DE10318522B4 - Wasch- oder Reinigungsmittel mit optischen Effekten - Google Patents

Wasch- oder Reinigungsmittel mit optischen Effekten Download PDF

Info

Publication number
DE10318522B4
DE10318522B4 DE10318522A DE10318522A DE10318522B4 DE 10318522 B4 DE10318522 B4 DE 10318522B4 DE 10318522 A DE10318522 A DE 10318522A DE 10318522 A DE10318522 A DE 10318522A DE 10318522 B4 DE10318522 B4 DE 10318522B4
Authority
DE
Germany
Prior art keywords
weight
acid
coating
detergent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10318522A
Other languages
English (en)
Other versions
DE10318522A1 (de
Inventor
Sandra Dr. Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE10318522A priority Critical patent/DE10318522B4/de
Publication of DE10318522A1 publication Critical patent/DE10318522A1/de
Application granted granted Critical
Publication of DE10318522B4 publication Critical patent/DE10318522B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0089Pearlescent compositions; Opacifying agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Wasch- oder Reinigungsmittelpartikel, umfassend einen Kern, welcher wasch- oder reinigungsaktive Aktivsubstanz enthält und eine den Partikel umgebende Beschichtung, welche lichtreflektierende Komponenten enthält, dadurch gekennzeichnet, daß die Beschichtung bezogen auf ihr Gewicht
a) 15 bis 89,9 Gew.-% Hydroxypropylmethyl- und/oder Carboxymethylcellulose,
b) 5 bis 25 Gew.-% eines oder mehrerer Plastifiziermittel(s), ausgewählt aus der Gruppe der Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbanat und/oder Propylencarbonat;
c) 5 bis 70 Gew.-% Füllstoff(e), ausgewählt aus der Gruppe Cellulose und/oder Stärke und/oder Polycarboxylate;
d) 0,1 bis 10 Gew.-% lichtreflektierender Komponente(n), ausgewählt aus der Gruppe der Metalloxide, vorzugsweise Titandioxid, und der Perlglanzpigmente;
enthält.

Description

  • Die vorliegende Erfindung betrifft Wasch- oder Reinigungsmittel, welche vorteilhafte optische Eigenschaften aufweisen. Sie betrifft insbesondere beschichtete Wasch- oder Reinigungsmittel-Partikel, welche optisch reizvoll sind und den Kaufanreiz für den Verbraucher verstärken.
  • Wasch- oder Reinigungsmittel werden üblicherweise nicht in der Farbe der Rohstoffe bzw. Rohstoffgemische verkauft, sondern optisch aufgewertet. Bei tablettenförmigen Wasch- oder Reinigungsmitteln werden einzelne Schichten oder Regionen der Tablette eingefärbt, um auf diese Weise auf die betriebliche Herkunft und/oder bestimmte Wirkmechanismen hinzuweisen. Flüssige Wasch- oder Reinigungsmittel werden ebenfalls überwiegend nicht farblos durchsichtig, sondern eingefärbt verkauft. Bei Schüttgütern ist es verbreitet, nicht das gesamte Schüttgut einzufärben, sondern diesem einzelne eingefärbte Partikel, sogenannte Sprenkel, zuzusetzen. Die Einfärbung dient bei allen diesen Produkten teilweise auch dazu, farblich unattraktive Rohstoffe (beispielsweise in Gelb- oder Brauntönen) in die Mittel inkorporieren zu können und dabei den optischen Gesamteindruck des Mittels aufzuwerten.
  • Sprenkel werden üblicherweise dadurch hergestellt, daß ein Farbstofflösung auf einen entsprechenden Trägerpartikel aufgebracht wird. Problematisch ist hierbei, daß einerseits das Lösungsmittel zu großen Teilen wieder entfernt werden muß, was die Verfahrenskosten erhöht, und andererseits, daß Feuchtigkeit im Produkt zu Verklumpungen führen kann. Darüber hinaus kann der Farbstoff aus dem Sprenkel „ausbluten", was zu einem unerwünschten Produktaussehen und geringer Käuferakzeptanz führt.
  • Zur Lösung der vorstehenden Problem schlägt die internationale Patentanmeldung WO 00/61718 A1 vor, lichtreflektierende Partikel in die Wasch- oder Reinigungsmittel zu inkorporieren. Diese lichtreflektierenden Partikel werden erhalten, indem man lichtreflektierende Substanzen auf die Oberfläche von Trägermaterialien aufbringt. Die Haftung dieser Substanzen auf der Oberfläche wird mittels Bindemitteln, beispielsweise PEG 1500, erreicht.
  • Nachteilig an dieser Lösung ist, daß die Oberfläche der lichtreflektierenden Partikel rau ist und die Partikel bei längerer Lagerung dazu neigen, das Verpackungsmaterial zu verschmutzen. Auch die optischen Eigenschaften sind im Vergleich zu bekannten Effektlacken auf anderen Oberflächen noch verbesserungsbedürftig.
  • Einfache Metalloxid-haltige Beschichtungen auf Stärkebasis, die beispielsweise zur Beschichtung von Enzymgranulaten eingesetzt werden können, offenbart die internationale Anmeldung WO 99/51210 A1.
  • Gegenstand der JP 03111497 A sind Zusammensetzungen für die Beschichtung wasch- oder reinigungsaktiver Partikel, die neben einem Metalloxid weiterhin ein filmbildendes Polymer umfassen.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, die optischen Eigenschaften lichtreflektierender Partikel, welche zum Einsatz in Wasch- oder Reinigungsmitteln bestimmt sind, weiter zu verbessern und daneben eine bessere Lagerstabilität auch bei höheren Temperaturen zu gewährleisten. Die Oberfläche der Partikel sollte dabei möglichst glatt sein, um die optischen Effekte zu unterstützen.
  • Es wurde nun gefunden, daß der Einsatz von speziellen Beschichtungszusammensetzungen das vorstehend genannte Aufgabenprofil löst.
  • Gegenstand der vorliegenden Erfindung ist in einer ersten Ausführungsform ein Wasch- oder Reinigungsmittelpartikel, umfassend einen Kern, welcher wasch- oder reinigungskative Aktivsubstanz enthält und eine den Partikel umgebende Beschichtung, welche lichtreflektierende Komponenten enthält, dadurch gekennzeichnet, daß die Beschichtung bezogen auf ihr Gewicht
    • a) 15 bis 89, 9 Gew.-% Hydroxypropylmethyl- und/oder Carboxymethylcellulose,
    • b) 5 bis 25 Gew.-% eines oder mehrerer Plastifiziermittel(s), ausgewählt aus der Gruppe der Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbonat und/oder Propylencarbonat;
    • c) 5 bis 70 Gew.-% Füllstoff(e), ausgewählt aus der Gruppe Cellulose und/oder Stärke und/oder Polycarboxylate;
    • d) 0,1 bis 10 Gew.-% lichtreflektierender Komponente(n), ausgewählt aus der Gruppe der Metalloxide, vorzugsweise Titandioxid, und der Perlglanzpigmente;
    enthält.
  • Als Kern, d.h. als Trägermaterial für die Beschichtung, bieten sich die unterschiedlichsten Inhaltsstoffe von Wasch- oder Reinigungsmitteln an, wobei bestimmte Inhaltsstoffe gegenüber anderen Inhaltsstoffen bevorzugt sind, siehe unten. Die erfindungsgemäß optimierte Beschichtung enthält als ersten Bestandteil Hydroxypropylmethyl- und/oder Carboxymethylcellulose.
  • Hydroxylpropylmethylcellulose (HPMC) ist ein Cellulosemischether, der neben einem dominierenden Gehalt an Methylgruppen zusätzlich Hydroxypropylgruppen aufweist. Der Substitutionsgrad von im Rahmen der vorliegenden Erfindung bevorzugten HPMC beträgt 0,7 bis 2,9, vorzugsweise 1,0 bis 2,5 und insbesondere 1,4 bis 2,3. Weiter bevorzugt ist der Einsatz von HPMC, welche in 2 Gew.-%-iger wäßriger Lösung bei 20°C eine Viskosität von 3 bis 15 mPas aufweisen (gemessen mit Brookfield-Viskosimeter LVT-II bei 20 U/min und 20°C, Spindel 3).
  • Alternativ zur HPMC oder zusammen mit ihr kann erfindungsgemäß auch Carboxymethylcellulose (CMC) eingesetzt werden. Diese weist als Substituenten -CH2-COONa-Gruppen auf und wird technisch durch Umsetzung von Alkalicellulose mit Monochloressigsäure bzw. deren natriumsalz hergestellt. Der Substitutionsgrad von im Rahmen der vorliegenden Erfindung bevorzugten CMC beträgt 0,5 bis 1,5, vorzugsweise 0,7 bis 1,3 und insbesondere 0,8 bis 1,2. Weiter bevorzugt ist der Einsatz von CMC, welche in 2 Gew.-%-iger wäßriger Lösung bei 20°C eine Viskosität von 2 bis 30 mPas aufweisen (gemessen mit Brookfield-Viskosimeter LVT-II bei 20 U/min und 20°C, Spindel 3).
  • Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelpartikel enthalten HPMC und/oder CMC innerhalb engerer Mengenbereiche und sind dadurch gekennzeichnet, daß der Gehalt der Beschichtung an Hydroxypropylmethyl- und/oder Carboxymethylcellulose 20 bis 89 Gew.-%, vorzugsweise 25 bis 85 Gew.-%, besonders bevorzugt 30 bis 80 Gew.-% und insbesondere 35 bis 70 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  • Als weiteren Bestandteile enthalten die erfindungsgemäßen Partikel in der Beschichtung ein oder mehrere Plastifiziermittel ausgewählt aus der Gruppe der Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbonat und/oder Propylencarbonat. Dabei liegt der Gehalt bevorzugter erfindungsgemäßer Wasch- oder Reinigungsmittelpartikel an Plastifiziermitteln ebenfalls innerhalb engerer Mengenbereiche. Bei bevorzugten erfindungsgemäßen Partikeln beträgt der Gehalt der Beschichtung an Plastifiziermittel(n) 5,5 bis 20 Gew.-%, vorzugsweise 6 bis 15 Gew.-%, besonders bevorzugt 7,5 bis 12,5 Gew.-% und insbesondere 8 bis 12 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung.
  • Als Plastifiziermittel lassen sich erfindungsgemäß vorzugsweise Stoffe einsetzen, welche bei 25°C und 1013,25 mbar flüssig sind. Weitere bevorzugte Plastifiziermittel sind solche, die bei Raumtemperatur mit Wasser vollständig, d.h. ohne Mischungslücke, mischbar sind und/oder solche, die nicht in die Gruppe der Tenside gehören.
  • Aus der Vielzahl der einsetzbaren Plastifiziermittel haben sich insbesondere Stoffe aus der Gruppe der Polyethylenglycole und Polypropylenglycole, Glycerin, Glycerincarbonat, Ethylenglycol, Propylengylcol und Propylencarbonat als geeignete Bindemittel erwiesen.
  • Erfindungsgemäß einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel H-(O-CH2-CH2)n-OH genügen, wobei n Werte zwischen 1 (Ethylenglycol, siehe unten) und ca. 16 annehmen kann. Maßgeblich bei der Bewertung, ob ein Polyethylenglycol erfindungsgemäß einsetzbar ist, ist dabei der Aggregatzustand des PEG bei Raumtemperatur, d.h. der Erstarrungspunkt des PEG muß unter 25°C liegen. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe „PEG", so daß „PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Nach dieser Nomenklatur sind im Rahmen der vorliegenden Erfindung die technisch gebräuchlichen Polyethylenglycole PEG 200, PEG 300, PEG 400 und PEG 600 einsetzbar.
  • Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind erfindungsgemäß beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 einsetzbar.
  • Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelsnamen mit höheren Zahlen.
  • Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel
    Figure 00060001
    genügen, wobei n Werte zwischen 1 (Propylenglycol, siehe unten) und ca. 12 annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die Vertreter mit n = 2, 3 und 4 in der vorstehenden Formel.
  • Glycerin ist eine farblose, klare, schwerbewegliche, geruchlose süß schmeckende hygroskopische Flüssigkeit der Dichte 1,261, die bei 18,2°C erstarrt. Glycerin war ursprünglich nur ein Nebenprodukt der Fettverseifung, wird heute aber in großen Mengen technisch synthetisiert. Die meisten technischen Verfahren gehen von Propen aus, das über die Zwischenstufen Allylchlorid, Epichlorhydrin zu Glycerin verarbeitet wird. Ein weiteres technisches Verfahren ist die Hydroxylierung von Allylalkohol mit Wasserstoffperoxid am WO3-Kontakt über die Stufe des Glycids.
  • Glycerincarbonat ist durch Umesterung von Ethylencarbonat oder Dimethylcarbonat mit Glycerin zugänglich, wobei als Nebenprodukte Ethylenglycol bzw. Methanol anfallen. Ein weiterer Syntheseweg geht von Glycidol (2,3-Epoxy-1-propanol) aus, das unter Druck in Gegenwart von Katalysatoren mit CO2 zu Glycerincarbonat umgesetzt wird. Glycerincarbonat ist eine klare, leichtbewegliche Flüssigkeit mit einer Dichte von 1,398 gcm–3, die bei 125-130°C (0,15 mbar) siedet.
  • Ethylenglycol (1,2-Ethandiol, "Glykol") ist eine farblose, viskose, süß schmeckende, stark hygroskopische Flüssigkeit, die mit Wasser, Alkoholen und Aceton mischbar ist und eine Dichte von 1,113 aufweist. Der Erstarrungspunkt von Ethylenglycol liegt bei –11,5°C, die Flüssigkeit siedet bei 198°C. Technisch wird Ethylenglycol aus Ethylenoxid durch Erhitzen mit Wasser unter Druck gewonnen. Aussichtsreiche Herstellungsverfahren lassen sich auch auf der Acetoxylierung von Ethylen und nachfolgender Hydrolyse oder auf Synthesegas-Reaktionen aufbauen.
  • Vom Propylengylcol existieren zwei Isomere, das 1,3-Propandiol und das 1,2-Propandiol. 1,3-Propandiol (Trimethylenglykol) ist eine neutrale, farb- und geruchlose, süß schmeckende Flüssigkeit der Dichte 1,0597, die bei –32°C erstarrt und bei 214°C siedet. Die Herstellung von 1,3-Propandiol gelingt aus Acrolein und Wasser unter anschließender katalytischer Hydrierung.
  • Technisch weitaus bedeutender ist 1,2-Propandiol (Propylenglykol), das eine ölige, farblose, fast geruchlose Flüssigkeit, der Dichte 1,0381 darstellt, die bei –60°C erstarrt und bei 188°C siedet. 1,2-Propandiol wird aus Propylenoxid durch Wasseranlagerung hergestellt.
  • Propylencarbonat ist eine wasserhelle, leichtbewegliche Flüssigkeit, mit einer Dichte von 1,2057 gcm–3, der Schmelzpunkt liegt bei –49°C, der Siedepunkt bei 242°C. Auch Propylencarbonat ist großtechnisch durch Reaktion von Propylenoxid und CO2 bei 200°C und 80 bar zugänglich.
  • Erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind dadurch gekennzeichnet, daß die Beschichtung als Plastifiziermittel Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbonat und/oder Propylencarbonat enthält.
  • Als dritten Bestandteil enthalten die erfindungsgemäßen Partikel in der Beschichtung Füllstoffe. Diese Füllstoffe besitzen vorzugsweise die Eigenschaft, als Bindemittel zu fungieren, indem sie mit der HPMC und/oder CMC Wasserstoffbrückenbindungen aufbauen können. Besonders geeignet ist als Füllstoff Cellulose, aber auch Stärke und/oder Stärkederivate sind als Füllstoffe geeignet. Erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind dadurch gekennzeichnet, daß die Beschichtung als Füllstoffe) Cellulose und/oder Stärke und/oder Polycarboxylate enthält.
  • Weiter bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelpartikel enthalten den bzw. die Füllstoffe in engeren Mengenbereichen und sind dadurch gekennzeichnet, daß der Gehalt der Beschichtung an Füllstoff(en) 5,5 bis 60 Gew.-%, vorzugsweise 7 bis 50 Gew.-%, besonders bevorzugt 8 bis 40 Gew.-% und insbesondere 9 bis 30 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  • Der optische Effekt der erfindungsgemäßen Partikel wird vom vierten Bestandteil der Beschichtung bewirkt. Dieser Bestandteil, eine oder mehrere lichtreflektierende Komponente(n), wird ebenfalls vorzugsweise innerhalb engerer Mengenbereiche eingesetzt. Hier sind erfindungsgemäße Wasch- oder Reinigungsmittelpartikel bevorzugt, bei denen der Gehalt der Beschichtung an lichtreflektierende(r/n) Komponente(n) 0,15 bis 9 Gew.-%, vorzugsweise 0,25 bis 8 Gew.-%, besonders bevorzugt 0,5 bis 7 Gew.-% und insbesondere 0,75 bis 5 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  • Erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind dadurch gekennzeichnet, daß die Beschichtung als lichtreflektierende Partikel Metalloxide, vorzugsweise Titandioxid, enthält.
  • Besonders vorteilhaft ist der Einsatz der vorstehend genannten Metalloxide in modifizierter Form, wobei die Metalloxide ihrerseits als Umhüllung anderer Stoffe dienen und auf diese Weise Interferenzerscheinungen ermöglichen. Weitere erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind daher dadurch gekennzeichnet, daß die Beschichtung als lichtreflektierende Partikel Perlglanzpigmente enthält.
  • Perlglanzpigmente sind Glanzpigmente, die den Glanz als zusätzliche Eigenschaft im Vergleich zu anderen Pigmenten haben. Sie sind flächig ausgebildete, kleine, dünne Plättchen mit verhältnismäßig großen Durchmessern und glatten Oberflächen. Ihre charakteristischen Eigenschaften der flächigen Struktur, der hohen Brechzahl und der Transparenz erzeugen in transparenten Medien als Folge der Mehrfachreflexion von Licht Effekte, die dem Glanz von Perlen oder Perlmutt gleichkommen. Auch Metall- und ähnliche Effekte lassen sich mit ihnen erzielen, ohne dass sich die bei Metallen und Metall-Legierungen beobachteten Nachteile ergeben.
  • Alle Perlglanzpigmente bestehen aus dünnen Plättchen des natürlichen Minerals Glimmer, die mit Titandioxid und/oder Eisen-III-oxid beschichtet sind. Die Perlglanzpigmente sind verfügbar in verschiedenen Teilchengrössenbereichen, wobei der Perl- oder Farbglanz je nach Größe der Teichen von Seidenmatt bis hin zu einem glitzernden Funkeln variiert werden kann. Die hervorragenden chemischen, thermischen und mechanischen Eigenschaften der Perlglanzpigmente bieten universelle Anwendungsmöglichkeiten. Die Pigmente sind physiologisch unbedenklich, umweltfreundlich und können auch in Lebensmittelverpackungen eingesetzt werden. Verdünnte Säuren und Alkalien greifen Perlglanzpigmente nicht an. Die Pigmente sind nicht brennbar und nicht selbstentzündlich. Sie leiten den elektrischen Strom nicht und vertragen Temperaturen bis zu ca. 800° C, was sie für die Einarbeitung in Schmelzen besonders prädestiniert. Perlglanzpigmente werden als trockenes Pulver geliefert. Für besondere Anwendungen können Pigmente auch als Anteigung oder speziell modifiziert angeboten werden.
  • Eine weitere Klasse stellen die Interferenzpigmente dar. Unter Interferenz versteht man die Überlagerung von Wellen: Wie bei den Wellen, die man im Wasser durch den Einwurf zweier Steine erzeugt, werden bei der Überlagerung bestimmte Wellen verstärkt und andere ausgelöscht oder abgeschwächt. Verstärkt werden die Wellen immer dann, wenn Wellenberg auf Wellenberg trifft. Wellenberg auf Wellental ergibt eine Abschwächung oder Auslöschung. Klassische Perlglanzpigmente, bekannt unter dem Namen Iriodin® aus dem Hause Merck KGaA, bestehen aus einem Glimmerplättchen als Träger. Dieser ist ummantelt von einem schwerbrechenden Metalloxid wie beispielsweise Titandioxid oder Eisenoxid. Je nach Aufbau der Pigmente, ergeben sich unterschiedliche Farben: Silberweiße und weißlich-bunte Perlglanzpigmente entstehen durch Ummantelung mit Titandioxid, rötlich-kupferne durch Ummantelung mit Eisenoxid. Kombiniert man beide Metalloxide, so erhält man gold-gelbe Pigmente. Auch grüne Pigmente lassen sich herstellen, wenn man Titandioxid und Chrom(III)oxid zusammen einsetzt. Zusätzlich zu dieser Körperfarbe zeigen diese Pigmente noch eine Interferenzfarbe.
  • Einen anderen Weg zur Beschichtung von Glimmer- und Aluminiumplättchen ging die BASF AG: Über einen CVD Prozess wurde Eisenoxid aufgebracht. Speziell im Rot- und Goldbereich zeigen diese Pigmente mit dem Handelsnamen Paliocrom® interessante Farbeindrücke, und mit Aluminium als Träger bieten sie hohes Deckvermögen.
  • Konsequenterweise wurde auch nach neuen Substratmaterialien gesucht. Bereits Anfang der 90er Jahre begann die Merck KGaA mit der Entwicklung neuer synthetischer Substratmaterialien, Namentlich sind hier die Aluminiumoxid- und Siliziumdioxid-Flakes zu erwähnen, die auf unterschiedliche Effekte abzielen. Lackierte Objekte zeigen bei Anwesenheit von beschichteten Aluminiumoxid-Flakes (Xirallic®-Pigmente) im Lackfilm ein lebhaft glitzerndes Erscheinungsbild, einen bisher bei feinteiligen Effektpigmenten noch nicht beobachteten, brillanten Sparkling-Effekt. Ein wesentliches Ziel bei der Entwicklung der neuen SiO2-Flakes (Colorstream®-Pigmente) war die Synthese von Effektpigmenten, die durch ein Substratmaterial von definierter Schichtdicke ihre einmaligen optischen Eigenschaften gewinnen. Durch geeignete Kombinationen von Trägereigenschaften und Beschichtung ergeben sich vielfältige, neue koloristische Effekte.
  • Die SiO2-Flakes werden mit hochbrechenden Materialien (z. B. TiO2, Fe2O3), in einem Verfahren vergleichbar mit dem bewährten Herstellprozeß für Glimmerpigmente, beschichtet. Dadurch entstehen stark winkelabhängige Effektpigmente, bei denen verschiedene Farbeindrücke in Abhängigkeit vom jeweiligen Betrachtungswinkel erhalten werden (Farbwechsel). Die gleichzeitige Transparenz verschafft dem Stylisten ein breites Stylingpotential.
  • Flex Products und BASF AG bieten deckende Pigmente mit Farbwechsel an. Die Pigmente von Flex, die unter dem Namen Chromaflair® vermarktet werden, haben als zentrale Schicht eine opake Aluminiumschicht, die von einer Magnesiumfluoridschicht und einer semitransparenten Metallschicht umgeben ist. Alle drei Materialien sind an sich farblos, die Farbe wird durch Interferenz und Absorption von Licht erzeugt. Die Pigmente zeigen einen starken, fast abrupten Farbwechsel und sind aufgrund der opaken Metallschicht nicht transparent. Color Variable Pigmente der BASF (Variocrom®) sind Mehrschichtpigmente, die ein reflektierendes Substrat z.B. Aluminium- oder Eisenoxidplättchen), eine niedrigbrechende Zwischenschicht (SiO2) und eine äußere, selektiv reflektierende Schicht aus Eisenoxid enthalten. Diese Pigmente zeigen im Purton brilliante Farbeffekte von blaustichigem Rot bis grünstichigem Gold. Durch Kombination mit klassischen Absorptionspigmenten lassen sich Farbwechsel im ganzen Farbenraum einstellen.
  • Die Beschichtung der erfindungsgemäßen Partikel kann darüber hinaus in Abhängigkeit von ihrer Zusammensetzung so ausgestaltet werden, daß sie eine kontrollierte Freisetzung der Inhaltsstoffe der erfindungsgemäßen Partikel ermöglicht. So kann sich die Beschichtung beispielsweise in Abhängigkeit von der Wassertemperatur, der Elektrolytkonzentration, des pH-Wertes oder anderer physikalischer Umgebungsparameter schneller oder langsamer lösen, was zu einer gesteuerten Freisetzung genutzt werden kann.
  • Die erfindungsgemäßen Partikel können jede Gestalt annehmen, da die Beschichtung sie optisch vollständig abdeckt und ihnen vorteilhafte Eigenschaften verleiht. Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind dadurch gekennzeichnet, daß der Kern ein Granulat und/oder ein Extrudat und/oder ein Pellet und/oder ein Prill und/oder ein schmelzegegossener Formkörper und/oder eine Tablette ist.
  • Die Beschichtung der erfindungsgemäßen Partikel weist im Gegensatz zu den im Stand der Technik offenbarten Beschichtungen eine hochglänzende und äußerst glatte Oberfläche auf. Auch bei der Beschichtung rauer Partikel werden glatte und glänzende Oberflächen mit herausragenden optischen Eigenschaften erhalten.
  • Der „Kern" der erfindungsgemäßen Partikel kann ein bereits ausformuliertes Wasch- oder Reinigungsmittel sein, wie dies beispielsweise im Falle einer Tablette oder eines Schmelzkörpers möglich ist. Es können aber auch Compounds einzelner Inhaltsstoffe oder sogar einzelne Inhaltsstoffe beschichtet werden, wodurch die erfindungsgemäßen Partikel auch dazu genutzt werden können, miteinander unverträgliche Inhaltsstoffe voneinander zu trennen.
  • Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelpartikel sind dadurch gekennzeichnet, daß die wasch- oder reinigungsaktive Aktivsubstanz ausgewählt ist aus Tensiden, Gerüststoffen, Bleichmitteln, Bleichaktivatoren, Enzymen, Schauminhibitoren, Silberschutzmitteln, Glaskorrosionsschutzmitteln und Mischungen hieraus.
  • Unabhängig davon, ob die genannten Stoffe einzeln oder in Mischung miteinander im Kern der erfindungsgemäßen Partikel vorliegen, können mit den erfindungsgemäßen Partikeln hergestellte Wasch-, Reinigungs- oder Waschhilfsmittel sämtliche üblichen Inhaltsstoffe von Wasch- oder Reinigungsmitteln enthalten. Diese werden nachstehend beschrieben.
  • Die erfindungsgemäßen Wasch- oder Reinigungsmittel enthalten vorzugsweise Tensid(e), wobei anionische, nichtionische, kationische und/oder amphotere Tenside eingesetzt werden können. Bevorzugt sind aus anwendungstechnischer Sicht bei Textilwaschmitteln Mischungen aus anionischen und nichtionischen Tensiden, wobei der Anteil der anionischen Tenside größer sein sollte als der Anteil an nichtionischen Tensiden. Der Gesamttensidgehalt der erfindungsgemäßen Wasch- oder Reinigungsmittel liegt vorzugsweise unterhalb von 30 Gew.-%, bezogen auf das gesamte Mittel.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12–14-Alkohole mit 3 EO oder 4 EO, C9–11-Alkohol mit 7 EO, C13–15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12–18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12–14-Alkohol mit 3 EO und C12–18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,Ndimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Insbesondere bei erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen ist es bevorzugt, daß sie ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperatur hochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16–20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • Ein weiter bevorzugtes Tensid läßt sich durch die Formel R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2] beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werfe von 6 bis 15 annimmt.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der nachstehenden Formel,
    Figure 00150001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der nachstehenden Formel,
    Figure 00160001
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1–4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Der Gehalt bevorzugter für die Textilwäsche geeigneter erfindungsgemäßer Wasch- oder Reinigungsmittel an nichtionischen Tensiden beträgt 5 bis 20 Gew.-%, vorzugsweise 7 bis 15 Gew.-% und insbesondere 9 bis 14 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • In maschinellen Geschirrspülmitteln werden vorzugsweise schwachschäumende nichtionische Tenside eingesetzt.
  • In Verbindung mit den genannten Tensiden können auch anionische, kationische und/oder amphotere Tenside eingesetzt werden, wobei diese wegen ihres Schaumverhaltens in maschinellen Geschirrspülmitteln nur untergeordnete Bedeutung besitzen und zumeist nur in Mengen unterhalb von 10 Gew.-%, meistens sogar unterhalb von 5 Gew.-%, beispielsweise von 0,01 bis 2,5 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt werden. In Waschmitteln haben diese Tenside hingegen eine deutlich höhere Bedeutung. Die erfindungsgemäßen Wasch- oder Reinigungsmittel können somit als Tensidkomponente auch anionische, kationische und/oder amphotere Tenside enthalten.
  • Als kationische Aktivsubstanzen können die erfindungsgemäßen Mittel beispielsweise kationische Verbindungen der Formeln I, II oder III enthalten:
    Figure 00170001
    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1–6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8_28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • Insbesondere erfindungsgemäße Mittel, die als Weichspüler formuliert werden, enthalten kationische(s) Tenside) der Formeln (I), (II) und/oder (III). Bevorzugte Weichspüler enthalten 0,5 bis 50 Gew.-%, vorzugsweise 1 bis 45 Gew.-% und insbsondere 2,5 bis 40 Gew.-% mindestens eines kationischen tensids, wobei kationische Tenside der Formel (I) bevorzugt sind.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9–13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12–18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12–18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutra lisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12–C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10–C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12–C18-Alkylsulfate und C12–C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7–21-Alkohole, wie 2-Methyl-verzweigte C9–11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12–18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8–18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern-, Olivenöl- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Der Gehalt bevorzugter erfindungsgemäßer Textilwaschmittel an anionischen Tensiden beträgt 5 bis 25 Gew.-%, vorzugsweise 7 bis 22 Gew.-% und insbesondere 10 bis 20 Gew.-%, jeweils bezogen auf das gesamte Mittel. Erfindungsgemäße Reinigungsmittel für das maschinelle Geschirrspülen sind vorzugsweise frei von anionischen Tensiden.
  • Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Mittel zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyte, nichtwäßrigen Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.
  • Als Gerüststoffe, die in den erfindungsgemäßen Mitteln enthalten sein können, sind insbesondere Phosphate, Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.
  • Der Einsatz der allgemein bekannten Phosphate als Buildersubstanzen ist erfindungsgemäß möglich, sofern ein derartiger Einsatz in Waschmitteln nicht aus ökologischen Gründen vermieden werden sollte. Reinigungsmittel für das maschinelle Geschirrspülen sind üblicherweise phosphatbasiert und enthalten vorzugsweise 30 bis 70 Gew.-%, besonders bevorzugt 35 bis 65 Gew.-% und insbesondere 45 bis 60 Gew.-% Phosphat(e), jeweils bezogen auf das gesamte Mittel. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Besonders geeignet sind beispielsweise Natriumdihydrogenphosphat, NaH2PO4, Dinatriumhydrogendiphosphat, Na2H2P2O7, Trinatriumphosphat, Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, tertiäres Natriumphosphat, Na3PO4, Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), Kaliumdihydrogenphosphat (KH2PO4), Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, Kaliumpolyphosphat (KPO3)x, Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt.
  • Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt,.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharten Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharte Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O·(1 – n)K2O·Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12–C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12–C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Weitere wichtige Gerüststoffe sind insbesondere die Carbonate, Citrate und Silikate. Bevorzugt werden Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt.
  • Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
  • Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat.
  • Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat.
  • Daneben können weitere Inhaltsstoffe zugegen sein, wobei erfindungsgemäße Wasch-, Spül- oder Reinigungsmittel bevorzugt sind, die zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel, Chelatkomplexbildner oder der belagsinhibierenden Polymere enthalten.
  • Als Acidifizierungsmittel bieten sich sowohl anorganische Säuren als auch organische Säuren an, sofern diese mit den übrigen Inhaltsstoffen verträglich sind. Aus Gründen des Verbraucherschutzes und der Handhabungssicherheit sind insbesondere die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Auch die Anhydride dieser Säuren können als Acidifizierungsmittel eingesetzt werden, wobei insbesondere Maleinsäureanhydrid und Bernsteinsäureanhydrid kommerziell verfügbar sind. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Eine weitere mögliche Gruppe von Inhaltsstoffen stellen die Chelatkomplexbildner dar. Chelatkomplexbildner sind Stoffe, die mit Metallionen cyclische Verbindungen bilden, wobei ein einzelner Ligand mehr als eine Koordinationsstelle an einem Zentralatom besetzt, d. h. mind. „zweizähnig" ist. In diesem Falle werden also normalerweise gestreckte Verbindungen durch Komplexbildung über ein lon zu Ringen geschlossen. Die Zahl der gebundenen Liganden hängt von der Koordinationszahl des zentralen Ions ab.
  • Gebräuchliche und im Rahmen der vorliegenden Erfindung bevorzugte Chelatkomplexbilder sind beispielsweise Polyoxycarbonsäuren, Polyamine, Ethylendiamintetraessigsäure (EDTA) und Nitrilotriessigsäure (NTA). Auch komplexbildende Polymere, also Polymere, die entweder in der Hauptkette selbst oder seitenständig zu dieser funktionelle Gruppen tragen, die als Liganden wirken können und mit geeigneten Metall-Atomen in der Regel unter Bildung von Chelat-Komplexen reagieren, sind erfindungsgemäß einsetzbar. Die Polymer-gebundenen Liganden der entstehenden Metall-Komplexe können dabei aus nur einem Makromolekül stammen oder aber zu verschiedenen Polymerketten gehören. Letzteres führt zur Vernetzung des Materials, sofern die komplexbildenden Polymere nicht bereits zuvor über kovalente Bindungen vernetzt waren.
  • Komplexierende Gruppen (Liganden) üblicher komplexbildender Polymere sind Iminodi-essigsäure-, Hydroxychinolin-, Thioharnstoff-, Guanidin-, Dithiocarbamat-, Hydroxamsäure-, Amidoxim-, Aminophosphorsäure-, (cycl.) Polyamino-, Mercapto-, 1,3-Dicarbonyl- und Kronenether-Reste mit z. T. sehr spezif. Aktivitäten gegenüber Ionen unterschiedlicher Metalle. Basispolymere vieler auch kommerziell bedeutender komplexbildender Polymere sind Polystyrol, Polyacrylate, Polyacrylnitrile, Polyvinylalkohole, Polyvinylpyridine und Polyethylenimine. Auch natürliche Polymere wie Cellulose, Stärke od. Chitin sind komplexbildende Polymere. Darüber hinaus können diese durch polymeranaloge Umwandlungen mit weiteren Ligand-Funktionalitäten versehen werden.
  • Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- oder Reinigungsmittel, die ein oder mehrere Chelatkomplexbildner aus den Gruppen der
    • (i) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt,
    • (ii) stickstoffhaltigen Mono- oder Polycarbonsäuren,
    • (iii) geminalen Diphosphonsäuren,
    • (iv) Aminophosphonsäuren,
    • (v) Phosphonopolycarbonsäuren,
    • (vi) Cyclodextrine
    in Mengen oberhalb von 0,1 Gew.-%, vorzugsweise oberhalb von 0,5 Gew.-%, besonders bevorzugt oberhalb von 1 Gew.-% und insbesondere oberhalb von 2,5 Gew.-%, jeweils bezogen auf das Gewicht des Mittels, enthalten.
  • Im Rahmen der vorliegenden Erfindung können alle Komplexbildner des Standes der Technik eingesetzt werden. Diese können unterschiedlichen chemischen Gruppen angehören. Vorzugsweise werden einzeln oder im Gemisch miteinander eingesetzt:
    • a) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt wie Gluconsäure,
    • b) stickstoffhaltige Mono- oder Polycarbonsäuren wie Ethylendiamintetraessigsäure (EDTA), N-Hydroxyethylethylendiamintriessigsäure, Diethylentriaminpentaessigsäure, Hydroxyethyliminodiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserindiessigsäure, N,N-Di-(β-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-asparaginsäure oder Nitrilotriessigsäure (NTA),
    • c) geminale Diphosphonsäuren wie 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon und 1-Aminoethan-1,1-diphosphonsäure, deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon,
    • d) Aminophosphonsäuren wie Ethylendiamintetra(methylenphosphonsäure), Diethylentriaminpenta(methylenphosphonsäure) oder Nitrilotri(methylenphosphonsäure),
    • e) Phosphonopolycarbonsäuren wie 2-Phosphonobutan-1,2,4-tricarbonsäure sowie
    • f) Cyclodextrine.
  • Als Polycarbonsäuren a) werden im Rahmen dieser Patentanmeldung Carbonsäuren -auch Monocarbonsäuren- verstanden, bei denen die Summe aus Carboxyl- und den im Molekül enthaltenen Hydroxylgruppen mindestens 5 beträgt. Komplexbildner aus der Gruppe der stickstoffhaltigen Polycarbonsäuren, insbesondere EDTA, sind bevorzugt. Bei den erfindungsgemäß erforderlichen alkalischen pH-Werten der Behandlungslösungen liegen diese Komplexbilner zumindest teilweise als Anionen vor. Es ist unwesentlich, ob sie in Form der Säuren oder in Form von Salzen eingebracht werden. Im Falle des Einsatzes als Salze sind Alkali-, Ammonium- oder Alkylammoniumsalze, insbesondere Natriumsalze, bevorzugt.
  • Belagsinhibierende Polymere können ebenfalls in den erfindungsgemäßen Mitteln enthalten sein. Diese Stoffe, die chemisch verschieden aufgebaut sein könne, stammen beispielsweise aus den Gruppen der niedermolekularen Polyacrylate mit Molmassen zwischen 1000 und 20.000 Dalton, wobei Polymere mit Molmassen unter 15.000 Dalton bevorzugt sind.
  • Belagsinhibierende Polymere können auch Cobuildereigenschaften aufweisen. Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder bzw. Belagsinhibitor sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 500 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1000 bis 4000 g/mol, aufweisen, bevorzugt sein.
  • Besonders bevorzugt werden in den erfindungsgemäßen Mitteln sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Sulfonsäuregruppen-haltigen Copolymere werden weiter unten ausführlich beschrieben.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Zusätzlich zu den Stoffen aus den genannten Stoffklassen können die erfindungsgemäßen Mittel weitere übliche Inhaltsstoffe von Wasch-, Spül- oder Reinigungsmitteln enthalten, wobei insbesondere Bleichmittel, Bleichaktivatoren, Enzyme, Silberschutzmittel, Farb- und Duftstoffe von Bedeutung sind. Diese Stoffe werden nachstehend beschrieben.
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise das Natriumperborattetrahydrat und das Natriumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
  • Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in erfindungsgemäße Wasch- und Reinigungsmittel eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru – oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Erfindungsgemäße Mittel können zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung Enzyme enthalten, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 × 10–6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2'-Bichinolyl-4,4'-dicarbonsäure) oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsværd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab. Weitere verwendbare Proteasen stammen aus verschiedenen Bacillus sp. und B. gibsonii.
  • Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect®OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
  • Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7–7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben; ferner die, die dem Sequenzraum von α-Amylasen angehören. Ebenso sind Fusionsprodukte der genannten Moleküle einsetzbar.
  • Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
  • Erfindungsgemäße Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglyceridspaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
  • Erfindungsgemäße Mittel können, insbesondere wenn sie für die Behandlung von Textilien gedacht sind, Cellulasen enthalten, je nach Zweck als reine Enzyme, als Enzympräparationen oder in Form von Mischungen, in denen sich die einzelnen Komponenten vorteilhafterweise hinsichtlich ihrer verschiedenen Leistungsaspekte ergänzen. Zu diesen Leistungsaspekten zählen insbesondere Beiträge zur Primärwaschleistung, zur Sekundärwaschleistung des Mittels (Antiredepositionswirkung oder Vergrauungsinhibition) und Avivage (Gewebewirkung), bis hin zum Ausüben eines „stone washed"-Effekts.
  • Eine brauchbare pilzliche, Endoglucanase(EG)-reiche Cellulase-Präparation, beziehungsweise deren Weiterentwicklungen werden von der Firma Novozymes unter dem Handelsnamen Celluzyme® angeboten. Die ebenfalls von der Firma Novozymes erhältlichen Produkte Endolase® und Carezyme® basieren auf der 50 kD-EG, beziehungsweise der 43 kD-EG aus H. insolens DSM 1800. Weitere mögliche Handelsprodukte dieser Firma sind Cellusoft® und Renozyme®. Ebenso sind Cellulasen einsetzbar; beispielsweise die 20 kD-EG aus Melanocarpus, die von der Firma AB Enzymes, Finnland, unter den Handelsnamen Ecostone® und Biotouch® erhältlich ist. Weitere Handelprodukte der Firma AB Enzymes sind Econase® und Ecopulp®. Weitere geeignete Cellulasen aus Bacillus sp. CBS 670.93 und CBS 669.93, wobei die aus Bacillus sp. CBS 670.93 von der Firma Genencor unter dem Handelsnamen Puradax® erhältlich ist. Weitere Handelsprodukte der Firma Genencor sind „Genencor detergent cellulase L" und IndiAge®Neutra.
  • Erfindungsgemäße Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (= Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (= Xylanasen), Pullulanasen und β-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Eine β-Glucanase aus einem B. alcalophilus ist ebenfalls geeignet. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäße Wasch- und Reinigungsmittel Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
  • Die in erfindungsgemäßen Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
  • Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
  • Erfindungsgemäßen Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein in einem erfindungsgemäßen Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
  • Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin-Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Auch Peptidaldehyde, das heißt Oligopeptide mit reduziertem C-Terminus, sind geeignet. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
  • Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.
  • Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Auch Di-Glycerinphosphat schützt gegen Denaturierung durch physikalische Einflüsse. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat, und Magnesiumsalze.
  • Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxidenthaltende Polymere wirken gleichzeitig als Enzymstabilisatoren und als Farbübertragungsinhibitoren. Andere polymere Stabilisatoren sind die linearen C8–C18 Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten des erfindungsgemäßen Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen erfüllen eine Doppelfunktion als Soil-release-Agentien und als Enzym-Stabilisatoren.
  • Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Schwefelhaltige Reduktionsmittel sind ebenfalls bekannt. Andere Beispiele sind Natrium-Sulfit und reduzierende Zucker.
  • Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid-Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.
  • Erfindungsgemäße Reinigungsmittel für das maschinelle Geschirrspülen können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl2 in den erfindungsgemäßen Mitteln bevorzugt. Der Anteil an Elektrolyten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 bis 5 Gew.-%.
  • Um den pH-Wert der erfindungsgemäßen Mittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 5 Gew.-% der Gesamtformulierung nicht.
  • Als Schauminhibitoren, die in den erfindungsgemäßen Mitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Für erfindungsgemäß als Textilwaschmittel konfektionierte geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller (sogenannte „Weißtöner") können den erfindungsgemäß als Textilwaschmittel konfektionierten erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyrylbiphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Die optischen Aufheller werden üblicherweise in Mengen zwischen 0,05 und 0,3 Gew.-%, bezogen auf das fertige Mittel, eingesetzt.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt
  • Die erfindungsgemäßen Mittel können auch mit weiteren Zusatznutzen ausgestattet werden. Hier sind beispielsweise für erfindungsgemäß als Textilwaschmittel konfektionierte Mittel farbübertragungsinhibierende Zusammensetzungen, Mittel mit „Anti-Grau-Formel", Mittel mit Bügelerleichterung, Mittel mit besonderer Duftfreisetzung, Mittel mit verbesserter Schmutzablösung bzw. Verhinderung von Wiederanschmutzung, antibakterielle Mittel, UV-Schutzmittel, farbauffrischende Mittel usw. formulierbar. Einige Beispiele werden nachstehend erläutert:
  • Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäßen Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
  • Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Mitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
  • Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den erfindungsgemäßen Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
  • Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungsgemäßen Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäßen Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25°C im Bereich zwischen 100 und 100.000 Centistokes, wobei die Silikone in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Mittel eingesetzt werden können.
  • Schließlich können die erfindungsgemäßen Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung beschichteter Wasch- oder Reinigungsmittelpartikel mit lichtreflektierender Oberfläche, bei dem eine Lösung, Emulsion, Dispersion oder Schmelze aus
    • a) 15 bis 89,9 Gew.-% Hydroxypropylmethyl- und/oder Carboxymethylcellulose,
    • b) 5 bis 25 Gew.-% eines oder mehrerer Plastifiziermittel(s),
    • c) 5 bis 70 Gew.-% Füllstoff(e),
    • d) 0,1 bis 10 Gew.-% lichtreflektierender Komponente(n)
    auf die Oberfläche von aktivsubstanzhaltigen Wasch- oder Reinigungsmittel-Partikeln aufgebracht wird.
  • Hinsichtlich bevorzugter Mengenbereiche, bevorzugter Inhaltsstoffe a) bis d) der Lösung, Emulsion, Dispersion oder Schmelze sowie bevorzugter physikalischer Eigenschaften der Inhaltsstoffe und/oder der Beschichtung wird auf die vorstehenden Ausführungen verwiesen.

Claims (8)

  1. Wasch- oder Reinigungsmittelpartikel, umfassend einen Kern, welcher wasch- oder reinigungsaktive Aktivsubstanz enthält und eine den Partikel umgebende Beschichtung, welche lichtreflektierende Komponenten enthält, dadurch gekennzeichnet, daß die Beschichtung bezogen auf ihr Gewicht a) 15 bis 89,9 Gew.-% Hydroxypropylmethyl- und/oder Carboxymethylcellulose, b) 5 bis 25 Gew.-% eines oder mehrerer Plastifiziermittel(s), ausgewählt aus der Gruppe der Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbanat und/oder Propylencarbonat; c) 5 bis 70 Gew.-% Füllstoff(e), ausgewählt aus der Gruppe Cellulose und/oder Stärke und/oder Polycarboxylate; d) 0,1 bis 10 Gew.-% lichtreflektierender Komponente(n), ausgewählt aus der Gruppe der Metalloxide, vorzugsweise Titandioxid, und der Perlglanzpigmente; enthält.
  2. Wasch- oder Reinigungsmittelpartikel nach Anspruch 1, dadurch gekennzeichnet, daß der Gehalt der Beschichtung an Hydroxypropylmethyl- und/oder Carboxymethylcellulose 20 bis 89 Gew.-%, vorzugsweise 25 bis 85 Gew.-%, besonders bevorzugt 30 bis 80 Gew.-% und insbesondere 35 bis 70 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  3. Wasch- oder Reinigungsmittelpartikel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Gehalt der Beschichtung an Plastifiziermittel(n) 5,5 bis 20 Gew.-%, vorzugsweise 6 bis 15 Gew.-%, besonders bevorzugt 7,5 bis 12,5 Gew.-% und insbesondere 8 bis 12 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  4. Wasch- oder Reinigungsmittelpartikel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Gehalt der Beschichtung an Füllstoff(en) 5,5 bis 60 Gew.-%, vorzugsweise 7 bis 50 Gew.-%, besonders bevorzugt 8 bis 4 Gew.-% und insbesondere 9 bis 30 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  5. Wasch- oder Reinigungsmittelpartikel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Gehalt der Beschichtung an lichtreflektierende(r/n) Komponente(n) 0,15 bis 9 Gew.-%, vorzugsweise 0,25 bis 8 Gew.-%, besonders bevorzugt 0,5 bis 7 Gew.-% und insbesondere 0,75 bis 5 Gew.-%, jeweils bezogen auf das Gewicht der Beschichtung, beträgt.
  6. Wasch- oder Reinigungsmittelpartikel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kern ein Granulat und/oder ein Extrudat und/oder ein Pellet und/oder ein Prill und/oder ein schmelzegegossener Formkörper und/oder eine Tablette ist.
  7. Wasch- oder Reinigungsmittelpartikel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die wasch- oder reinigungsaktive Aktivsubstanz ausgewählt ist aus Tensiden, Gerüststoffen, Bleichmitteln, Bleichaktivatoren, Enzymen, Schauminhibitoren, Silberschutzmitteln, Glaskorrosionsschutzmitteln und Mischungen hieraus.
  8. Verfahren zur Herstellung beschichteter Wasch- oder Reinigungsmittelpartikel mit lichtreflektierender Oberfläche, dadurch gekennzeichnet, daß eine Lösung, Emulsion, Dispersion oder Schmelze aus a) 15 bis 89,9 Gew.-% Hydroxypropylmethyl- und/oder Carboxymethylcellulose, b) 5 bis 25 Gew.-% eines oder mehrerer Plastifiziermittel(s), ausgewählt aus der Gruppe der Ethylenglycole und/oder Propylenglycole und/oder Glycerin und/oder Glycerincarbonat und/oder Propylencarbonat; c) 5 bis 70 Gew.-% Füllstoff(e), ausgewählt aus der Gruppe Cellulose und/oder Stärke und/oder Polycarboxylate; d) 0,1 bis 10 Gew.-% lichtreflektierender Komponente(n) ausgewählt aus der Gruppe der Metalloxide, vorzugsweise Titandioxid, und der Perlglanzpigmente; auf die Oberfläche von aktivsubstanzhaltigen Wasch- oder Reinigungsmittel-Partikeln aufgebracht wird.
DE10318522A 2003-04-24 2003-04-24 Wasch- oder Reinigungsmittel mit optischen Effekten Expired - Fee Related DE10318522B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10318522A DE10318522B4 (de) 2003-04-24 2003-04-24 Wasch- oder Reinigungsmittel mit optischen Effekten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10318522A DE10318522B4 (de) 2003-04-24 2003-04-24 Wasch- oder Reinigungsmittel mit optischen Effekten

Publications (2)

Publication Number Publication Date
DE10318522A1 DE10318522A1 (de) 2004-11-18
DE10318522B4 true DE10318522B4 (de) 2006-02-16

Family

ID=33304901

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10318522A Expired - Fee Related DE10318522B4 (de) 2003-04-24 2003-04-24 Wasch- oder Reinigungsmittel mit optischen Effekten

Country Status (1)

Country Link
DE (1) DE10318522B4 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051210A1 (en) * 1998-04-02 1999-10-14 Genencor International, Inc. Modified starch coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051210A1 (en) * 1998-04-02 1999-10-14 Genencor International, Inc. Modified starch coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 03111497 A (abstr.). PAJ [online][rech. am 15.01.04]. In: DEPATIS *

Also Published As

Publication number Publication date
DE10318522A1 (de) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1711589B1 (de) Maschinelles geschirrspulmittel
EP1298195B1 (de) Semiautomatische Dosierung
WO2003016444A2 (de) Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz
WO2008135334A1 (de) Wasch- oder reinigungsmittel mit polysaccharid
EP1802734A1 (de) Wasch- oder reinigungsmittel
DE10225116A1 (de) Maschinelles Geschirrspülmittel mit verbessertem Glaskorrosionsschutz II
EP1670885A1 (de) Keimreduzierendes wasch- oder reinigungsmittel und verfahren zu seiner herstellung
EP1781768A1 (de) Beschichteter wasch- oder reinigungsmittelformkörper
WO2005037974A2 (de) Antimikrobielle ausrüstung von bad- und wc-artikeln
EP1727884B1 (de) Maschinelles geschirrspülmittel
EP1888736B1 (de) Wasch- oder reinigungsmittel dosiereinheit
DE10318522B4 (de) Wasch- oder Reinigungsmittel mit optischen Effekten
DE10360842A1 (de) Waschmittelsystem mit verzögerter Färbemittelwirkung
EP1802735A1 (de) Wasch- oder reinigungsmittel
EP1340807B1 (de) Formkörper mit nachträglicher Tensiddosierung
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
DE10310679B3 (de) Coating schmelzbarer Substanzen und Substanzgemische
DE10164137B4 (de) Wasch-, Reinigungs- und/oder Pflegemittel-Formulierung enthaltender Formkörper mit erhöhter Lagerstabilität sowie Verfahren zu seiner Herstellung
EP1871865A1 (de) Wasch- oder reinigungsmittel
DE102005022786B4 (de) Wasch- oder Reinigungsmitteldosiereinheit
DE102004020033A1 (de) Verbrauchsanzeiger für maschinelle Geschirrspülmittel
DE10133136A1 (de) Nichtwäßrige"3in1"-Geschirrspülmittel
DE10349388A1 (de) Verfahren zur Verarbeitung von Wasch- oder Reinigungsmittelinhaltsstoffen
DE10338043A1 (de) Verfahren zur Herstellung von Wasch-oder Reinigungsmitteln
WO2004083358A1 (de) Nichtwässrige flüssige geschirreinigungsmittel

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee