DE102020208375A1 - Gasdosierventil - Google Patents

Gasdosierventil Download PDF

Info

Publication number
DE102020208375A1
DE102020208375A1 DE102020208375.4A DE102020208375A DE102020208375A1 DE 102020208375 A1 DE102020208375 A1 DE 102020208375A1 DE 102020208375 A DE102020208375 A DE 102020208375A DE 102020208375 A1 DE102020208375 A1 DE 102020208375A1
Authority
DE
Germany
Prior art keywords
sealing surface
section
nozzle needle
valve seat
flow cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102020208375.4A
Other languages
English (en)
Inventor
Andreas Koeninger
Gerhard Suenderhauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102020208375.4A priority Critical patent/DE102020208375A1/de
Priority to PCT/EP2021/067649 priority patent/WO2022002831A1/de
Publication of DE102020208375A1 publication Critical patent/DE102020208375A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/0272Ball valves; Plate valves; Valves having deformable or flexible parts, e.g. membranes; Rotatable valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0269Outwardly opening valves, e.g. poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape
    • F16K1/385Valve members of conical shape contacting in the closed position, over a substantial axial length, a seat surface having the same inclination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0651One-way valve the fluid passing through the solenoid coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Lift Valve (AREA)

Abstract

Gasdosierventil zur dosierten Abgabe von gasförmigem Kraftstoff, mit einem Gehäuse (1), das einen Gasraum (2) mit einer Einlassöffnung (5) und mit einer Auslassöffnung (6) aufweist. Im Gasraum (2) ist eine Düsennadel (7) längsbeweglich angeordnet, die durch einen elektrischen Aktor (8) entgegen einer Rückstellkraft bewegbar ist und an der eine innere Dichtfläche (10) und eine äußere Dichtfläche (11) ausgebildet sind. Dabei wirkt die innere Dichtfläche (10) mit einem inneren Ventilsitz (13) zur Steuerung eines inneren Strömungsquerschnitts (17) und die äußere Dichtfläche (11) mit einem äußeren Ventilsitz (14) zur Steuerung eines äußeren Strömungsquerschnitts (18) zusammen. Durch eine Öffnungsbewegung der Düsennadel (7) wird sowohl der innere Strömungsquerschnitt (17) als auch der äußere Strömungsquerschnitt (18) aufgesteuert. Bei der Schließbewegung der Düsennadel (7) setzt entweder zuerst die äußere Dichtfläche (11) auf dem äußeren Ventilsitz (14) oder zuerst die innere Dichtfläche (10) auf dem inneren Ventilsitz (13) auf. Dabei werden Teile der Düsennadel (7) oder des Ventilkörpers (3) durch die Rückstellkraft so elastisch verformt, dass auch die jeweils andere Dichtfläche (10, 11) auf dem ihr zugeordneten Ventilsitz (13, 14) aufsetzt.

Description

  • Die Erfindung betrifft ein Gasdosierventil, wie es beispielsweise Verwendung findet, um gasförmigen Kraftstoff direkt in einem Brennraum oder in einen Ansaugtrakt einer Brennkraftmaschine dosiert abzugeben.
  • Stand der Technik
  • Aus dem Stand der Technik sind Gasdosierventile zur dosierten Abgabe von gasförmigem Kraftstoff bekannt. Die WO 2018/007068 A1 zeigt ein Gasdosierventil mit einem Ventilelement, das beweglich im Gasraum des Dosierventils angeordnet ist und das durch einen Elektromagneten gegen die Kraft einer Rückstellfeder bewegt werden kann. Dabei sind am Ventilelement zwei Dichtflächen ausgebildet, die mit je einem zugeordneten Ventilsitz zur Steuerung jeweils eines Strömungsquerschnitts zusammenwirken, wobei zwei parallele Strömungspfade eröffnet werden. Das in den Gasraum einströmende Gas passiert einen der geöffneten Strömungsquerschnitte und gelangt schließlich durch eine oder mehrere Eindüsöffnungen nach außen.
  • Bei Gasdosierventilen, wie sie zur Eindosierung von Wasserstoff verwendet werden, ist die Abdichtung besonders wichtig. Wasserstoff kann aufgrund der geringen Molekülgröße auch durch sehr kleine Spalte diffundieren. Insbesondere bei langen Standzeiten eines Motors mit einem entsprechenden Dosierventil kann es problematisch werden, wenn ständig auch nur geringe Mengen Wasserstoff entweichen. Mit einer Metall-Metall-Dichtung lässt sich eine ausreichende Abdichtung nicht oder nur schwer erreichen, so dass die Verwendung einer Elastomerdichtung in der Regel unumgänglich ist. Soll gasförmiger Kraftstoff direkt in einen Brennraum eindosiert werden, so ist das Dosierventil jedoch den hohen Temperaturen ausgesetzt, wie sie bei der Verbrennung entstehen, was zu Schäden an der Elastomerdichtung führen kann. Um dies zu verhindern, kann der elastomerbeschichtete Dichtsitz weit von der Auslassöffnung des Dosierventils angeordnet werden, was die Temperaturen am Dichtsitz senkt, jedoch zu einem erheblichen Totvolumen im Dosierventil führt, das direkt mit dem Brennraum über die Auslassöffnung verbunden ist und eine exakte Dosierung des gasförmigen Kraftstoffs erschwert.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Gasdosierventil weist demgegenüber den Vorteil auf, dass eine sichere Abdichtung des Gasdosierventils auch bei längeren Standzeiten gegeben ist und gleichzeitig eine exakte Dosierung des gasförmigen Kraftstoffs ermöglicht wird. Dazu weist das Gasdosierventil ein Gehäuse auf, das einen Gasraum mit einer Einlassöffnung und mit einer Auslassöffnung umfasst. Im Gasraum ist längsbeweglich eine Düsennadel angeordnet, die durch einen elektrischen Aktor entgegen einer Rückstellkraft bewegbar ist und an der eine innere Dichtfläche und eine äußere Dichtfläche ausgebildet sind, die jeweils mit einem zugeordneten Ventilsitz zur Steuerung eines inneren Strömungsquerschnitts bzw. eines äußeren Strömungsquerschnitts zusammenwirken. Dabei wird durch eine Öffnungsbewegung der Düsennadel sowohl der innere Strömungsquerschnitt als auch der äußere Strömungsquerschnitt aufgesteuert, so dass der gasförmige Kraftstoff zwischen der Einlassöffnung und der Auslassöffnung zuerst den inneren Strömungsquerschnitt und anschließend den äußeren Strömungsquerschnitt durchströmt. Bei der Schließbewegung der Düsennadel setzt entweder zuerst die äußere Dichtfläche auf dem äußeren Ventilsitz oder zuerst die innere Dichtfläche auf dem inneren Ventilsitz auf, wobei Teile der Düsennadel oder des Ventilkörpers durch die Rückstellkraft so elastisch verformt werden, dass auch die jeweils andere Dichtfläche auf dem ihr zugeordneten Ventilsitz aufsetzt.
  • Ist die Düsennadel in ihrer Öffnungsstellung, so durchströmt das Gas nacheinander den ersten und zweiten Strömungsquerschnitt auf dem Weg zur Auslassöffnung des Dosierventils. Bewegt sich die Düsennadel nunmehr zur Beendigung der Dosierung in Schließrichtung, so setzt beispielsweise zuerst die äußere Dichtfläche auf dem äußeren Ventilsitz auf und verschließt damit den äußeren Strömungsquerschnitt, der nahe am Brennraum angeordnet ist und damit potentiell hohen Temperaturen ausgesetzt ist. Da dieser Dichtsitz wegen der hohen Temperaturen nicht mit einem Elastomer beschichtet werden kann, weist er jedoch nicht die für längere Standzeiten notwendige, nahezu absolute Dichtheit auf. Um auch den inneren Strömungsquerschnitt sicher zu verschließen, ist die Düsennadel so elastisch verformbar ausgebildet, dass sich ein Düsennadelabschnitt zwischen der inneren Dichtfläche und der äußeren Dichtfläche bei der weiteren Schließbewegung soweit verlängert, dass auch die innere Dichtfläche auf dem zugeordneten Ventilsitz dichtend aufsetzt. Diese doppelte Abdichtung des Strömungspfads innerhalb des Gasraums bewirkt schließlich die notwendige Abdichtung.
  • In einer vorteilhaften Ausgestaltung umfasst der Düsennadelabschnitt zwischen den beiden Dichtflächen einen Federbalg oder einen federartigen Abschnitt. Dadurch wird die gewünschte Elastizität erreicht und damit die Funktionalität in einfacher Weise realisiert. Alternativ kann der Düsennadelabschnitt auch einen verjüngten Abschnitt umfassen, um die erforderliche Elastizität zu erreichen.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der innere Ventilsitz an einer ins Innere des Gasraums ragenden Dichtlippe ausgebildet. Dies ergibt eine zusätzliche Elastizität, was die Elastizität der Düsennadel unterstützen oder auch ersetzen kann. Vorteilhafterweise kann dabei der innere Ventilsitz an einer ins Innere des Gasraums ragenden Dichtlippe ausgebildet sein, über deren Form die gewünschte Elastizität leicht eingestellt werden kann.
  • In vorteilhafter Ausgestaltung der Erfindung ist auf dem inneren Ventilsitz oder auf der inneren Dichtfläche eine Elastomerdichtung aufgebracht. Dadurch wird an dieser Stelle eine praktisch absolute Dichtheit erreicht, so dass auch bei längerer Standzeit des Ventils kein Gas über die Auslassöffnung aus dem Gasraum ausströmen kann.
  • In einer weiteren vorteilhaften Ausgestaltung ist die Düsennadel durch eine vorgespannte Feder beaufschlagt, die die Rückstellkraft erzeugt. Die Feder sorgt damit dafür, dass das Dosierventil geschlossen bleibt, wenn der Elektromagnet keine Öffnungskraft auf das Ventilelement ausübt, also insbesondere, wenn das Dosierventil abgeschaltet ist. Die Schließfeder erzeugt auch die notwendige Kraft, um die Düsennadel oder andere Teile des Gasdosierventils elastisch zu verformen und damit das Aufsetzen beider Dichtflächen auf den jeweiligen Ventilsitzen zu ermöglichen.
  • In einer weiteren vorteilhaften Ausgestaltung ist die innere Dichtfläche und der zugeordnete innere Ventilsitz und/oder die äußere Dichtfläche und der zugeordnete äußere Ventilsitz konisch ausgestaltet. Dadurch kann zum einen der Strömungsquerschnitt und der Strömungsverlauf gezielt beeinflusst werden und zum anderen wird dadurch der Verschleiß im Bereich der Dichtflächen vermindert.
  • Figurenliste
  • In der Zeichnung sind verschiedene Ausführungsbeispiele von erfindungsgemäßen Gasdosierventilen dargestellt. Es zeigt
    • 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Gasdosierventils im Längsschnitt in einer geöffneten Stellung und
    • 2 dasselbe Gasdosierventil in geschlossener Stellung,
    • 3 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Gasventils, ebenfalls im Längsschnitt,
    • 4 und
    • 5 weitere Ausführungsbeispiele, wobei die Form der Dichtflächen und Ventilflächen abgewandelt ist,
    • 6a 6b und 6c weitere Ausführungsbeispiele mit abgewandelten Formen der Düsennadel und
    • 7a, 7b, 7c und 7d Detaildarstellungen von weiteren Ausführungsbeispielen mit verschiedenen Dichtsitzformen.
  • Beschreibung der Ausführungsbeispiele
  • In 1 ist ein erstes Ausführungsbeispiel des erfindungsgemäßen Gasdosierventils im Längsschnitt dargestellt, wobei nur die wesentlichen Teile des Gasdosierventils gezeigt sind. Das Gasdosierventil umfasst ein Gehäuse 1, das einen Ventilkörper 3 und einen Haltekörper 4 umfasst, wobei der Ventilkörper 3 und der Haltekörper 4 durch eine nicht näher dargestellte Spannvorrichtung fest gegeneinander verspannt sind. Im Ventilkörper 3 ist ein Gasraum 2 ausgebildet, der über eine Einlassöffnung 5 mit gasförmigem Kraftstoff befüllbar ist und aus dem über eine Auslassöffnung 6 gasförmiger Kraftstoff dosiert abgegeben werden kann. Im Gasraum 2 ist längsverschiebbar eine kolbenförmige Düsennadel 7 angeordnet, die an ihrem der Einlassöffnung 5 zugewandten Ende mit einem Magnetanker 9 verbunden ist. Der Magnetanker 9 wirkt mit einem im Haltekörper 4 angeordneten und den Düsenkörper 3 umgebenden Elektromagneten 8 zusammen, wodurch die Düsennadel 7 entgegen der Kraft einer Feder 12 in Längsrichtung bewegt werden kann. Dabei ist die Feder 12 unter Druckvorspannung zwischen einem Absatz im Ventilkörper 3 und dem Magnetanker 9 angeordnet. An der Düsennadel 7 ist ein Bund 15 mit einer inneren Dichtfläche 10 ausgebildet, die mit einem inneren Ventilsitz 13 zum Öffnen und Schließen eines inneren Strömungsquerschnitts 17 zusammenwirkt, durch den gasförmiger Kraftstoff in Richtung der Auslassöffnung 6 strömen kann. An dem der Auslassöffnung 6 zugewandten Ende der Düsennadel 7 ist eine Dichtplatte 16 ausgebildet mit einer konischen äußeren Dichtfläche 11, die mit einem ebenfalls konischen äußeren Ventilsitz 14 am Ventilkörper 3 zum Öffnen und Schließen eines äußeren Strömungsquerschnitts 18 zusammenwirkt.
  • Ist der Elektromagnet 8 bestromt, so zieht er die Düsennadel 7 gegen die Kraft der Feder 12 in Richtung der Auslassöffnung 6, wobei die innere Dichtfläche 10 und die äußere Dichtfläche 11 vom inneren Ventilsitz 13 bzw. vom äußeren Ventilsitz 14 abheben und beide Strömungsquerschnitte 17, 18 freigeben. Gasförmiger Kraftstoff strömt dann von der Einlassöffnung 5 durch den Gasraum 2 zur Auslassöffnung 6 und wird so beispielsweise in einen Brennraum abgegeben. Wird die Bestromung des Elektromagneten 8 unterbrochen, so drückt die Feder 12 die Düsennadel 7 zurück in ihre Schließstellung, wobei beide Strömungsquerschnitte 17, 18 verschlossen werden. In 1 ist die geöffnete Stellung gezeigt, wie sie sich bei bestromtem Elektromagneten 8 einstellt, 2 zeigt entsprechend die geschlossene Stellung bei ausgeschaltetem Elektromagneten 8.
  • Damit beide Strömungsquerschnitte 17, 18 ausreichend abdichten, weist die Düsennadel 7 einen Düsennadelabschnitt 23 auf, der zwischen dem die innere Dichtfläche 10 aufweisenden Bund 15 und der äußeren Dichtfläche 11 ausgebildet ist und der eine Elastizität aufweist, durch die eine Abdichtung an beiden Dichtflächen 10, 11 erfolgen kann, ohne dass eine statische Überbestimmung vorliegt: Bei der Schließbewegung der Düsennadel 7 setzt zuerst die äußere Dichtfläche 11 auf dem äußeren Ventilsitz 14 auf, wobei die innere Dichtfläche 10 zu diesem Zeitpunkt noch etwas vom inneren Ventilsitz 13 beabstandet ist. Durch die Kraft der Feder 12 wird der Düsennadelabschnitt 23 anschließend soweit verlängert, dass schließlich auch die innere Dichtfläche 10 auf dem inneren Ventilsitz 13 aufsetzt, wodurch auch der innere Strömungsquerschnitt 17 geschlossen wird. Der Unterschied zwischen dem axialen Abstand der Ventilsitze 13, 14 einerseits und der Dichtflächen 10, 11 andererseits beträgt dabei beispielsweise 10 µm, damit sich der Düsennadelabschnitt entsprechend längen kann, ohne seine Stabilität einzubüßen.
  • In 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Gasdosierventils dargestellt. Die Feder 12 greift hier nicht am Magnetanker 9 an, sondern an einem Federteller 21, der mit der Düsennadel 7 fest verbunden ist oder einstückig mit der Düsennadel 7 gefertigt ist. Der Bund 15 ist gegenüber der Ausführungsform der 1 dünner und damit flexibel ausgebildet, so dass die Reihenfolge, mit der die Dichtflächen 10, 11 auf den jeweiligen Ventilsitzen 13, 14 bei der Schließbewegung aufsetzen, gegenüber dem ersten Ausführungsbeispiel umgekehrt erfolgen kann: Zuerst setzt die innere Dichtfläche 10 auf dem inneren Ventilsitz 13 auf. Da der Bund 15 relativ dünn ausgebildet ist, verformt sich dieser elastisch unter der Wirkung der Schließkraft, die die Feder 12 auf die Düsennadel 7 ausübt, bis die äußere Dichtfläche 11 auf dem äußeren Ventilsitz 14 aufsetzt. Die elastischen Eigenschaften des Bundes 15 müssen entsprechend auf den axialen Abstand der Dichtflächen 10, 11 und den etwas geringeren Abstand der Ventilsitze 13, 14 abgestimmt sein. Die in 3 gezeigte Anordnung der Feder 12 erlaubt darüber hinaus, den Elektromagneten 8 weiter von der Auslassöffnung 6 entfernt anzuordnen, falls dies beispielsweise aus Platzgründen vorteilhaft ist.
  • 4 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Gasdosierventils, wobei hier in Abwandlung des in 1 gezeigten Gasdosierventils die innere Dichtfläche 10 konisch ausgebildet ist, und entsprechend ist auch der innere Ventilsitz 13 konisch geformt. Der Öffnungswinkel α des Konus ist dabei vorteilhafterweise größer als der Öffnungswinkel β der äußeren Dichtfläche, damit das elastische Eindringen und damit das Abdichten am inneren Ventilsitz 13 verstärkt erfolgt. Besonders vorteilhaft ist es daher, wenn der Konuswinkel des inneren Ventilsitzes 13 als Flachsitz oder nahezu als Flachsitz ausgeführt ist, also mit einem Winkel α von 160° bis 180°, wie in 5 im Grenzfall α = 180° dargestellt.
  • Um die notwendige Flexibilität und elastische Dehnbarkeit der Düsennadel 7 zu erreichen, kann der Düsennadelabschnitt 23 auf verschiedene Weise optimiert werden. In 6a ist ein Ausführungsbeispiel dargestellt, bei dem der Düsennadelabschnitt 23 als federartiger Abschnitt 123 ausgeführt ist, was die Flexibilität deutlich erhöht. Der Düsennadelabschnitt 23 ist dazu beispielsweise mäanderförmig oder schraubenförmig geformt.
  • 6b zeigt ein weiteres Ausführungsbeispiel, bei dem der Düsennadelabschnitt 23 als Federbalg 223 ausgebildet ist, was insbesondere die Längselastizität deutlich erhöht bei gleichzeitig relativ hoher Biegesteifigkeit.
  • 6c zeigt in einem weiteren Ausführungsbeispiel einen Düsennadelabschnitt 23, der einen verjüngten Abschnitt 323 umfasst. Über den Durchmesser dieses Abschnitts kann die gewünschte Elastizität bzw. Flexibilität leicht eingestellt werden.
  • Um die gewünschte Dichtheit am inneren Ventilsitz 13 zu erreichen, insbesondere zur Abdichtung von Wasserstoffgas, kann dieser entweder sehr flexibel ausgebildet sein und aus einem relativ weichen Material bestehen, damit sich Dichtfläche und Ventilsitz aneinander anpassen können. Dies ist in 7a dargestellt, wo der innere Ventilsitz 13 an einer Dichtlippe 25 ausgebildet ist und dem Bund 15 gegenüber liegt. Bei der Schließbewegung der Düsennadel 7 verformt sich die Dichtlippe 25 durch die Schließkraft der Feder 12, so dass sich die Dichtlippe 25 an die innere Dichtfläche 10 anschmiegt und den inneren Strömungsquerschnitt 17 schließt.
  • Meist wird jedoch die Verwendung eines Elastomers zur Abdichtung angezeigt sein, wie dies beispielhaft in 7b gezeigt ist. Die Elastomerdichtung 26 ist am Bund 15 angeordnet und sorgt für eine sichere Abdichtung des inneren Strömungsquerschnitts 17. Alternativ kann die Elastomerdichtung 26' auch auf dem inneren Ventilsitz 13 aufgebracht sein, wie in 7c gezeigt. Auch eine Elastomerdichtung an einer konisch ausgebildeten inneren Dichtfläche 10, wie in 7d gezeigt, kann vorgesehen sein.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2018/007068 A1 [0002]

Claims (12)

  1. Gasdosierventil zur dosierten Abgabe von gasförmigem Kraftstoff, mit einem Gehäuse (1), das einen Gasraum (2) mit einer Einlassöffnung (5) und mit einer Auslassöffnung (6) aufweist, und mit einer im Gasraum (2) längsbeweglich angeordneten Düsennadel (7), die durch einen elektrischen Aktor (8) entgegen einer Rückstellkraft bewegbar ist und an der eine innere Dichtfläche (10) und eine äußere Dichtfläche (11) ausgebildet sind, wobei die innere Dichtfläche (10) mit einem inneren Ventilsitz (13) zur Steuerung eines inneren Strömungsquerschnitts (17) und die äußere Dichtfläche (11) mit einem äußeren Ventilsitz (14) zur Steuerung eines äußeren Strömungsquerschnitts (18) zusammenwirken, und wobei durch eine Öffnungsbewegung der Düsennadel (7) sowohl der innere Strömungsquerschnitt (17) als auch der äußere Strömungsquerschnitt (18) aufgesteuert werden und der gasförmige Kraftstoff zwischen Einlassöffnung (5) und Auslassöffnung (6) zuerst den inneren Strömungsquerschnitt (17) und anschließend den äußeren Strömungsquerschnitt (18) durchströmt, dadurch gekennzeichnet, dass bei der Schließbewegung der Düsennadel (7) entweder zuerst die äußere Dichtfläche (11) auf dem äußeren Ventilsitz (14) oder zuerst die innere Dichtfläche (10) auf dem inneren Ventilsitz (13) aufsetzt und Teile der Düsennadel (7) oder des Ventilkörpers (3) durch die Rückstellkraft so elastisch verformt werden, dass auch die jeweils andere Dichtfläche (10, 11) auf dem ihr zugeordneten Ventilsitz (13, 14) aufsetzt.
  2. Gasdosierventil nach Anspruch 1, dadurch gekennzeichnet, dass bei der Schließbewegung der Düsennadel (7) zuerst die äußere Dichtfläche (11) auf dem äußeren Ventilsitz (14) aufsetzt und sich ein Düsennadelabschnitt (23), der zwischen der inneren Dichtfläche (10) und der äußeren Dichtfläche (11) ausgebildet ist, bei der weiteren Schließbewegung soweit längt, dass auch die innere Dichtfläche (10) auf dem inneren Ventilsitz (13) dichtend aufsetzt.
  3. Gasdosierventil nach Anspruch 2, dadurch gekennzeichnet, dass der Düsennadelabschnitt (23) zwischen der inneren Dichtfläche (10) und der äußeren Dichtfläche (11) einen Federbalg (223) oder einen federartigen Abschnitt (123) umfasst.
  4. Gasdosierventil nach Anspruch 2, dadurch gekennzeichnet, dass der Düsennadelabschnitt (23) zwischen der inneren Dichtfläche (10) und der äußeren Dichtfläche (11) einen verjüngten Abschnitt (323) umfasst.
  5. Gasdosierventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der innere Ventilsitz (13) elastisch verformbar ist.
  6. Gasdosierventil nach Anspruch 5, dadurch gekennzeichnet, dass der innere Ventilsitz (13) an einer ins Innere des Gasraums (2) ragenden Dichtlippe (25) ausgebildet ist.
  7. Gasdosierventil nach Anspruch 1, dadurch gekennzeichnet, dass die innere Dichtfläche (10) an einem Bund (15) der Düsennadel ausgebildet ist und der Bund (15) elastisch verformbar ist.
  8. Gasdosierventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass auf den inneren Ventilsitz (13) oder auf die innere Dichtfläche (10) eine Elastomerdichtung (26) aufgebracht ist.
  9. Gasdosierventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Düsennadel (7) durch eine vorgespannte Feder (12) beaufschlagt ist, die die Rückstellkraft erzeugt.
  10. Gasdosierventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in Öffnungsstellung der Düsennadel (7) der innere Strömungsquerschnitt (17) größer als der äußere Strömungsquerschnitt (18) ist.
  11. Gasdosierventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die innere Dichtfläche (10) und der innere Ventilsitz (13) konisch geformt sind.
  12. Gasdosierventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die äußere Dichtfläche (11) und der äußere Ventilsitz (14) konisch geformt sind.
DE102020208375.4A 2020-07-03 2020-07-03 Gasdosierventil Pending DE102020208375A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102020208375.4A DE102020208375A1 (de) 2020-07-03 2020-07-03 Gasdosierventil
PCT/EP2021/067649 WO2022002831A1 (de) 2020-07-03 2021-06-28 Gasdosierventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020208375.4A DE102020208375A1 (de) 2020-07-03 2020-07-03 Gasdosierventil

Publications (1)

Publication Number Publication Date
DE102020208375A1 true DE102020208375A1 (de) 2022-01-05

Family

ID=76765157

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020208375.4A Pending DE102020208375A1 (de) 2020-07-03 2020-07-03 Gasdosierventil

Country Status (2)

Country Link
DE (1) DE102020208375A1 (de)
WO (1) WO2022002831A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115324776A (zh) * 2022-08-12 2022-11-11 一汽解放汽车有限公司 燃料喷射器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200756A1 (de) 2014-01-17 2015-07-23 Robert Bosch Gmbh Gasinjektor zum Direkteinblasen von gasförmigem Kraftstoff in einen Brennraum
WO2018007068A1 (de) 2016-07-04 2018-01-11 Robert Bosch Gmbh Ventil zum eindüsen von gasförmigem kraftstoff

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212339A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Injektor, insbesondere Einblasinjektor für gasförmige Kraftstoffe
EP3339620B1 (de) * 2016-12-20 2024-07-03 Vitesco Technologies USA, LLC Passivklappe für kraftstoffeinspritzer mit einer zugfeder, kraftstoffeinspritzer und verfahren zur herstellung davon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200756A1 (de) 2014-01-17 2015-07-23 Robert Bosch Gmbh Gasinjektor zum Direkteinblasen von gasförmigem Kraftstoff in einen Brennraum
WO2018007068A1 (de) 2016-07-04 2018-01-11 Robert Bosch Gmbh Ventil zum eindüsen von gasförmigem kraftstoff

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115324776A (zh) * 2022-08-12 2022-11-11 一汽解放汽车有限公司 燃料喷射器
CN115324776B (zh) * 2022-08-12 2024-01-09 一汽解放汽车有限公司 燃料喷射器

Also Published As

Publication number Publication date
WO2022002831A1 (de) 2022-01-06

Similar Documents

Publication Publication Date Title
DE102020201973A1 (de) Gasdosierventil für Brennkraftmaschinen
DE102010039052A1 (de) Eisddruckfeste Einspritzvorrichtung
DE102020214170A1 (de) Gasdosierventil für Brennkraftmaschinen
DE102016212075A1 (de) Ventil zum Eindüsen von gasförmigem Kraftstoff
WO2000012889A1 (de) Ventil zum dosierten einleiten von verflüchtigtem brennstoff
EP0986707A1 (de) Ventileinrichtung
DE102007003213A1 (de) Gas-Einblasventil
EP1278955A1 (de) Common-rail-injektor
DE102020208375A1 (de) Gasdosierventil
DE102020100952B4 (de) Ventilvorrichtung für eine Verbrennungskraftmaschine
WO2020144255A1 (de) Ventilvorrichtung zum wahlweisen freigeben oder sperren eines abgasrückführ- oder sekundärluftstroms für eine abgasnachbehandlungsanlage
DE102007004560A1 (de) Ventil zum Steuern eines Mediums
DE102019107268A1 (de) Ventilvorrichtung
DE102012212433A1 (de) Ventil zum Zumessen von Fluid
DE102018218705A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
DE102020215169A1 (de) Gasdosierventil für gasförmigen Brennstoff
DE102004021340A1 (de) Düsenbaugruppe und Ventil
DE10353641A1 (de) Brennstoffeinspritzventil
DE102021204437A1 (de) Gasdosierventil
DE102021200180A1 (de) Gasdosierventil zur dosierten Abgabe von gasförmigem Kraftstoff
DE102022200229A1 (de) Ventil zum Steuern eines Mediums
DE102021208503A1 (de) Gasdosierventil für gasförmigen Brennstoff
DE102021207886A1 (de) Gasdosierventil
DE102021209863A1 (de) Gasinjektor mit verbesserter Abdichtung eines Aktors
DE102018219910A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
R163 Identified publications notified