Biomed Mater Res 64B (2): 121-129 (2003)). The corrosion of vascular stents Nitinol in the body and thus also the release of nickel is proven (Heintz C., Riepe G., Birken L., Kaiser E., Chakfe N., Morlock M., Delling G., Imig H. Corroded nitinol wires in explanted aortic endografts: an important mechanism of failure ?, J Endovasc Ther 8 (3): 248-253 (2001))

Als Ursache für die in Studien nachgewiesene gute Biokompatibilität von Nitinol wird die oberflächliche Oxidschicht von wenigen Atomlagen gesehen, die nur Titanoxid enthält und frei von Nickel ist. Während der Implantation des Nitinolteiles in den Körper des Patienten kann diese dünne und mechanisch nicht stabile Schicht jedoch beschädigt werden, so dass Nickel an der Oberfläche frei liegt, korrodiert und die genannten unerwünschten Effekte hervorruft.When Cause for the proven biocompatibility of Nitinol in studies becomes the superficial Oxide layer seen from a few atomic layers containing only titanium oxide and free of nickel is. While implantation of the Nitinolteiles in the body of the patient can this thin and mechanically unstable layer, however, will be damaged, leaving nickel on the surface is free, corroded and causes the mentioned undesirable effects.

Es wurden daher Verfahren gesucht, die die Nickel-Freisetzung aus der Nitinol-Oberfläche verhindern, ohne die gewünschten mechanischen Eigenschaften des Material-Körpers zu verändern.It Therefore, methods have been sought that the nickel release from the Nitinol surface prevent without the desired change mechanical properties of the material body.

So wurde bereits versucht, dieses Ziel durch Beschichten zu erreichen (Starosvetsky D., Gotman I. TiN coating improves the corrosion behavior of superelastic NiTi surgical alloy. Surf Coat Techn 148: 268–276 (2001), Schellhammer F., Walter M., Berlis A., Bloss H.G., Wellens E., Schumacher M. Polyethylene terephthalate and polyurethane coatings for endovascular stents: preliminary results in canine experimental arteriovenous fistulas. Radiology 211(1): 169–175 (1999)). Jedoch sind die Schichten nicht für alle Anwendungen praktikabel, oft bietet eine Beschichtung nicht die geforderte Langzeit-Haftfestigkeit. Polymer-Beschichtungen sind für orthopädische Anwendung ungeeignet.So has already been attempted to achieve this goal by coating (Starosvetsky D., Gotman I. TiN coating improves the corrosion behavior of superelastic NiTi surgical alloy. Surf Coat Techn. 148: 268-276 (2001), Schellhammer F., Walter M., Berlis A., Bloss H.G., Wellens E., Schumacher M. Polyethylene terephthalate and polyurethane coatings for endovascular stents: preliminary results in canine experimental arteriovenous fistulas. Radiology 211 (1): 169-175 (1999)). However, the layers are not practical for all applications, Often, a coating does not provide the required long-term adhesion. Polymer coatings are for orthopedic application not suitable.

Es wurde auch vorgeschlagen, die kristalline Oxidschicht in eine amorphe umzuwandeln, die eine bessere Kratzfestigkeit aufweist (Shih C.-C., Lin S.-J., Chung K.-H., Chen Y.-L., Su Y.-Y. Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide. J Biomed Mater Res 52(2): 323–332 (2000)). Die Ergebnisse konnten nicht befriedigen.It has also been proposed, the crystalline oxide layer in an amorphous which has better scratch resistance (Shih C.-C., Lin S.-J., Chung K.-H., Chen Y.-L., Su Y.-Y. Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide. J Biomed Mater Res 52 (2): 323-332 (2000)). The results could not satisfy.

Durch Sauerstoff- lonenimplantation in die Nitinol-Oberfläche konnte eine dickere Titanoxid-Schicht auf der Oberfläche hergestellt werden, aus der Nickel verdrängt war (Tan L., Crone W.C. surface characterization of NiTi modified by plasma source ion implantation. Acta Materialia 50: 4449–4460 (2002)). Allerdings kann dieses Titanoxid hohen Scherbelastungen auf die Oberfläche, wie sie bei orthopädischen Anwendungen auftreten, nicht standhalten, es bildet sich Abrieb und ungeschützte nickelhaltige Metalloberfläche liegt frei.By Oxygen ion implantation into the nitinol surface a thicker titanium oxide layer can be made on the surface the nickel displaced was (Tan L., Crone W.C. surface characterization of NiTi modified by plasma source ion implantation. Acta Materialia 50: 4449-4460 (2002)). However, this titanium oxide can have high shear stresses on the Surface, as with orthopedic Applications occur, do not withstand, it forms abrasion and unprotected nickel-containing metal surface is free.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren vorzuschlagen, mit dem die Nitinol-Oberfläche so modifiziert werden kann, dass sie durch Nickel-Armut oder – Freiheit gut bioverträglich ist, ohne die gewünschten mechanischen Eigenschaften des Materials an sich zu verändern. Diese Oberflächen-Schicht soll mechanisch stabil, kratzunempfindlich und fest haftend sein.Of the Invention has for its object to propose a method with the nitinol surface can be modified by nickel poverty or - freedom good biocompatible, without the desired mechanical properties of the material itself. This surface layer should be mechanically stable, scratch-resistant and firmly adhering.

Erfindungsgemäß wird die Aufgabe mit dem im Hauptanspruch dargelegten Merkmal gelöst. Die vorteilhafte Ausgestaltung ist in den Unteransprüchen enthalten.According to the invention Problem solved by the feature set out in the main claim. The advantageous Embodiment is included in the subclaims.

Die Stickstoff-Ionenimplantation in Nitinol führt zur Verringerung der Nickel-Konzentration in einer oberflächlichen Schicht und zur Umwandlung der Oberfläche in eine bioverträgliche, korrosionsbeständige und mechanisch stabile Titan-Nitrid-Schicht. Nitinol kann in Form von medizinischen Implantaten oder am Körper anzubringender Hilfsmittel vorliegen.The Nitrogen ion implantation in nitinol leads to a reduction in nickel concentration a superficial Layer and to convert the surface into a biocompatible, corrosion-resistant and mechanically stable titanium nitride layer. Nitinol can be in shape of medical implants or aids to be attached to the body available.

Im Gegensatz zu Beschichtungen gibt es keine Grenzfläche zwischen Substrat und Schutzschicht, die häufig ein mechanischer Schwachpunkt ist.in the Unlike coatings, there is no interface between Substrate and protective layer, which is often a mechanical weak point.

Nickel wird bis in eine Tiefe von 100 – 500 nm unter der Oberfläche vollständig entfernt und die Oberfläche ist durch das Titan-Nitrid „versiegelt". Dadurch ist eine weitere Nickel-Freisetzung ausgeschlossen.nickel will be down to a depth of 100 - 500 nm below the surface Completely removed and the surface is "sealed" by the titanium nitride excluded further nickel release.

Im Gegensatz zur Sauerstoff-Ionenimplantation wird eine mechanisch sehr stabile Oberfläche erzeugt, die bei Einsatz in der Orthopädie und zusammen mit Knochenzement nicht zu Abrieb führt.in the Unlike the oxygen ion implantation becomes a mechanical very stable surface produced when used in orthopedics and together with bone cement does not lead to abrasion.

Die Erfindung wird nachfolgend an vier Ausführungsbeispielen näher erläutert.The The invention will be explained in more detail below with reference to four exemplary embodiments.

Beispiel 1:Example 1:

  • (a) Ein Plättchen aus polykristallinem Nitinol (55.90 wt.% Ni and 44.08 wt.% Ti) wird spiegelnd poliert.(a) a tile polycrystalline nitinol (55.90 wt.% Ni and 44.08 wt.% Ti) mirror polished.
  • (b) Das Plättchen wird in Argon-Plasma durch Sputtern (pbasic < 8 10–4 Pa; pAr = 0.4 Pa; Hpulse = 2 kHz; τpulse = 5 μs; Hochfrequenzleistung = 400 W; UAr = 2 keV; Dauer = 15 min.) gereinigt.(b) The platelet is sputtered in argon plasma (p basic <8 10 -4 Pa; p Ar = 0.4 Pa; H pulse = 2 kHz; τ pulse = 5 μs; high frequency power = 400 W; U Ar = 2 keV ; Duration = 15 min.).
  • (c) Das Plasma für die Plasmaimmersions-Ionenimplantation wird durch eine HF-Entladungs-Quelle mit der Leistung 350 W in einer Ultrahochvakuum-Kammer erzeugt. Der Basis-Gasdruck ist kleiner 8 × 10–4 Pa, der Stickstoff-Gasdruck beträgt 0.2 Pa. An die Probe werden negative Hochspannungspulse von 20–40 kV gelegt mit der Frequenz 400 Hz und der Pulsdauer 5 μs. Die Behandlung wird 42 Minuten durchgeführt, bis eine Gesamtdosis von 5 × 1017 cm–2 erreicht ist.(c) Plasma for plasma immersion ion implantation is generated by a 350 W RF discharge source in an ultrahigh vacuum chamber. The base gas pressure is less than 8 × 10 -4 Pa, the nitrogen gas pressure is 0.2 Pa. Negative high voltage pulses of 20-40 kV are applied to the sample with the frequency 400 Hz and the pulse duration 5 μs. The treatment is carried out for 42 minutes until a total dose of 5 × 10 17 cm -2 is reached.

Beispiel 2:Example 2:

Ein Nitinol-Plättchen wird vorbehandelt wie im Beispiel 1(a) und (b). Für Plasmaimmersions-Ionenimplantation von Argon wird Argon-Plasma durch eine HF-Entladungs-Quelle mit der Leistung 350 W in einer Ultrahochvakuum-Kammer erzeugt. Der Basis-Gasdruck ist kleiner 8 × 10–4 Pa, der Argon-Gasdruck beträgt 0.2 Pa. An die Probe werden negative Hochspannungspulse von 20 – 40 kV gelegt mit der Frequenz 400 Hz und der Pulsdauer 5 μs. Die Behandlung wird 42 Minuten durchgeführt, bis eine Gesamtdosis von 5 × 1017 cm–2 erreicht ist. Danach erfolgt die Stickstoff-Plasmaimmersions-Ionenimplantation wie in Beispiel 1(c).A nitinol plate is pretreated as in Example 1 (a) and (b). For plasma immersion ion implantation of argon, argon plasma is generated by a 350 W RF discharge source in an ultrahigh vacuum chamber. The base gas pressure is less than 8 × 10 -4 Pa, the argon gas pressure is 0.2 Pa. Negative high voltage pulses of 20 - 40 kV are applied to the sample with the frequency 400 Hz and the pulse duration 5 μs. The treatment is carried out for 42 minutes until a total dose of 5 × 10 17 cm -2 is reached. Thereafter, the nitrogen plasma immersion ion implantation is carried out as in Example 1 (c).

Beispiel 3:Example 3:

Ein Gefäßstent aus Nitinol rotiert langsam in der Ultrahochvakuumkamer. Er wird . vorbehandelt wie in Beispiel 1(b) und ionenimplantiert wie in Beispiel 1(c)One Vascular stent off Nitinol slowly rotates in the ultra-high vacuum chamber. He will . pretreated like in Example 1 (b) and ion-implanted as in Example 1 (c)

Beispiel 4:Example 4:

Ein Stab zur Skoliose-Korrektur aus Nitinol wird in einem Ionenstrahl-Implanter so montiert, dass sich der Ionenstrahl über die gesamte Oberfläche rotierend bewegen kann. Der Stab wird behandelt wie in Beispiel 1(b). Der Stab wird darauf mit Stickstoff Ionenstrahl-implantiert mit der Energie 40 keV, und der Dosis 5 × 1017 cm–2.A rod for scoliosis correction from nitinol is mounted in an ion beam implanter so that the ion beam can rotate over the entire surface. The rod is treated as in Example 1 (b). The rod is then ion beam implanted with nitrogen at 40 keV, and the dose 5x10 17 cm -2 .

Claims (5)

Verfahren zur Herstellung einer resistenten und nickelarmen Oberfläche auf Nitinol, wobei beschleunigte Stickstoff-Ionen in das Nitinol implantiert werden.Process for producing a resistant and low-nickel surface on nitinol, whereby accelerated nitrogen ions in the nitinol be implanted. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor der Stickstoff-Implantation eine Implantation von beschleunigten Argon-Ionen vorgenommen wird.Method according to claim 1, characterized in that that before the nitrogen implantation an implantation of accelerated argon ions is made. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ionen-Implantation bei einer Ionen-Energie von 10 bis 100 keV durchgeführt wird.Method according to claim 1 or 2, characterized that the ion implantation is carried out at an ion energy of 10 to 100 keV. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen 1017 und 1018 Ionen pro cm2 implantiert werden.A method according to claim 1 or 2, characterized in that between 10 17 and 10 18 ions per cm 2 are implanted. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Temperatur beim gesamten Prozess unter 500°C gehalten wird.Method according to claim 1 or 2, characterized that the temperature during the entire process kept below 500 ° C. becomes.
DE2003125410 2003-06-05 2003-06-05 Process for producing a low-nickel surface on nitinol Expired - Fee Related DE10325410B4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE2003125410 DE10325410B4 (en) 2003-06-05 2003-06-05 Process for producing a low-nickel surface on nitinol
PCT/DE2004/001112 WO2004108983A2 (en) 2003-06-05 2004-05-29 Method for producing a low nickel content surface on nitinol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003125410 DE10325410B4 (en) 2003-06-05 2003-06-05 Process for producing a low-nickel surface on nitinol

Publications (2)

Publication Number Publication Date
DE10325410A1 DE10325410A1 (en) 2004-12-30
DE10325410B4 true DE10325410B4 (en) 2005-04-14

Family

ID=33482548

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003125410 Expired - Fee Related DE10325410B4 (en) 2003-06-05 2003-06-05 Process for producing a low-nickel surface on nitinol

Country Status (2)

Country Link
DE (1) DE10325410B4 (en)
WO (1) WO2004108983A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1835946T3 (en) * 2005-01-13 2011-06-30 Versitech Ltd Surface treated shape memory materials and methods for making same
CN109234696A (en) * 2018-09-12 2019-01-18 杭州联芳科技有限公司 A kind of intravascular stent nitrogen implantation method
EP3636294B1 (en) 2018-10-08 2021-11-17 Jozef Stefan Institute Method for treatment medical devices made from nickel - titanium (niti) alloys
CN117512496B (en) * 2024-01-05 2024-03-08 沈阳市口腔医院 Treatment method for protecting surface of nickel-titanium alloy correction archwire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538903A1 (en) * 1995-10-19 1997-04-24 Rossendorf Forschzent Method for ion implantation into conductive and semiconductive workpieces
US6306175B1 (en) * 1984-02-28 2001-10-23 Aea Technology Plc Titanium alloy hip prosthesis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531139A (en) * 1978-08-25 1980-03-05 Nippon Denshi Kogyo Kk Ion-treating apparatus
JPH02115362A (en) * 1988-10-24 1990-04-27 Furukawa Electric Co Ltd:The Ni-ti shape memory alloy showing gold color and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306175B1 (en) * 1984-02-28 2001-10-23 Aea Technology Plc Titanium alloy hip prosthesis
DE19538903A1 (en) * 1995-10-19 1997-04-24 Rossendorf Forschzent Method for ion implantation into conductive and semiconductive workpieces

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B.L. Mordike, Plasmaimmersionsionenimplantation (PIII), Technische Rundschau 23(1997)6 *
D. Starosvetsky, I. Gotman, TiN coating improves the corrosion behaviour of superelastic NiTi surgical alloy, Surf Coat. Techn. 148(2001)268- 276 *
JP 02-115 362 A Pat. Abstr. of Jp.
JP 02115362 A Pat. Abstr. of Jp. *
JP 03-177 570 A Pat. Abstr. of Jp.
JP 03177570 A Pat. Abstr. of Jp. *

Also Published As

Publication number Publication date
WO2004108983A3 (en) 2005-05-26
DE10325410A1 (en) 2004-12-30
WO2004108983A2 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
Singh et al. Corrosion degradation and prevention by surface modification of biometallic materials
RU2640700C2 (en) Magnesium alloy, method of its manufacture and use
Yahia Shape memory implants
US4743308A (en) Corrosion inhibition of metal alloys
JP5352776B2 (en) In vivo degradable metal implants
Manivasagam et al. Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices
Nielsen Corrosion of metallic implants
US20090131540A1 (en) Biodegradable Magnesium Based Metallic Material for Medical Use
DE102007061647A1 (en) Implant with a body made of a biocorrodible alloy
Imam¹ et al. Titanium alloys as implant materials
Pilliar Metallic biomaterials
Cvijović‐Alagić et al. Electrochemical behaviour of Ti‐6Al‐4V alloy with different microstructures in a simulated bio‐environment
EP3229852A1 (en) ULTRAHIGH DUCTILITY, NOVEL Mg-Li BASED ALLOYS FOR BIOMEDICAL APPLICATIONS
Hikku et al. Calcium phosphate conversion technique: A versatile route to develop corrosion resistant hydroxyapatite coating over Mg/Mg alloys based implants
Heakal et al. Integrity of metallic medical implants in physiological solutions
US20170043055A1 (en) Materials with modified surfaces and methods of manufacturing
DE10325410B4 (en) Process for producing a low-nickel surface on nitinol
DE102014105732B3 (en) Process for the surface treatment of a biocorrodible implant and implant obtained by the process
Rațoi et al. Preliminary results of FeMnSi+ Si (PLD) alloy degradation
Shabalovskaya et al. Bioperformance of nitinol: surface tendencies
TWI513480B (en) Magnesium alloy suitable for medical implants and method for manufacturing the same
KR101786645B1 (en) A preparation method for a magnesium substrate with improved anti-corrosive property by dual coating with bioceramic and biodegradable polymer
EP2767295A1 (en) Biocorrodible implant with anti-corrosion coating
Hryniewicz et al. On the Nitinol properties improvement after electrochemical treatments
Narnaware Metallic biomaterials for human body implant: a review study

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: FORSCHUNGSZENTRUM DRESDEN - ROSSENDORF E.V., 0, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130101