DE10304435B3 - Linsensystem für einen Stoßwellengenerator - Google Patents

Linsensystem für einen Stoßwellengenerator Download PDF

Info

Publication number
DE10304435B3
DE10304435B3 DE2003104435 DE10304435A DE10304435B3 DE 10304435 B3 DE10304435 B3 DE 10304435B3 DE 2003104435 DE2003104435 DE 2003104435 DE 10304435 A DE10304435 A DE 10304435A DE 10304435 B3 DE10304435 B3 DE 10304435B3
Authority
DE
Germany
Prior art keywords
lens
lens element
lens elements
lens system
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE2003104435
Other languages
English (en)
Inventor
Wolfgang Dr. Hepp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medtech Systems GmbH
Original Assignee
Dornier Medtech Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medtech Systems GmbH filed Critical Dornier Medtech Systems GmbH
Priority to DE2003104435 priority Critical patent/DE10304435B3/de
Priority to EP20040001091 priority patent/EP1445758A2/de
Priority to CNA2004100031010A priority patent/CN1541624A/zh
Application granted granted Critical
Publication of DE10304435B3 publication Critical patent/DE10304435B3/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)

Abstract

Die Erfindung betrifft ein Linsensystem für akustische Wellen mit wenigstens zwei Linsenelementen, wobei wenigstens ein Linsenelement um eine Rotationsachse innerhalb des Strahlengangs rotierbar ist und die wenigstens zwei Linsenelemente bezüglich der Rotationsachse eine nichtrotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik aufweisen.

Description

  • Die Erfindung betrifft ein Linsensystem für einen Stoßwellengenerator mit wenigstens zwei Linsenelementen.
  • Stoßwellengeneratoren werden beispielsweise in Therapieeinrichtungen zur Behandlung von Steinleiden (Lithotripsie), Tumorleiden und Knochenleiden (Osteorestauration) verwendet. Zur Zertrümmerung beispielsweise von Nierensteinen werden Stoßwellensequenzen von einer Stoßwellenquelle erzeugt, die auf das Konkrement im Körper fokussiert werden. Bei den heute verfügbaren Geräten ist die geometrische Form und der zeitliche Verlauf der Stoßwellen durch die Struktur und Geometrie der Quelle und der fokussierenden Elemente festgelegt.
  • Ein wichtiges Anliegen bei der Gestaltung der Stoßquellen besteht darin, auf der einen Seite die Effektivität der Zertrümmerung zu verbessern und auf der anderen Seite die Nebenwirkungen durch die nicht vom Stein absorbierte akustische Energie zu reduzieren. Untersuchungen an elektrohydraulischen Stoßquellen (Elektrodenquellen) haben gezeigt, dass die erzeugten Stoßwellen in Bezug auf das Verhältnis von Wirkung zu Nebenwirkung dadurch verbessert werden können, dass ein Teil der Stoßwellenfront gegenüber der Hauptwelle zeitlich so verzögert wird, dass die im Fokus und in dessen Umgebung auftretenden Zuganteile durch Überlagerung von positiven Anteilen aus der verzögerten Welle reduziert und dadurch die für die Nebenwirkungen verantwortliche Kavitationsneigung verringert wird. Versuche der Anmelderin mit Verzögerungsstrecken im Stoßwellenpfad haben gezeigt, dass es möglich ist, durch Verzögerung von Teilen der Stoßwellenfront die Spitzendrücke in der Fokusachse zu senken. Dabei konnten erheblich reduzierte Durchsätze akus tischer Energie durch den Therapiefokus realisiert werden, ohne die Effektivität des Einzelpulses hinsichtlich seiner Zertrümmerungswirkung zu verringern.
  • Das häufig verwendete elektrohydraulische Verfahren erzeugt durch den außertokalen Funkensprung eine zeitliche Dehnung und eine seitliche Verschmierung des Fokusprofils. Die elektromagnetische Quelle erzeugt insbesondere bei großen Apparaturen geometrisch und zeitlich exakte Pulse, die – unterstützt durch nichtlineare Effekte – zu einer sehr scharten Bündelung führen. Scharfe und unscharfe Fokussierungen führen zu unterschiedlichen Zerkleinerungsmechanismen, die je nach Steingröße, Steinzusammensetzung und Zertrümmerungsfortschritt auf verschiedene Weise geeignet eingesetzt werden können.
  • Aus der EP 0 254 104 ist ein Stoßwellengenerator bekannt, der eine Fokussierungseinrichtung mit mehreren Linsen umfasst. Dabei werden eine oder mehrere Linsen entweder in den Strahlengang bzw. den Stoßwellenweg eingebracht oder aus diesem heraus genommen. Durch dieses Einbringen und Herausnehmen der Linsen kann die Fokusbreite verändert werden.
  • Ein erster Nachteil dieses Stands der Technik besteht darin, dass lediglich die Fokusgeometrie, nicht jedoch das Pulsprofil verändert werden kann. Außerdem erfordert dieses Verfahren des Einbringens und Herausnehmens der Linsen einen relativ voluminösen Stoßwellengenerator.
  • Die EP 0 448 291 offenbart eine Ultraschallsonde, bei der neben einem piezoelektrischen Element eine Welle zum Rotieren von ein oder zwei Beugungsteilen angeordnet ist, um verschiedene Abschnitte eines Beugungsteils in den Strahlengang einzubringen.
  • Es ist daher die Aufgabe der Erfindung, ein Linsensystem bereitzustellen, das eine Veränderung der Fokusgeometrie und des Pulsprofils von Stoßwellen ermöglicht und außerdem in kompakter Bauweise herstellbar ist.
  • Diese Aufgabe wird gelöst durch ein Linsensystem gemäß Anspruch 1. Dementsprechend wird erfindungsgemäß ein Linsensystem für einen Stoßwellengenerator mit wenigstens zwei Linsenelementen bereitgestellt, wobei wenigstens ein Linsenelement um eine Rotationsachse innerhalb des Strahlengangs rotierbar ist und die wenigstens zwei Linsenelemente bezüglich der Rotationsachse eine nichtrotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik aufweisen.
  • Unter einem Linsenelement wird hier und im Folgenden ein durchstrahlbares Element verstanden, das geeignet ist, einen akustischen Strahl zu verändern. Die Veränderung kann beispielsweise in einer Fokussierung oder einer Phasenverschiebung bestehen. Der Begriff Beugungscharakteristik impliziert nicht notwendigerweise, dass das entsprechenden Linsenelement den Strahl fokussiert; auch eine Aufweitung des Strahls ist möglich. Ein Linsenelement kann auch lediglich eine Phasenverschiebung eines Teils oder des gesamten Strahls bewirken ohne diesen zu fokussieren. In diesem Fall kann ein weiteres Linsenelement vorgesehen sein, das lediglich der Fokussierung dient. Neben den wenigstens zwei Linsenelementen kann ein Linsenelement mit einer rotationssymmetrischen Beugungs- und/oder Phasenverschiebungscharakteristik vorgesehen sein.
  • Die nichtrotationssymmetrische Phasenverschiebungscharakteristik kann kontinuierlich oder nichtkontinuierlich ausgebildet sein.
  • Die wenigstens zwei Linsenelemente müssen nicht notwendigerweise dieselbe Beugungs- und/oder Phasenverschiebungscharakteristik aufweisen. Wie unten ausführlich diskutiert wird, ist es häufig nützlich, wenn sie unterschiedliche Beugungs- und/oder Phasenverschiebungscharakteristika aufweisen.
  • Die nichtrotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik der wenigstens zwei Linsenelemente erlaubt ein Verändern und Anpassen des Fokus und des Pulsprofils durch Rotation des wenigstens einen Linsenelements um die Rotationsachse. Kompakte Abmessungen des Linsensystems werden dadurch gewährleistet, dass die Rotationsachse innerhalb des Strahlengangs bzw. akustischen Wellenwegs liegt. Die Linsen müssen nicht, wie in dem oben beschriebenen Stand der Technik, jeweils in den Strahlengang eingebracht werden.
  • Es ist zu beachten, dass das wenigstens eine Linsenelement des erfindungsgemäßen Linsensystems nicht notwendigerweise so ausgebildet ist, dass es in einem Strahlengang den gesamten Wellenquerschnitt (beispielsweise einer Stoßwelle) erfasst. Das Linsenelement muss auch nicht die Rotationsachse vollständig umgeben und/oder in irgendeiner Weise symmetrisch bzgl. der Rotationsachse ausgebildet sein.
  • Gemäß einer vorteilhaften Weiterbildung können die wenigstens zwei Linsenelemente koaxial angeordnet und die gemeinsame Achse die Rotationsachse sein.
  • Bei einer koaxialen Anordnung weist jedes Linsenelement – zumindest was seine Umfangsgestalt in der Ebene senkrecht zur Rotationsachse betrifft – eine Symmetrie bezüglich dieser Rotationsachse auf. Beispielsweise könnte ein Linsenelement einen kreisförmigen Umfang aufweisen. Durch die koaxiale Anordnung wird ein einfacher und kompakter Aufbau ermöglicht. Außerdem ist ein einfaches Einstellen bzw. Anpassen der Linsenstellungen möglich.
  • Zur Einstellung eines bestimmten Fokus oder Pulsprofils können die wenigstens zwei Linsenelemente in eine vorherbestimmte relative Stellung zueinander gebracht werden. Dies kann dadurch erreicht werden, dass ein Linsenelement fest ist während das andere um die Rotationsachse bewegbar ist. Es können aber auch alle Linsenelemente rotierbar sein. Bei mehr als zwei Linsenelementen können alternativ auch einige der Linsenelemente bewegbar sein während andere fest angeordnet sind.
  • In einer vorteilhaften Weiterbildung können die Beugungs- und/oder Phasenverschiebungscharakteristika der wenigstens zwei Linsenelemente derart ausgebildet sein, dass die Beugungs- und/oder Phasenverschiebungswirkung der wenigstens zwei Linsenelemente in einer ersten vorbestimmten relativen Anordnung der wenigstens zwei Linsenelemente maximal und in einer zweiten vorbestimmen relativen Anordnung minimal ist.
  • In der ersten vorbestimmten relativen Anordnung der wenigstens zwei Linsenelemente können sich also etwa die Beugungs- und/oder Phasenverschiebungswirkungen der Linsenelemente verstärken während sie sich in der zweiten vorbestimmten relativen Anordnung etwa zumindest teilweise kompensieren.
  • In einer vorteilhaften Weiterbildung kann wenigstens ein zweites Linsenelement eine derartige Beugungs- und/oder Phasenverschiebungscharakteristik aufweisen, dass die Kombination des wenigstens einen und des zweiten Linsenelements in einer vorbestimmten relativen Anordnung der Linsenelemente eine rotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik aufweist. Auf diese Weise kann die nichtrotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik des wenigstens einen Linsenelements durch eine vorbestimmte relative Position wenigstens eines zweiten Linsenelements kompensiert werden, so dass die gesamte Charakteristik des einen und des zweiten Linsenelements rotationssymmetrisch ist.
  • Gemäß einer vorteilhaften Weiterbildung kann das zweite Linsenelement die gleiche Beugungs- und/oder Phasenverschiebungscharakteristik wie das wenigstens eine Linsenelement aufweisen. Damit wird die Beugungs- und/oder Phasenverschiebungswirkung der beiden Linsenelemente, wenn diese bzgl. der Rotationsachse in gleicher Position sind, maximal verstärkt. Diese Weiterbildung erlaubt auch eine einfache Herstellung des Linsenelements.
  • Gemäß einer vorteilhaften Alternative kann das zweite Linsenelement eine zu der des wenigstens einen Linsenelements inverse Beugungs- und/oder Phasenverschiebungscharakteristik aufweisen. Auf diese Weise kann in einer vorherbestimmten relativen Anordnung der beiden Linsenelemente eine Kompen sation der nichtrotationssymmetrischen Beugungs- und/oder Phasenverschiebungswirkung des wenigstens einen Linsenelements erzielt werden. Falls beispielsweise das wenigstens eine Linsenelement in einem Bereich eine konvexe Wölbung aufweist kann das zweite Linsenelement in einem entsprechenden Bereich eine konkave Wölbung aufweisen. Damit kann erreicht werden, dass in einer ersten relativen Anordnung der Linsenelemente eine Maximierung der Beugungs- und/oder Phasenverschiebungswirkung erreicht wird; in einer anderen relativen Anordnung kann eine Kompensation der Wirkung erzielt werden. Vorzugsweise sind das wenigstens eine und das zweite Linsenelement derart ausgebildet, dass die relative Anordnung der beiden Linsenelemente mit minimaler Wirkung durch eine relative Drehung um 90° aus der Stellung maximale Wirkung entsteht.
  • In einer vorteilhaften Weiterbildung der zuvor beschriebenen Linsensysteme kann das wenigsten eine Linsenelement eine nichtrotationssymmetrische Dickenverteilung aufweisen. Vorzugsweise kann die Dickenverteilung nichtkontinuierlich sein. Dies ermöglicht eine genaue Einstellung eines definierten Fokus und/oder Pulsprofils.
  • Wie bereits zuvor erwähnt, muss ein Linsenelement nicht einen gesamten Wellenquerschnitt umfassen. Vorzugsweise kann das wenigstens eine Linsenelement in Ringform ausgebildet sein. Dadurch wird ein Teil des Strahls unbeeinflusst gelassen.
  • In einer vorteilhaften Weiterbildung kann das wenigsten eine Linsenelement wenigstens zwei Materialien umfassen. Durch eine geeignete Wahl der Materialien mit bestimmten Schallgeschwindigkeiten können somit Linsenelemente mit gewünschten Charakteristika hergestellt werden.
  • Vorteilhafterweise kann das wenigstens eine Linsenelement einen formstabilen Werkstoff, insbesondere Polistyrol, umfassen.
  • Die Erfindung stellt außerdem einen Stoßwellengenerator mit einem Linsensystem der zuvor beschriebenen Art bereit. Die Verwendung eines solchen Stoßwellengenerators erlaubt es, die Stoßwellen bei einer Therapie auf den jeweiligen Patienten anzupassen und dabei die Nebenwirkungen bei gleichbleibender Effektivität zu verringern.
  • Weitere Merkmale und Vorteile in der Erfindung werden an Hand der folgenden Zeichnungen näher beschreiben. Dabei zeigt
  • 1 in schematischer Darstellung ein erstes Ausführungsbeispiel eines erfindungsgemäßen Linsensystems in einem Stoßwellengenerator;
  • 2 in schematischer Darstellung ein zweites Ausführungsbeispiel eines erfindungsgemäßen Linsensystems in einem Stoßwellengenerator mit einer ersten relativen Anordnung der Linsenelemente;
  • 3a das Fokusprofil der Linsenanordnung von 2;
  • 3b das Pulsprofil der Linsenanordnung von 2;
  • 4 das zweite Ausführungsbeispiel mit einer anderen Anordnung der beiden Linsenelemente;
  • 5a das Fokusprofil für die Anordnung der Linsenelemente von 4; und
  • 5b das Pulsprofil für die Anordnung der Linsenelemente von 4.
  • 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Stoßwellengenerators. Der Stoßwellengenerator umfasst eine Stoßquelle 1, bei der es sich beispielsweise um eine ebene (wie in der Figur gezeigt) oder eine zylind rische elektromagnetische Quelle, eine ebene oder kalottenförmige piezoelektrische Quelle handeln kann. In dem Strahlengang der Stoßwelle ist eine konvexe Linse 2 angeordnet, die der Fokussierung der Stoßwelle dient. In der der Stoßquelle abgewandten Seite der Linse 2 sind Vertiefungen 3 angeordnet.
  • Die Linse 2 besteht aus einem Material mit einer anderen Schallgeschwindigkeit als das umgebende Medium (z.B. Wasser). Auf Grund der Vertiefungen 3 sind Teile einer Stoßwelle, welche die Linse 2 in den Bereichen der Vertiefungen 3 verlassen, gegenüber anderen Teilen der Stoßwelle, welche aus der Linse 2 in anderen Bereichen der Oberfläche austreten, phasenverschoben. Die Vertiefungen 3 sind in diesem Ausführungsbeispiel in Form von Stufen ausgebildet; das Linsenelement 2 weist somit eine nichtkontinuierliche Dickenverteilung auf.
  • In Strahlungsrichtung nach dem Linsenelement 2 kommt ein weiteres Linsenelement 4, das lediglich der Phasenverschiebung dient; es wird nicht zur Fokussierung verwendet. Auf dem Linsenelement 4 sind Erhöhungen 5 angeordnet. Die Höhe der Erhöhungen 5 entspricht der Tiefe der Vertiefungen 3. Beide Linsenelemente 2 und 4 sind koaxial bzgl. der Achse 6 angeordnet, wobei das Linsenelement 4 um die Achse 6 rotierbar ist, wie durch den Pfeil angedeutet wird.
  • In der in 1 gezeigten relativen Stellung der Linsenelemente 2 und 4 zueinander, kompensieren sich die durch die Vertiefungen 3 und Erhöhungen 5 erzielten Phasenverschiebungen. Auf Grund der sich entsprechenden Verzögerungs- oder Beschleunigungsstrecken in den Linsenelementen 2 und 4, haben die beiden Linsenelemente zueinander inverse Phasenverschiebungscharakteristika. Die resultierende Stoßwellenfront ist durch die Linie mit der Bezugsziffer 9 angedeutet.
  • Wird das Linsenelement 4 um die Achse 6 gedreht, so dass die Stufen 3 und 5 nicht mehr übereinander liegen, durchläuft eine Stoßwelle je nach Bereich der Linsenelemente 2 und 4 unterschiedliche Strecken in dem Linsenmaterial. Dadurch erfahren Teile der Stoßwelle, je nach gewähltem Material, eine Beschleunigung oder eine Verzögerung gegenüber anderen Teilen der Stoßwelle.
  • Statt der in 1 gezeigten Form, können die Vertiefungen 3 und Erhöhungen 5 auch bis zum Mittelpunkt der Linsenelemente reichen. Neben den gezeigten Stufen mit einer bestimmten Höhe bzw. Tiefe können auch weitere Stufen mit unterschiedlicher Höhe bzw. Tiefe vorhanden sein. Auch die gezeigten Stufen können unterschiedliche Abmessungen aufweisen; dies gilt sowohl für Stufen innerhalb eines der Linsenelemente als auch für die Stufen in verschiedenen Linsenelementen.
  • Die Linsenelemente können aus einem Material mit höherer Schallgeschwindigkeit (z.B. Polistyrol) oder mit niedrigerer Schallgeschwindigkeit (z.B. Silikonkautschuk) als das umgebende Ausbreitungsmedium (z.B. Wasser) bestehen. Aus Gründen der Formstabilität können die Linsenelemente aus einem formstabilen Werkstoff wie z.B. Polistyrol gefertigt sein.
  • Die Rotation des Linsenelements 4 kann von Hand durch einen Hebel von außen oder etwa mit einem Stellmotor erfolgen. Auch das andere Linsenelement 2 kann beweglich sein.
  • 2 zeigt ein anderes Ausführungsbeispiel eines erfindungsgemäßen Stoßwellengenerators. In diesem Beispiel kommt nach der elektromagnetischen Quelle 1 eine konvexe Linse 2, die lediglich der Fokussierung dient. Die Linse 2 wird gefolgt von zwei Linsenelementen 7 und 8, welche jeweils die gleiche Phasenverschiebungscharakteristik aufweisen. In der gezeigten Anordnung nimmt die Dicke des Linsenelements vom Mittelpunkt aus nach links und rechts zu.
  • In 2 sind die Linsenelemente 7 und 8 derart zueinander angeordnet, dass sich die Phasenverschiebung beider Linsenelemente maximal verstärkt, da sich die phasenverzögernden Bereiche (bei einem Material mit niedrigerer Schallgeschwindigkeit als das Umgebungsmedium) übereinander befinden.
  • Die resultierende Stoßwellenfront ist durch die Linie 9 angedeutet. Wie man erkennen kann, sind die Randbereiche links und rechts der Wellenfront im Vergleich zu einer nicht verzögerten Stoßwellenfront 10 etwas zurückgeblieben. Die entsprechende Druckverteilung im Fokus 11 ergibt sich aus den gezeigten Isobaren.
  • In 3a ist die Ortsabhängigkeit des Drucks p nochmals gezeigt. Man erkennt die räumliche Defokussierung der Stoßwellenfront. 3b stellt das Pulsprofil dar. Auch die zeitliche Defokussierung der Stoßwellenfront ist somit maximal.
  • In 4 ist das Ausführungsbeispiel des Linsensystems von 2 gezeigt, wobei hier die Linsenelemente 7 und 8 relativ zu der in 2 gezeigten Anordnung um 90° gegeneinander verdreht sind. Somit werden die Phasenverschiebungen kompensiert. Jeder Teil der Stoßwelle durchläuft die gleiche Materialdicke mit von dem Umgebungsmedium abweichender Schallgeschwindigkeit, so dass die gesamte Stoßwellenfront dieselbe Beschleunigung bzw. Verzögerung erfährt. Die resultierende Stoßwellenfront 10 entspricht somit der eines Stoßwellengenerators ohne Linsenelemente 7 und 8.
  • Die resultierende Druckverteilung bzw. das resultierende Pulsprofil sind in 5a und 5b gezeigt. Man erkennt, dass die Stoßwelle sowohl räumlich (5a) als auch zeitlich (5b) maximal fokussiert ist.
  • Die in den Ausführungsbeispielen gezeigten Linsenelemente sind lediglich Illustrationen des erfindungsgemäßen Linsensystems. Es ist klar, dass beispielsweise die Linsenelemente 7 und/oder 8 auch vor der konvexen Linse 2 angeordnet sein können. Auch sind andere Kombinationen von Linsenelemen ten insbesondere mit anderen Dickenverteilungen oder aus verschiedenen Materialien denkbar.
  • In den Ausführungsbeispielen sind ebene elektromagnetische Stoßquellen gezeigt. Linsenelemente für andere Stoßquellen (beispielsweise zylindrische oder kalottenförmige Quellen) können in analoger Weise konstruiert werden.

Claims (12)

  1. Linsensystem für akustische Wellen mit wenigstens zwei Linsenelementen (2, 4; 7, 8), wobei wenigstens ein Linsenelement um eine Rotationsachse innerhalb des Strahlengangs rotierbar ist und die wenigstens zwei Linsenelemente bezüglich der Rotationsachse nicht rotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristika aufweisen.
  2. Linsensystem nach Anspruch 1, wobei die wenigstens zwei Linsenelemente koaxial angeordnet sind und die gemeinsame Achse die Rotationsachse (6) ist.
  3. Linsensystem nach Anspruch 1 oder 2, wobei die Beugungs- und/oder Phasenverschiebungscharakteristika der wenigstens zwei Linsenelemente derart ausgebildet ist, dass die Beugungs- und/oder Phasenverschiebungswirkung der wenigstens zwei Linsenelemente in einer ersten vorherbestimmten relativen Anordnung der wenigstens zwei Linsenelemente maximal und in einer zweiten vorherbestimmen relativen Anordnung minimal ist.
  4. Linsensystem nach einem der vorangegangenen Ansprüche, wobei wenigstens ein zweites Linsenelement eine derartige Beugungs- und/oder Phasenverschiebungscharakteristik aufweist, dass die Kombination des wenigstens einen und des zweiten Linsenelements in einer vorherbestimmten relativen Anordnung der Linsenelemente eine rotationssymmetrische Beugungs- und/oder Phasenverschiebungscharakteristik aufweist.
  5. Linsensystem nach Anspruch 4, wobei das zweite Linsenelement die gleiche Beugungs- und/oder Phasenverschiebungscharakteristik wie das wenigstens eine Linsenelement aufweist.
  6. Linsensystem nach Anspruch 4, wobei das zweite Linsenelement eine zu der des wenigstens einen Linsenelements inverse Beugungs- und/oder Phasenverschiebungscharakteristik aufweist.
  7. Linsensystem nach einem der vorangegangenen Ansprüche, wobei das wenigstens eine Linsenelement eine nichtrotationssymmetrische Dickenverteilung aufweist.
  8. Linsensystem nach Anspruch 7, wobei die Dickenverteilung nichtkontinuierlich ist.
  9. Linsensystem nach einem der vorangegangenen Ansprüche, wobei das wenigstens eine Linsenelement in Ringform ausgebildet ist.
  10. Linsensystem nach einem der vorangegangenen Ansprüche, wobei das wenigstens eine Linsenelement wenigstens zwei Materialien umfasst.
  11. Linsensystem nach einem der vorangegangenen Ansprüche, wobei das wenigstens eine Linsenelement ein formstabiles Material, insbesondere Polistyrol, umfasst.
  12. Stoßwellengenerator mit einem Linsensystem nach einem der vorangegangenen Ansprüche.
DE2003104435 2003-02-04 2003-02-04 Linsensystem für einen Stoßwellengenerator Expired - Fee Related DE10304435B3 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2003104435 DE10304435B3 (de) 2003-02-04 2003-02-04 Linsensystem für einen Stoßwellengenerator
EP20040001091 EP1445758A2 (de) 2003-02-04 2004-01-20 Linsensystem für einen Stosswellengenerator
CNA2004100031010A CN1541624A (zh) 2003-02-04 2004-02-04 用于冲击波发生器的透镜系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003104435 DE10304435B3 (de) 2003-02-04 2003-02-04 Linsensystem für einen Stoßwellengenerator

Publications (1)

Publication Number Publication Date
DE10304435B3 true DE10304435B3 (de) 2004-07-15

Family

ID=32520132

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003104435 Expired - Fee Related DE10304435B3 (de) 2003-02-04 2003-02-04 Linsensystem für einen Stoßwellengenerator

Country Status (3)

Country Link
EP (1) EP1445758A2 (de)
CN (1) CN1541624A (de)
DE (1) DE10304435B3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257282B2 (en) 2004-02-19 2012-09-04 General Patent, Llc Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
RU197438U1 (ru) * 2020-01-09 2020-04-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Устройство субволновой фокусировки поверхностных упругих волн

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507213B2 (en) 2004-03-16 2009-03-24 General Patent Llc Pressure pulse/shock wave therapy methods for organs
US7544171B2 (en) 2004-10-22 2009-06-09 General Patent Llc Methods for promoting nerve regeneration and neuronal growth and elongation
US7600343B2 (en) 2004-10-22 2009-10-13 General Patent, Llc Method of stimulating plant growth
US7537572B2 (en) 2004-10-22 2009-05-26 General Patent, Llc Treatment or pre-treatment for radiation/chemical exposure
US7497834B2 (en) 2004-10-22 2009-03-03 General Patent Llc Germicidal method for eradicating or preventing the formation of biofilms
US7497835B2 (en) 2004-10-22 2009-03-03 General Patent Llc Method of treatment for and prevention of periodontal disease
US7578796B2 (en) 2004-10-22 2009-08-25 General Patent Llc Method of shockwave treating fish and shellfish
US7497836B2 (en) 2004-10-22 2009-03-03 General Patent Llc Germicidal method for treating or preventing sinusitis
US7601127B2 (en) 2004-10-22 2009-10-13 General Patent, Llc Therapeutic stimulation of genital tissue or reproductive organ of an infertility or impotence diagnosed patient
US7988648B2 (en) 2005-03-04 2011-08-02 General Patent, Llc Pancreas regeneration treatment for diabetics using extracorporeal acoustic shock waves
US7610079B2 (en) 2006-07-25 2009-10-27 Ast Gmbh Shock wave imaging system
US7888847B2 (en) 2006-10-24 2011-02-15 Dennis Raymond Dietz Apodizing ultrasonic lens
DE102006050781A1 (de) 2006-10-27 2008-04-30 Ast Gmbh Vorrichtung zur räumlichen Positionierung eines Gerätes
US8529451B2 (en) 2007-10-01 2013-09-10 General Patent, Llc Shock wave coupling adapter and method of use
US11389372B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods
US11389370B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Treatments for blood sugar levels and muscle tissue optimization using extracorporeal acoustic shock waves
US11389371B2 (en) 2018-05-21 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods
US11458069B2 (en) 2016-04-18 2022-10-04 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones
US11389373B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods to prevent or treat opioid addiction
WO2018002929A1 (en) * 2016-06-28 2018-01-04 Hi Impacts Ltd Ballistic shockwave focusing waveguide
CN110368596B (zh) * 2019-07-24 2020-12-08 郑州大学第一附属医院 风湿免疫科红外治疗装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254104B1 (de) * 1986-07-16 1990-10-03 Siemens Aktiengesellschaft Stosswellengenerator zur Erzeugung eines akustischen Stosswellenimpulses
EP0448291A2 (de) * 1990-03-20 1991-09-25 Fujitsu Limited Ultraschallmessfühler mit rotierendem Wellenbrechbauteil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254104B1 (de) * 1986-07-16 1990-10-03 Siemens Aktiengesellschaft Stosswellengenerator zur Erzeugung eines akustischen Stosswellenimpulses
EP0448291A2 (de) * 1990-03-20 1991-09-25 Fujitsu Limited Ultraschallmessfühler mit rotierendem Wellenbrechbauteil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535249B2 (en) 2003-02-19 2013-09-17 General Patent Llc Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
US8257282B2 (en) 2004-02-19 2012-09-04 General Patent, Llc Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
RU197438U1 (ru) * 2020-01-09 2020-04-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Устройство субволновой фокусировки поверхностных упругих волн

Also Published As

Publication number Publication date
EP1445758A2 (de) 2004-08-11
CN1541624A (zh) 2004-11-03

Similar Documents

Publication Publication Date Title
DE10304435B3 (de) Linsensystem für einen Stoßwellengenerator
DE3932967C2 (de)
EP0189756B1 (de) Einrichtung zur Erzeugung zeitlich versetzter Stosswellen
DE3543867C2 (de)
DE102008038214B4 (de) Verfahren und Stoßwellenkopf zum Erzeugen von fokussierten Ultraschall-Stoßwellen
EP0254104B1 (de) Stosswellengenerator zur Erzeugung eines akustischen Stosswellenimpulses
EP1977725B1 (de) Vorrichtung für die Materialbearbeitung, insbesondere die refraktive Augenchirurgie
DE3608877C2 (de)
DE202007002218U1 (de) Strichfokussierende Schallwellenquelle
DE10301875A1 (de) Vorrichtung zur Erzeugung von unterschiedlichen akustischen Druckwellen durch variable Reflexionsflächen
DE3328039C2 (de) Einrichtung zum beruehrungslosen zertruemmern eines im koerper eines lebewesens befindlichen konkrements
EP0783870B1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP2136749B1 (de) Vorrichtung und verfahren zur materialbearbeitung mittels laserstrahlung
DE4135328A1 (de) Extrakorporales therapiegeraet
DE202007001884U1 (de) Fokussierende, elektromagnetische Schallwellenquelle
WO2011107313A1 (de) Bestrahlungsvorrichtung und bestrahlungsverfahren zur deposition einer dosis in einem zielvolumen
EP0243650B1 (de) Stosswellenquelle mit verbesserter Fokuszone
EP1062933A2 (de) Vorrichtung, insbesondere Therapievorrichtung, zum Beschallen von Objekten mit fokussiertem Schall
DE10225709B4 (de) Balg zur Ankopplung einer Quelle akustischer Wellen an ein Lebewesen
EP0851741B1 (de) Vorrichtung zur behandlung von körpergewebe und zur zertrümmerung von körpersteinen
WO2006108615A1 (de) Fokussiereinrichtung für eine vorrichtung zur erzeugung von stosswellen
DE4421938C2 (de) Vorrichtung zur Erzeugung fokussierter akustischer Wellen
EP0662803B1 (de) Verfahren und vorrichtung zur formkorrektur einer linse
DE4101469C1 (en) Lithotripsy equipment spatially locating and positioning calculi - has optical collimating lens between optical cross hair sights and X=ray absorbing cross hair, central point being in ultrasonic image plane
DE3739392A1 (de) Lithrotripter mit veraenderbarem fokus

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
8363 Opposition against the patent
8339 Ceased/non-payment of the annual fee