DE10317797A1 - Rapid Prototyping-Verfahren - Google Patents

Rapid Prototyping-Verfahren Download PDF

Info

Publication number
DE10317797A1
DE10317797A1 DE10317797A DE10317797A DE10317797A1 DE 10317797 A1 DE10317797 A1 DE 10317797A1 DE 10317797 A DE10317797 A DE 10317797A DE 10317797 A DE10317797 A DE 10317797A DE 10317797 A1 DE10317797 A1 DE 10317797A1
Authority
DE
Germany
Prior art keywords
model
intermediate layer
thermal spraying
application
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10317797A
Other languages
English (en)
Other versions
DE10317797B4 (de
Inventor
Hartmut Dr. Sauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aalberts Surface Technologies GmbH Kerpen
Original Assignee
AHC Oberflaechenechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AHC Oberflaechenechnik GmbH filed Critical AHC Oberflaechenechnik GmbH
Priority to DE10317797A priority Critical patent/DE10317797B4/de
Priority to EP04727650A priority patent/EP1615767A1/de
Priority to JP2006500366A priority patent/JP2006523769A/ja
Priority to PCT/IB2004/050463 priority patent/WO2004091907A1/de
Priority to US10/553,356 priority patent/US20060188650A1/en
Priority to CA002522504A priority patent/CA2522504A1/en
Publication of DE10317797A1 publication Critical patent/DE10317797A1/de
Application granted granted Critical
Publication of DE10317797B4 publication Critical patent/DE10317797B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1283Container formed as an undeformable model eliminated after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2013Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Verfahren zur Herstellung von Spritz-, Umform-, Stanz- und/oder Gusswerkzeugen sowie Prototypen, ausgehend von Modellen, gekennzeichnet durch die Schritte: DOLLAR A i. Aufrauen der Oberfläche des Modells; DOLLAR A ii. Aufbringen einer Zwischenschicht aus Kupfer oder Nickel auf die Oberfläche des Modells; DOLLAR A iii. Aufbringen eines metallischen oder keramischen Belags auf die Zwischenschicht durch thermisches Spritzen; und DOLLAR A iv. Entfernen des Modells von der Zwischenschicht.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Spritz-, Umform-, Stanz- und Gusswerkzeugen.
  • Der konventionelle Weg, Feingussmodelle, Spritz-, Umform- und Stanzwerkzeuge sowie Prototypen herzustellen, ist, den Prototypen bzw. die Werkzeuge und Modelle nach Zeichnungen auf spanenden und/oder erodierenden Maschinen zu fertigen.
  • Neuere Methoden zur Herstellung von Modellen/Prototypen sind die Rapid Prototyping-Verfahren, unter anderen die Stereolithographie, die Methode der lamellierten Gegenstandsherstellung, fixiertes Absetzmodellieren und das Lasersintern.
  • Generell ist diesen Verfahren gemeinsam, dass zunächst ein 3D-CAD Modell erzeugt wird. Die 3D-CAD Konstruktionen werden in Volumendaten im CAD-System konvertiert. Das 3D Volumenmodell für das Rapid Prototyping wird anschließend im PC in Querschnitte aufgeteilt. Diese Querschnitte haben dabei eine Schichtdicke von etwa 0,1 bis 0,2 Millimetern. Nach dem Übertragen der Daten auf eine Rapid Prototyping Maschine wird die ursprüngliche Form aus Polymer-Plastiken, Papier, pulverisiertem Metall oder ähnlichem Schicht für Schicht erzeugt.
  • Die so hergestellten Prototypen können oft nur für die Beurteilung auf Funktionsfähigkeit und Design herangezogen werden.
  • Für die Produktentwicklung und -optimierung ist es zumeist notwendig, Materialeigenschaften und -verhalten möglichst nahe am Original zu untersuchen. Dafür werden die Teile aus den Materialien benötigt, die später in der Serienfertigung verwendet werden. Um die Werkzeuge für die Produktion sowie Kleinserien herstellen zu können, müssen Gussschalen, Kunststoffspritz-, Aluspritz- sowie Umform- und Stanzwerkzeuge durch mechanische Bearbeitung gefertigt werden.
  • Für die Verfahren zur Herstellung der Werkzeuge können die Rapid Prototyping-Verfahren teilweise angewendet werden.
  • Eine ältere Vorgehensweise, um Gussschalen für das Feingießen herzustellen, ist, ein Wachsmodell mehrmals solange zu beschlickern und zu besanden, bis sich eine dicke Schicht um das Modell bildet. Anschließend wird das Wachs ausgeschmolzen und die Form gebrannt. Dann erst kann man das gewünschte Teil abgießen.
  • Für das Sandgussgießen werden negative Holzmodelle angefertigt, die dann auf Platten montiert werden und mit sogenannten Formmaschinen in die Ober- und Unterkästen gedrückt werden. Die so entstandenen Hohlräume werden nach Zusammenfügen von Ober- und Unterkasten mit Aluminium- oder Stahlguss gefüllt.
  • Bei einem anderen Verfahren wird der Prototyp/das Modell in einer Form mit einer Ton- oder Keramikmasse ausgegossen. Die so entstandenen Negativabdrücke werden in Öfen getrocknet. In die getrocknete Form wird anschließend flüssiges Metall eingebracht.
  • Die so hergestellten Prototypen müssen mit mechanischen Arbeitsverfahren wie Schleifen und Polieren weiter bearbeitet werden.
  • Diese älteren Methoden, wie das Herstellen von Holzmodellen, sind zeitaufwendig und können bei komplizierten Teilen einige Wochen in Anspruch nehmen.
  • Neben diesen konventionellen Verfahren werden auch modernere und schnellere Arbeitverfahren eingesetzt (Rapid Tooling). Die Technologie des Rapid Prototyping wird dabei auf die Herstellung von Werkzeugen angewandt.
  • Eine dieser neueren Methoden ist das Lasersintern. Hierbei verschmilzt ein Laser schichtweise ein keramisches Pulver, zum Beispiel Zirkonsilikat, um das Modell zu einer Gießform.
  • Methoden wie das Lasersintern sind schnell, sie erfordern jedoch eine relativ teure Maschinenausstattung.
  • Eine weitere Methode zur Herstellung von Form-, Spritz- und Presswerkzeugen ist es, den Prototypen auf einer Messmaschine zu vermessen und die Daten an eine CNC-Maschine weiterzugeben. Alternativ können auch CAD-Daten verwendet werden.
  • Durch die Werkzeug- und Abtastkopfgeometrie bedingt ist es hierbei oft nicht möglich, ein exaktes Werkzeug zu fertigen. Ein so hergestelltes Werkzeug muss durch aufwendige Nachbearbeitung für den Einsatz gefertigt werden.
  • Beim Herstellen von großen Werkzeugen müssen bei den moderneren Methoden, wie zum Beispiel der Stereolithographie oder dem Lasersintern, zudem die Modell oder Prototypen in Segmente geteilt werden, die später wieder zu dem Werkzeug zusammenge setzt werden, da die Maschinen eine bestimmte Größe (ca. 400 mm × 600 mm) nicht überschreiten.
  • Aus der US 6 305 459 ist bekannt, Formkerne aus Kunststoff, deren Inneres gekühlt wird, außen durch thermisches Spritzen mit einer metallischen Schicht zu überziehen. Nachteilig bei diesem Verfahren ist, dass nur einfache, rotationssymmetrische Gegenstände mit einer entsprechenden Schicht überzogen werden können. Flächige Gebilde, die keine Rotationsachse aufweisen, können mit diesem Verfahren nicht metallisiert werden, da sich durch die Geometrie bedingt sogenannte Hot-Spots, d.h. lokale Überhitzungen, bilden und aufgrund der verwendeten thermischen Energie das Kunststoffsubstrat schmilzt.
  • Ferner beschreibt die US 6 257 309 B1 ein Verfahren zur Herstellung einer Spritzgussform, die durch thermisches Spritzen hergestellt werden kann. Nachteilig bei diesem Verfahren ist, dass der Positiv-Abdruck des Modells aus einem Material gefertigt sein muss, dessen Schmelz- oder Erweichungstemperatur oberhalb der Temperatur des durch thermisches Spritzen aufgetragenen Materials ist. Dies bedeutet, dass eine Form aus Werkzeugstahl nur dann entsprechend den in der US 6257 309 B1 vorgestellten Verfahren hergestellt werden kann, wenn die verwendeten Modelle eine Schmelz- oder Erweichungstemperatur von mehr als 1600 °C aufweisen. In diesem Fall können folglich nur Modelle aus Keramiken verwendet werden. Die Herstellung solcher Keramikmodelle ist allerdings sehr aufwendig. Daher eignet sich dieses Verfahren so gut wie gar nicht zur Herstellung von Modellen mit geringen Toleranzen.
  • Aus der GB 2 367 073 ist ein Verfahren bekannt, bei dem eine Form durch thermisches Spritzen hergestellt wird unter Verwendung eines Modells, das durch Fräsen eines Weichmetallblocks gefertigt wird. Nach dem Fräsen, das heißt vor dem thermischen Spritzen, wird eine Kupferschicht auf das Weichmetall aufgebracht.
  • Nachteilig bei diesem Verfahren ist die sehr aufwendige Herstellung des Modells. Aufgrund der Notwendigkeit des spanabhebenden Herstellverfahrens ist es nicht möglich, Modelle mit feinen Oberflächenkonturen herzustellen, beziehungsweise entsprechende Formteile. Darüber hinaus erfordert die Herstellung größerer Modelle einen erheblichen Zeitaufwand, was ein Grund dafür sein könnte, dass dieses Verfahren bisher keine wirtschaftliche Anwendung gefunden hat.
  • Des weiteren ist aus der EP 0 781 625 A1 ein Verfahren zur Herstellung von Gussformwerkzeugen für die Automobilindustrie bekannt, bei dem zuerst ein Negativmodell durch Stereolithographie erzeugt wird. Von diesem Negativmodell wird dann ein Keramikab druck gefertigt. Um die für die Automobilindustrie notwendigen Toleranzen einzuhalten, ist dieses Abformverfahren sehr aufwendig. Die Formen müssen zuerst gefroren und anschließend keramisch gebrannt werden. Die gesinterte Keramikform wird anschließend mit Werkzeugstahl durch thermisches Spritzen überzogen. Nachteilig bei diesem Verfahren ist – neben dem sehr aufwendigen Herstellungsverfahren – die Tatsache, dass keine größeren Formen mit diesem Verfahren hergestellt werden können, da aufgrund der hohen thermischen Energie solche größeren Formen Abplatzungen oder Risse in dem Keramikmodell aufweisen würden. Deshalb ist die Herstellung größerer Umformwerkzeuge, wie sie beispielsweise in der Automobilindustrie zur Herstellung von Motorhauben verwendet werden, nur durch Herstellung mehrer kleiner Formen möglich, die am Schluss zu einer großen Form zusammengesetzt werden. Dadurch ergeben sich allerdings Probleme in bezug auf die Maßhaltigkeit der Umformwerkzeuge.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereit zu stellen, mit dem schnell und präzise Guss-, Spritz-, Umform- und Stanzwerkzeuge hergestellt werden können. Die hergestellten Werkzeuge sollen sich sowohl für Kleinserien als auch für die Produktion eignen.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Spritz-, Umform-, Stanz- und/oder Gusswerkzeugen sowie Prototypen, ausgehend von Modellen, gekennzeichnet durch die Schritte:
    • i. Aufrauhen der Oberfläche des Modells;
    • ii. Aufbringen einer Zwischenschicht aus Kupfer oder Nickel auf die Oberfläche des Modells;
    • iii. Aufbringen eines metallischen oder keramischen Belags auf die Zwischenschicht durch thermisches Spritzen; und
    • iv. Entfernen des Modells von der Zwischenschicht.
  • Im Gegensatz zu den bekannten Verfahren des Standes der Technik wird bei dem Verfahren der vorliegenden Erfindung kein Negativabdruck des Modells, zum Beispiel aus Keramik oder Metall, verwendet. Auf diese Weise ist es möglich, mit höherer Präzision zu arbeiten und die sowohl zeitaufwendige als auch technisch anspruchsvolle Anfertigung eines solchen Negativabdrucks zu umgehen.
  • Die so hergestellten Spritz-, Umform-, Stand- und Gusswerkzeuge können in einem weiteren Schritt nach dem Schritt iii. oder Schritt iv. hinterfüllt werden. In diesem Fall wird auf den Belag eine entsprechende Masse aufgebracht, um die Steifigkeit der Form sicherzustellen, eine Aufnahme in die Presse zu gewährleisten und andererseits die bei der Pres sung oder Umformung entstehende Energie gleichmäßig abzuleiten. Die Hinterfüllung kann entweder durch das gleiche Material erfolgen, wie es auch durch thermisches Spritzen aufgebracht wird. Es ist aber auch möglich, andere Materialien, gegebenenfalls mit Metallpartikeln oder faserverstärkte Epoxyharze, zu verwenden.
  • Es ist in einer weiteren erfindungsgemäßen Ausführungsform ebenfalls möglich, nach Schritt iii. oder iv. die Zwischenschicht zu entfernen. Zuvor muss natürlich das Modell von der hergestellten Form gelöst werden. Diese Verfahrensvariante ist dann zu wählen, wenn die aufgebrachte Zwischenschicht aus Kupfer oder Nickel sich nachteilig im Einsatz der entsprechenden Werkzeuge verhalten würde.
  • Im Hinblick auf die möglich Hinterfüllung des Belages des durch das erfindungsgemäße Verfahren hergestellten Gusswerkzeuges spielt die Dicke des Belages keine entscheidende Rolle. In Bezug auf eine möglichst hohe Maßgenauigkeit ist es aber vorteilhaft, wenn der Belag eine durchschnittliche Dicke von mindestens 4 mm aufweist.
  • Wie bereits zuvor erwähnt, ist es mit dem erfindungsgemäßen Verfahren erstmals möglich, auf einfache Weise maßhaltegenaue Gusswerkzeuge aus Werkzeugstahl herzustellen. Gemäß einer bevorzugten Ausführungsform weist der Belag eine Härte von mindestens 35 HRC, insbesondere von 50 HRC, auf.
  • Durch die hohe Härte wird eine hohe Verschleißfestigkeit erreicht. Das Modell kann aus allen gängigen Materialien hergestellt sein.
  • Insbesondere kann es aus einem Kunststoff hergestellt sein, bevorzugt aus CKF, Polyamid, Polymerharz, Polyethylen, Polypropylen, PMMA, GFK, Polyvinylchlorid, Polystyrol, Epoxidharz, Polyetheretherketon, Polyetherimid, Polycarbonat, Polyphenylsulfon, Polyurea, NBR, SBR, Polytetrafluorethylen und Phenolharz.
  • Dieses Kunststoffmodell kann in bevorzugter Weise durch Stereolithographie, Laminated Object Manufacturing (LOM) oder durch Lasersintern hergestellt werden. Auf diese Weise lassen sich besonders einfach maßhaltegenaue Modelle in sehr kurzer Zeit herstellen.
  • Es ist aber ebenfalls möglich, das Modell aus Holz oder Papier herzustellen. Auch hier ist ein bevorzugtes Herstellverfahren das Laminated Object Manufacturing (LOM).
  • Ganz besonders bevorzugt handelt es sich erfindungsgemäß um ein Verfahren, bei dem das Aufrauhen der Oberfläche des Modells mit einem Strahlmittel, vorzugsweise mit Siliciumcarbid mit der Körnung P80, durchgeführt wird.
  • Die Oberflächenvorbehandlung kann zum Beispiel mit einer modifizierten Druckstrahlanlage vorgenommen werden. Die Strahlanlage wird mit einem Druck von 4 bar betrieben.
  • Als Strahldüse kann beispielsweise eine Borcarbiddüse mit einem Durchmesser von 8 mm eingesetzt werden. Die Strahldauer beträgt im Mittel 4,6 s. Sie kann aber auch zwischen 1 s und 15 s betragen. Als Strahlmittel wird bevorzugt SiC der Körnung P80 mit einem mittleren Korndurchmesser von 200 bis 300 μm verwendet. Andere Strahlmittel, die verwendet werden können, sind Glaskugeln, Glasbruch, Keramik, Edelkorund, Mischkorund, Normalkorund, Stahlguss, Drahtkorn, Hartguss, Alusat, Schalengranulat oder Dry-Strip.
  • Um das Strahlsystem speziell an die Anforderungen der zu behandelnden Kunststoffmodifikation hinsichtlich reproduzierbarer Oberflächentopographien anzupassen, können 2 Druckkreisläufe installiert werden, je einer für den Transport des Strahlmittels und den eigentlichen Beschleunigungsvorgang. Diese Modifikation ergibt einen sehr konstanten Volumenstrom und einen großen Druckbereich.
  • Ein Druckluftstrom transportiert das Strahlmittel mit einem möglichst geringen Druck zur Düse. Die Strömungsverhältnisse gewährleisten, verursacht durch einen hohen Volumenstrom des Strahlmittels und einen geringen Anteil an Druckluft, einen geringen Verschleiß der Anlage und des Strahlmittels. Erst am Ende des Transportschlauches vor der Mischdüse wird der Querschnitt reduziert, um den gewünschten Volumenstrom einzustellen. Bei den Kunststoffvorbehandlungen wird bevorzugt ein konstanter Volumenstrom von 1 l/min vorgegeben. Es können jedoch auch Volumenströme zwischen 0,1 l/min und 3 l/min gewählt werden. Im zweiten Teil des Systems strömt bis zur Düse Druckluft (Volumenstrom 1), die sich in einem Druckbereich von 0,2–7 bar stufenlos einstellen lässt. Das Strahlmittel, welches mit einer sehr kleinen Strömungsgeschwindigkeit in die Mischdüse gefördert wird, wird dann durch die hohe Strömungsgeschwindigkeit des Druckluftstroms beschleunigt.
  • Die Zwischenschicht wird in einer weiteren, ebenfalls besonders bevorzugten Ausführungsform mittels eines außenstromlos chemischen Verfahrens mit Kupfer oder Nickel beschichtet.
  • Wie bereits die Verfahrensbezeichnung aussagt, wird bei der außenstromlosen Metallabscheidung während des Beschichtungsprozesses keine elektrische Energie von außen zugeführt sondern die Metallschicht wird ausschließlich durch eine chemische Reaktion abgeschieden. Die Metallisierung von nichtleitenden Kunststoffen in einer chemisch reduktiv arbeitenden Metallsalzlösung benötigt einen Katalysator an der Oberfläche, um an diesem das metastabile Gleichgewicht des Metallreduktionsbades zu stören und an der Oberfläche des Katalysators Metall abzuscheiden. Dieser Katalysator besteht aus Edelmetallkeimen wie Palladium, Silber, Gold und vereinzelt Kupfer, die auf der Kunststoffoberfläche aus einem Aktivatorbad angelagert werden. Bevorzugt wird, verfahrenstechnisch begründet, jedoch eine Aktivierung mit Palladiumkeimen.
  • Im wesentlichen erfolgt die Aktivierung der Substratoberfläche in zwei Schritten. In einem ersten Schritt wird das Bauteil in eine kolloidale Lösung (Aktivatorbad) eingetaucht. Dabei werden die für eine Metallisierung notwendigen, bereits in der Aktivatorlösung vorhandenen Palladiumkeime an der Kunststoffoberfläche adsorbiert. Nach der Bekeimung wird durch Spülen in einer alkalischen, wäßrigen Lösung (Konditionierung) das sich beim Eintauchen in die kolloidalen Lösung zusätzlich gebildete Zinn-II- bzw. Zinn-IV-Oxidhydrat aufgelöst und dadurch der Palladiumkeim freigelegt. Nach dem Spülen kann mit chemischen Reduktionsbädern vernickelt oder verkupfert werden.
  • Dies erfolgt in einem durch einen Stabilisator im metastabilen Gleichgewicht gehaltenen Bad, welches sowohl das Metallsalz als auch das Reduktionsmittel enthält. Die Bäder für die Nickel- bzw. Kupferabscheidung haben die Eigenschaft, die in ihnen gelösten Metallionen an den Keimen zu reduzieren und elementares Nickel oder Kupfer abzuscheiden. Im Beschichtungsbad müssen sich die beiden Reaktionspartner den Edelmetallkeimen an der Kunststoffoberfläche nähern. Durch die hierdurch stattfindende Redoxreaktion entsteht die Leitschicht, wobei die Edelmetallkeime dabei die Elektronen des Reduktionsmittels aufnehmen und sie bei Annäherung eines Metallions wieder abgeben. Bei dieser Reaktion wird Wasserstoff freigesetzt. Nachdem die Palladiumkeime mit Nickel bzw. Kupfer überzogen wurden, übernimmt die aufgebrachte Schicht die katalytische Wirkung. Dies bedeutet, dass die Schicht von den Palladiumkeimen aus zusammenwächst, bis sie völlig geschlossen ist.
  • Exemplarisch wird an dieser Stelle auf die Abscheidung von Nickel eingegangen. Beim Beschichten mit Nickel wird die bekeimte und konditionierte Kunststoffoberfläche in ein Nickelmetallsalzbad eingetaucht, welches in einem Temperaturbereich zwischen 82°C und 94°C eine chemische Reaktion zulässt. Der Elektrolyt ist im allgemeinen eine schwache Säure mit einem pH-Wert, der zwischen 4,4 und 4,9 liegt.
  • Es ist aber auch möglich, in einer weiteren, ebenfalls bevorzugten Ausführungsform auf die so außenstromlos aufgebrachte Zwischenschicht noch eine oder mehrere metallische Schichten, insbesondere durch elektrolytische Verfahren aufzubringen.
  • Die außenstromlos aufgebrachten dünnen Kupfer- oder Nickelüberzüge können mit einer elektrolytisch abgeschiedenen Metallschicht verstärkt werden. Eine Beschichtung von Bauteilen mit Schichtendicken >25 μm ist aufgrund der niedrigen Abscheidungsgeschwindigkeit chemischer Beschichtungsprozesse nicht wirtschaftlich. Weiterhin können mit den chemischen Beschichtungsprozessen nur wenige Beschichtungswerkstoffe abgeschieden werden, so dass es vorteilhaft ist, für weitere technisch wichtige Schichtwerkstoffe auf elektrolytische Verfahren zurückzugreifen. Ein weiterer wesentlicher Punkt sind die unterschiedlichen Eigenschaften chemisch und elektrolytisch abgeschiedener Schichten bei Schichtstärken > 25 μm , beispielsweise Einebnung, Härte und Glanz. Die Grundlagen der elektrolytischen Metallabscheidung sind in B. Gaida, „Einführung in die Galvanotechnik", E.G. Leuze-Verlag, Saulgau, 1988 oder in H. Simon, M. Thoma, „Angewandte Oberflächentechnik für metallische Werkstoffe", C. Hanser-Verlag, München (1985) beschrieben.
  • Kunststoffteile, die durch einen außenstromlosen Beschichtungsprozess eine elektrisch leitende Schicht aufweisen, unterscheiden sich hinsichtlich der elektrolytischen Metallisierung nur unwesentlich von denen der Metalle. Trotzdem sollten einige Punkte bei der elektrolytischen Metallisierung von metallisierten Kunststoffen nicht außer acht gelassen werden. Aufgrund der meist geringen Leitschichtstärke muss die Stromdichte zu Beginn der elektrolytischen Abscheidung reduziert werden. Wird dieser Punkt nicht beachtet, kann es zum Ablösen und zum Verbrennen der Leitschicht kommen. Ferner sollte darauf geachtet werden, dass störende Anlaufschichten mit speziell dafür geeigneten Dekapierbädern entfernt werden. Weiterhin können Eigenspannungen zum Zerstören der Schicht führen. Bei der Abscheidung von Nickelschichten aus einem ammoniakalischen Bad können beispielsweise Zugspannungen in der Größenordnung von 400 bis 500 MPa auftreten. Durch Zusätze, wie Saccharin und Butindiol, kann eine Veränderung der Struktur der Nickelüberzüge in Form einer veränderten Korngröße und Bildung von Mikrodeformationen den Abbau von inneren Spannungen begünstigen, was sich auf ein mögliches vorzeitiges Versagen bei der Beschichtung positiv auswirken kann.
  • Beispiele für außenstromlos aufgebrachte Metallschichten sind in dem Handbuch der Firma AHC Oberflächentechnik ausführlich beschrieben („Die AHC-Oberfläche", Handbuch für Konstruktion und Fertigung, 4. Auflage, 1999).
  • In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann das mit der Zwischenschicht versehene Modell in einem Rahmen positioniert und fixiert werden.
  • Diese Variante ist dann zu wählen, wenn die Außenabmessung des zu fertigenden Teils vorgegeben werden soll. Dadurch wird die mechanische Nacharbeit reduziert.
  • Innerhalb dieses Rahmens kann der Belag ausgefüllt oder hinterfüllt werden. Es eignen sich besonders das thermische Spritzen oder auch ein Ausgießen mit einem gegebenenfalls metallpartikelhaltigen Epoxyharz oder auch mit aluminiumhaltigen Schäumen.
  • Bei dem durch thermisches Spritzen aufgebrachten Belag handelt es sich gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung um einen legierten Werkzeugstahl.
  • Somit ist es auf einfach Weise möglich, hochfeste und extrem verschleißbeständige Werkzeuge in kürzerster Zeit herzustellen.
  • Eine Möglichkeit zur Herstellung solcher Beläge ist das thermische Spritzen mittels eines Spritzpulvers, welches vorzugsweise aus 30–50 Gew.-% Molybdänpulver und 70–50 Gew.-% Stahlpulver besteht. Besonderst bevorzugt handelt es sich um ein solches Pulver, welches aus 50 Gew.-% Molybdänpulver und 50 Gew.-% Stahlpulver besteht.
  • Die so hergestellten Werkzeuge eignen sich für den normalen Einsatz in der Produktion, d.h. ihre Beanspruchbarkeit steht der eines auf herkömmliche Weise hergestellten Werkzeugs aus dem gleichen Material in nichts nach. Damit ist es erstmals möglich, ein produktionsreifes Werkzeug in sehr kurzer Zeit herzustellen, das zudem wesentliche Vorteile in bezug auf die Maßhaltigkeit aufweist.

Claims (15)

  1. Verfahren zur Herstellung von Spritz-, Umform-, Stanz- und/oder Gusswerkzeugen sowie Prototypen, ausgehend von Modellen, gekennzeichnet durch die Schritte: i. Aufrauhen der Oberfläche des Modells; ii. Aufbringen einer Zwischenschicht aus Kupfer oder Nickel auf die Oberfläche des Modells; iii. Aufbringen eines metallischen oder keramischen Belags auf die Zwischenschicht durch thermisches Spritzen; und iv. Entfernen des Modells von der Zwischenschicht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach Schritt iii. oder iv. der Belag hinterfüllt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass nach Schritt iii. oder iv. die Zwischenschicht entfernt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Belag eine durchschnittliche Dicke von mindestens 4 mm aufweist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Belag eine Härte von mindestens 35 HRC, insbesondere von mehr als 50 HRC, aufweist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Modell aus Kunststoff, bevorzugt aus CKF, Polyamid, Polymerharz, Polyethylen, Polypropylen, PMMA, GFK, Polyvinylchlorid, Polystyrol, Epoxidharz, Polyetheretherketon, Polyetherimid, Polycarbonat, Polyphenylsulfon, Polyurea, NBR, SBR, Polytetrafluorethylen oder Phenolharz besteht.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Modell aus Kunststoff hergestellt ist, bevorzugt durch Stereolithographie, Laminated Object Manufacturing (LOM) oder Lasersintern.
  8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Modell aus Holz oder Papier hergestellt ist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Aufrauhen der Oberfläche des Modells mit einem Strahlmittel, vorzugsweise mit Siliciumcarbid mit der Körnung P80, durchgeführt wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zwischenschicht mittels eines außenstromlos chemischen Verfahrens mit Kupfer oder Nickel beschichtet wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass auf die außenstromlos aufgebrachte Zwischenschicht eine weitere metallische Schicht, insbesondere durch ein elektrolytisches Verfahren, aufgebracht ist.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mit der Zwischenschicht versehene Modell in einem Rahmen positioniert und fixiert wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass innerhalb des Rahmens der Belag ausgefüllt oder hinterfüllt wird, insbesondere durch thermisches Spritzen oder Ausgießen mit einem gegebenenfalls metallpartikelhaltigen Epoxyharz oder mit aluminiumhaltigen Schäumen.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch thermisches Spritzen ein legierter Werkzeugstahl aufgebracht wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch thermisches Spritzen ein Spritzpulver, welches vorzugsweise aus 30–50 Gew.-% Molybdänpulver und 70–50 Gew.-% Stahlpulver, insbesondere aus 50 Gew.-% Molybdänpulver und 50 Gew.% Stahlpulver, besteht, aufgebracht wird.
DE10317797A 2003-04-16 2003-04-16 Rapid Prototyping-Verfahren Expired - Fee Related DE10317797B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10317797A DE10317797B4 (de) 2003-04-16 2003-04-16 Rapid Prototyping-Verfahren
EP04727650A EP1615767A1 (de) 2003-04-16 2004-04-15 Rapid prototyping-verfahren
JP2006500366A JP2006523769A (ja) 2003-04-16 2004-04-15 ラピッドプロトタイピングプロセス
PCT/IB2004/050463 WO2004091907A1 (de) 2003-04-16 2004-04-15 Rapid prototyping-verfahren
US10/553,356 US20060188650A1 (en) 2003-04-16 2004-04-15 Rapid prototyping process
CA002522504A CA2522504A1 (en) 2003-04-16 2004-04-15 Rapid prototyping process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10317797A DE10317797B4 (de) 2003-04-16 2003-04-16 Rapid Prototyping-Verfahren

Publications (2)

Publication Number Publication Date
DE10317797A1 true DE10317797A1 (de) 2004-11-11
DE10317797B4 DE10317797B4 (de) 2005-06-30

Family

ID=33154282

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10317797A Expired - Fee Related DE10317797B4 (de) 2003-04-16 2003-04-16 Rapid Prototyping-Verfahren

Country Status (1)

Country Link
DE (1) DE10317797B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393622B2 (en) 2009-08-18 2016-07-19 Mtu Aero Engines Gmbh Thin-walled structural component, and method for the production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211051A1 (de) * 2016-06-21 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Formgebungswerkzeug und Verfahren zur Herstellung eines Formgebungswerkzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB237073A (en) * 1924-06-24 1925-07-23 Thomas Sherriff Robertson A new or improved seed distributer for wheat, oats, barley, and rye
US4231982A (en) * 1975-05-20 1980-11-04 Ab Volvo Method for the production of tools for deep drawing, moulding, extruding and the like
DE3831192A1 (de) * 1988-09-14 1990-03-22 Hek Gmbh Verfahren zum herstellen von formen und formschalen, giessereimodellen, kernbuchsen und dergleichen, mit strukturierter oberflaeche
US5079974A (en) * 1991-05-24 1992-01-14 Carnegie-Mellon University Sprayed metal dies
GB2294227A (en) * 1994-10-19 1996-04-24 Rover Group The production of an article using a thermal spray technique
EP0781625A1 (de) * 1995-12-27 1997-07-02 Ford Motor Company Limited Sprühgegossene Werkzeuge
US6257309B1 (en) * 1998-11-04 2001-07-10 Ford Global Technologies, Inc. Method of spray forming readily weldable and machinable metal deposits
US6305459B1 (en) * 1999-08-09 2001-10-23 Ford Global Technologies, Inc. Method of making spray-formed articles using a polymeric mandrel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB237073A (en) * 1924-06-24 1925-07-23 Thomas Sherriff Robertson A new or improved seed distributer for wheat, oats, barley, and rye
US4231982A (en) * 1975-05-20 1980-11-04 Ab Volvo Method for the production of tools for deep drawing, moulding, extruding and the like
DE3831192A1 (de) * 1988-09-14 1990-03-22 Hek Gmbh Verfahren zum herstellen von formen und formschalen, giessereimodellen, kernbuchsen und dergleichen, mit strukturierter oberflaeche
US5079974A (en) * 1991-05-24 1992-01-14 Carnegie-Mellon University Sprayed metal dies
GB2294227A (en) * 1994-10-19 1996-04-24 Rover Group The production of an article using a thermal spray technique
EP0781625A1 (de) * 1995-12-27 1997-07-02 Ford Motor Company Limited Sprühgegossene Werkzeuge
US6257309B1 (en) * 1998-11-04 2001-07-10 Ford Global Technologies, Inc. Method of spray forming readily weldable and machinable metal deposits
US6305459B1 (en) * 1999-08-09 2001-10-23 Ford Global Technologies, Inc. Method of making spray-formed articles using a polymeric mandrel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393622B2 (en) 2009-08-18 2016-07-19 Mtu Aero Engines Gmbh Thin-walled structural component, and method for the production thereof

Also Published As

Publication number Publication date
DE10317797B4 (de) 2005-06-30

Similar Documents

Publication Publication Date Title
DE60311824T2 (de) Giessverfahren
EP0309507B1 (de) Formkörper zum tiefziehen von folien und vergiessen von werkstoffen
DE2900371C3 (de) Verfahren zur Herstellung eines beschichteten Sinterkörpers
WO2010028864A2 (de) Herstellungsverfahren für ein lackieranlagenbauteil und entsprechendes lackieranlagenbauteil
DE102009048706A1 (de) Verfahren und Vorrichtung zur Herstellung eines Formteils mittels generativen Auftragens
US5939011A (en) Method for producing a mandrel for use in hot isostatic pressed powder metallurgy rapid tool making
EP0554683A1 (de) Verfahren zur Umwandlung von Gussoberflächen durch Pulverimprägnation
DE19883018C2 (de) Verfahren zur Bearbeitung einer Oberfläche einer Form unter Verwendung einer elektrischen Entladung, bei einer derartigen Bearbeitung verwendete Elektrode, und Verfahren zur Herstellung einer derartigen Elektrode
DE102013203372A1 (de) Formkernpaket zum formen eines powder-slush-formwerkzeugs
DE102004006441A1 (de) Formteilwerkzeug und Verfahren zu seiner Herstellung
WO2004091907A1 (de) Rapid prototyping-verfahren
DE102018113057A1 (de) Werkzeug und verfahren zum direkten squeeze-casting
EP0316978B1 (de) Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung
EP1854568B1 (de) Verfahren zur Abformung von dreidimensionalen Freiformflächen mit mikrostrukturierten Oberflächen
DE10317797B4 (de) Rapid Prototyping-Verfahren
DE102007032621A1 (de) Metallischer Werkzeugeinsatz
DE19537264A1 (de) Verfahren zur Herstellung dreidimensionaler Bauteile aus insbesondere metallischen Werkstoffen, Kunststoffen oder Keramikverbundwerkstoffen
EP1615766B1 (de) Verwendung eines stromlos metallisierten kunststoffsubstrates als formwerkzeug
DE10017391A1 (de) Verfahren zur Herstellung von metallischen Dauerformen und Dauerform
EP1629957A1 (de) Spritzgiessform
JP4451546B2 (ja) 鋳造用金型およびその製造方法
EP2602049B1 (de) Werkzeuge in Hybridbauweise
DE19855407C2 (de) Herstellung eines Umformwerkzeuges für eine Preßeinrichtung, sowie danach hergestelltes Umformwerkzeug
DE102017007963A1 (de) Folienformwerkzeug, Verfahren zum Herstellen eines Folienformwerkzeugs und Verwendung eines Folienformwerkzeugs
Dolinšek Investigation of direct metal laser sintering process

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R073 Re-establishment requested
R082 Change of representative

Representative=s name: MOSER & GOETZE PATENTANWAELTE, DE

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20121101

R074 Re-establishment allowed

Effective date: 20130812

Effective date: 20130809

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee