DE102019208887A1 - Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil - Google Patents

Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil Download PDF

Info

Publication number
DE102019208887A1
DE102019208887A1 DE102019208887.2A DE102019208887A DE102019208887A1 DE 102019208887 A1 DE102019208887 A1 DE 102019208887A1 DE 102019208887 A DE102019208887 A DE 102019208887A DE 102019208887 A1 DE102019208887 A1 DE 102019208887A1
Authority
DE
Germany
Prior art keywords
valve member
inlet valve
valve
pump
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019208887.2A
Other languages
English (en)
Inventor
Francesco Lucarelli
Antonio Grimaldi
Valerio Pinto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102019208887.2A priority Critical patent/DE102019208887A1/de
Publication of DE102019208887A1 publication Critical patent/DE102019208887A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0035Poppet valves, i.e. having a mushroom-shaped valve member that moves perpendicularly to the plane of the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9069Non-magnetic metals

Abstract

Es wird ein elektromagnetisch betätigbares Einlassventil (24) für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, vorgeschlagen. Das Einlassventil (24) weist ein Ventilglied (34) auf, das zwischen einer Öffnungsstellung und einer Schließstellung bewegbar ist. Es ist ein elektromagnetischer Aktor (60) vorgesehen, durch den das Ventilglied (34) bewegbar ist, wobei der elektromagnetische Aktor (60) eine Magnetspule (64), einen Magnetkern (66) und einen zumindest mittelbar auf das Ventilglied (34) wirkenden Magnetanker (68) aufweist. Das Ventilglied (34) ist aus einem nichtmagnetischen Metall, insbesondere einem austenitischen, nicht rostenden Stahl hergestellt. Hierdurch wird verhindert, dass ferromagnetische Partikel vom Ventilglied (34) angezogen werden und an diesem haften und hierdurch die Funktion des Einlassventils (24) beeinträchtigt wird.

Description

  • Die Erfindung betrifft ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Hochdruckpumpe mit einem solchen Einlassventil.
  • Stand der Technik
  • Ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems, ist durch die DE 10 2015 212 390 A1 bekannt. Die Hochdruckpumpe weist wenigstens ein Pumpenelement auf mit einem in einer Hubbewegung angetriebenen Pumpenkolben, der einen Pumpenarbeitsraum begrenzt. Der Pumpenarbeitsraum ist über das Einlassventil mit einem Zulauf für den Kraftstoff verbindbar. Das Einlassventil umfasst ein Ventilglied, das mit einem Ventilsitz zur Steuerung zusammenwirkt und das zwischen einer Öffnungsstellung und einer Schließstellung bewegbar ist. In seiner Schließstellung kommt das Ventilglied am Ventilsitz zur Anlage. Ferner umfasst das Einlassventil einen elektromagnetischen Aktor, durch den das Ventilglied bewegbar ist. Der elektromagnetische Aktor weist eine Magnetspule, einen Magnetkern und einen zumindest mittelbar auf das Ventilglied wirkenden Magnetanker auf. Bei Bestromung der Magnetspule ist der Magnetanker gegen die Kraft einer Rückstellfeder bewegbar. Das Ventilglied wirkt mit einer an diesem ausgebildeten Dichtfläche mit einem Ventilsitz zusammen. Das Ventilglied ist üblicherweise aus Stahl hergestellt, beispielsweise 100Cr6, um eine ausreichende Festigkeit und Verschließbeständigkeit sicherzustellen. Dieser Stahl ist jedoch magnetisierbar, so dass sich im Betrieb des Einlassventils das Ventilglied magnetisiert. Hierdurch werden ferromagnetische Partikel, die sich in dem das Einlassventil durchströmenden Kraftstoff befinden können, vom Ventilglied angezogen und haften an diesem. Wenn sich die Partikel an der Dichtfläche des Ventilglieds anlagern so kann dies dazu führen, dass das Einlassventil nicht mehr vollständig dicht schließt, so dass beim Förderhub des Pumpenkolbens eine Leckage des Kraftstoffs durch das Einlassventil vorhanden ist. Außerdem kann es aufgrund der Magnetisierung des Ventilglieds zu einem magnetischen Haften zwischen dem Ventilglied und dem Magnetanker kommen wodurch das Schaltverhalten, insbesondere die Schaltzeit des Einlassventils negativ beeinflusst wird.
  • Offenbarung der Erfindung
  • Vorteile der Erfindung
  • Das erfindungsgemäße Einlassventil mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass die Funktion des Einlassventils verbessert ist, da am Ventilglied keine Partikel anhaften können, die zu einer Undichtigkeit führen würden, und ein magnetisches Haften zwischen dem Ventilglied und dem Magnetanker vermieden ist.
  • In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Einlassventils angegeben.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beigefügten Zeichnung näher beschrieben. Es zeigen 1 einen schematischen Längsschnitt durch eine Hochdruckpumpe und 2 in vergrößerter Darstellung einen in 1 mit II bezeichneten Ausschnitt mit dem Einlassventil der Hochdruckpumpe.
  • Beschreibung des Ausführungsbeispiels
  • In 1 ist ausschnittsweise eine Hochdruckpumpe dargestellt, die zur Kraftstoffförderung in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine vorgesehen ist. Die Hochdruckpumpe weist wenigstens ein Pumpenelement 10 auf, das wiederum einen Pumpenkolben 12 aufweist, der durch einen Antrieb in einer Hubbewegung angetrieben wird, in einer Zylinderbohrung 14 eines Gehäuseteils 16 der Hochdruckpumpe geführt ist und in der Zylinderbohrung 14 einen Pumpenarbeitsraum 18 begrenzt. Als Antrieb für den Pumpenkolben 12 kann eine Antriebswelle 20 mit einem Nocken 22 oder Exzenter vorgesehen sein, an dem sich der Pumpenkolben 12 direkt oder über einen Stößel, beispielsweise einen Rollenstößel, abstützt. Der Pumpenarbeitsraum 18 ist über ein Einlassventil 24 mit einem Kraftstoffzulauf 26 verbindbar und über ein Auslassventil 28 mit einem Speicher 30. Beim Saughub des Pumpenkolbens 12 kann der Pumpenarbeitsraum 18 bei geöffnetem Einlassventil 24 mit Kraftstoff befüllt werden. Beim Förderhub des Pumpenkolbens 12 wird durch diesen bei geschlossenem Einlassventil 24 Kraftstoff aus dem Pumpenarbeitsraum 18 verdrängt und in den Speicher 30 gefördert.
  • Im Gehäuseteil 16 der Hochdruckpumpe schließt sich wie in 2 dargestellt an die Zylinderbohrung 14 auf deren dem Pumpenkolben 12 abgewandter Seite eine Durchgangsbohrung 32 mit kleinerem Durchmesser als die Zylinderbohrung 14 an, die auf der Außenseite der Gehäuseteils 16 mündet. Das Einlassventil 24 weist ein kolbenförmiges Ventilglied 34 auf, das einen in der Durchgangsbohrung 32 verschiebbar geführten Schaft 36 und einen im Durchmesser gegenüber dem Schaft 36 größeren Kopf 38 aufweist, der im Pumpenarbeitsraum 18 angeordnet ist. Am Übergang von der Zylinderbohrung 14 zur Durchgangsbohrung 32 ist am Gehäuseteil 16 ein Ventilsitz 40 gebildet, mit dem das Ventilglied 34 mit einer an seinem Kopf 38 ausgebildeten Dichtfläche 42 zusammenwirkt.
  • In einem an den Ventilsitz 40 anschließenden Abschnitt weist die Durchgangsbohrung 32 einen größeren Durchmesser auf als in deren den Schaft 36 des Ventilglieds 34 führendem Abschnitt, so dass ein den Schaft 36 des Ventilglieds 34 umgebender Ringraum 44 gebildet ist. In den Ringraum 44 münden eine oder mehrere Zulaufbohrungen 46, die andererseits auf der Außenseite des Gehäuseteils 16 münden.
  • Der Schaft 36 des Ventilglieds 34 ragt auf der dem Pumpenarbeitsraum 18 abgewandten Seite des Gehäuseteils 16 aus der Durchgangsbohrung 32 heraus und auf diesem ist ein Stützelement 48 befestigt. Am Stützelement 48 stützt sich eine Ventilfeder 50 ab, die sich andererseits an einem den Schaft 36 des Ventilglieds 34 umgebenden Bereich des Gehäuseteils 16 abstützt. Durch die Ventilfeder 50 wird das Ventilglied 34 in einer Stellrichtung A in dessen Schließrichtung beaufschlagt, wobei das Ventilglied 34 in seiner Schließstellung mit seiner Dichtfläche 42 am Ventilsitz 40 anliegt. Die Ventilfeder 50 ist beispielsweise als Schraubendruckfeder ausgebildet.
  • Das Einlassventil 24 ist durch einen elektromagnetischen Aktor 60 betätigbar, der insbesondere in 2 dargestellt ist. Der Aktor 60 wird durch eine elektronische Steuereinrichtung 62 in Abhängigkeit von Betriebsparametern der zu versorgenden Brennkraftmaschine angesteuert. Der elektromagnetische Aktor 60 weist eine Magnetspule 64, einen Magnetkern 66 und einen Magnetanker 68 auf. Der elektromagnetische Aktor 60 ist auf der dem Pumpenarbeitsraum 18 abgewandten Seite des Einlassventils 24 angeordnet. Der Magnetkern 66 und die Magnetspule 64 sind von einem Aktorgehäuse 70 umgeben, das am Gehäuseteil 16 der Hochdruckpumpe befestigbar ist. Das Aktorgehäuse 70 ist aus Kunststoff hergestellt und in diesem ist die Magnetspule 64 aufgenommen. Das Aktorgehäuse 70 ist beispielsweise mittels eines dieses übergreifenden Schraubrings 72 am Gehäuseteil 16 befestigbar, der auf einem mit einem Außengewinde versehenen Kragen 74 des Gehäuseteils 16 aufgeschraubt ist.
  • Der Magnetanker 68 ist zumindest im Wesentlichen zylinderförmig ausgebildet und über seinen Außenmantel in einer Aufnahme in Form einer Bohrung 76 in einem Trägerelement 78 in Richtung seiner Längsachse 69 verschiebbar geführt. Die Bohrung 76 im Trägerelement 78 verläuft zumindest annähernd koaxial zur Durchgangsbohrung 32 im Gehäuseteil 16 der Hochdruckpumpe und somit zum Ventilglied 34. An die Bohrung 76 schließt sich im Trägerelement 78 zum Einlassventil 24 hin eine weitere Bohrung 77 mit kleinerem Durchmesser als die Bohrung 76 an.
  • Der Magnetanker 68 weist eine zumindest annähernd koaxial zur Längsachse 69 des Magnetankers 68 angeordnete zentrale Sackbohrung 81 auf, in die eine auf der dem Ventilglied 34 abgewandten Seite des Magnetankers 68 angeordnete Rückstellfeder 82 hineinragt, die sich am Magnetanker 68 abstützt. Die Rückstellfeder 82 ist an ihrem anderen Ende zumindest mittelbar am Magnetkern 66 abgestützt, der eine zentrale Sackbohrung 84 aufweist, in die die Rückstellfeder 82 hineinragt. In der Bohrung 84 des Magnetankers 66 kann ein Abstützelement 85 für die Rückstellfeder 82 eingefügt, beispielsweise eingepresst sein. Der Magnetanker 68 weist eine oder mehrere Durchgangsöffnungen 91 auf um einen Durchtritt von Kraftstoff bei der Bewegung des Magnetankers 68 zu ermöglichen.
  • In der Bohrung 76 ist durch die Durchmesserverringerung zur weiteren Bohrung 77 hin eine Ringschulter 88 gebildet. Zwischen der Ringschulter 88 und dem Magnetanker 68 kann ein Anschlagelement 90 angeordnet sein, durch das die Bewegung des Magnetankers 68 zum Einlassventil 24 hin begrenzt ist. Das Anschlagelement 90 ist hülsenförmig ausgebildet und durch dieses ragt der Magnetanker 68 zum Einlassventil 24 hindurch und kommt zumindest mittelbar am Ventilglied 34 zur Anlage. Der Magnetkern 66 und das Trägerelement 78 sind über ein hülsenförmiges Verbindungselement 92 miteinander verbunden, das auf dem Magnetkern 66 und auf dem Trägerelement 78 mittels jeweils einer Schweißverbindung 93 befestigt ist.
  • Erfindungsgemäß ist das Ventilglied 34 aus einem nichtmagnetischen oder amagnetischen Metall, insbesondere Stahl hergestellt. Vorzugsweise ist das Ventilglied 34 aus einem austenitischen Stahl und/oder einem nichtrostenden Stahl hergestellt. Um eine ausreichende Verschleißfestigkeit des Ventilglieds 34, insbesondere von dessen Dichtfläche 42, zu erreichen kann die Oberfläche des Ventilglieds 34 zumindest im Bereich von dessen Dichtfläche 42 zur Erhöhung von dessen Härte behandelt sein. Das Ventilglied 34 kann dabei zumindest im Bereich seiner Dichtfläche 42 an seiner Oberfläche eine Diffusionsschicht mit einem erhöhten Kohlenstoff- und/oder Stickstoffgehalt aufweisen. Die Diffusionsschicht kann in einem Diffusionsprozess erzeugt werden, in dem Kohlenstoff und/oder Stickstoff in die Randzone des Ventilglieds 34 eingebracht wird, wodurch die Härte erhöht wird. Die Oberfläche zumindest der Dichtfläche 42 des Ventilglieds 34 weist dadurch eine Randhärte von etwa 700HV10 oder größer auf.
  • Nachfolgend wird die Funktion des elektromagnetisch betätigten Einlassventils 24 erläutert. Während des Saughubs des Pumpenkolbens 12 ist das Einlassventil 24 geöffnet, indem sich dessen Ventilglied 34 in seiner Öffnungsstellung befindet, in der dieses mit seiner Dichtfläche 42 vom Ventilsitz 40 entfernt angeordnet ist. Die Bewegung des Ventilglieds 34 in seine Öffnungsstellung wird durch die zwischen dem Kraftstoffzulauf 26 und dem Pumpenarbeitsraum 18 herrschende Druckdifferenz gegen die Kraft der Ventilfeder 50 bewirkt. Die Magnetspule 64 des Aktors 60 kann dabei bestromt oder unbestromt sein. Wenn die Magnetspule 64 bestromt ist so wird der Magnetanker 68 durch das entstehende Magnetfeld gegen die Kraft der Rückstellfeder 82 zum Magnetkern 66 hin gezogen. Wenn die Magnetspule 64 nicht bestromt ist so wird der Magnetanker 68 durch die Kraft der Rückstellfeder 82 zum Einlassventil 24 hin gedrückt. Der Magnetanker 68 liegt zumindest mittelbar an der Stirnseite des Schafts 36 des Ventilglieds 34 an.
  • Während des Förderhubs des Pumpenkolbens 12 wird durch den Aktor 60 bestimmt ob sich das Ventilglied 34 des Einlassventils 24 in seiner Öffnungsstellung oder Schließstellung befindet. Bei unbestromter Magnetspule 64 wird der Magnetanker 68 durch die Rückstellfeder 82 in der Stellrichtung gemäß Pfeil B in 2 gedrückt, wobei das Ventilglied 34 durch den Magnetanker 68 gegen die Ventilfeder 50 in der Stellrichtung B in seine Öffnungsstellung gedrückt wird. Die Kraft der auf den Magnetanker 68 wirkenden Rückstellfeder 82 ist größer als die Kraft der auf das Ventilglied 34 wirkenden Ventilfeder 50. In die Stellrichtung B wirkt der Magnetanker 68 auf das Ventilglied 34 und der Magnetanker 68 und das Ventilglied 34 werden gemeinsam in die Stellrichtung B bewegt. Solange die Magnetspule 64 nicht bestromt ist kann somit durch den Pumpenkolben 12 kein Kraftstoff in den Speicher 30 gefördert werden sondern vom Pumpenkolben 12 verdrängter Kraftstoff wird in den Kraftstoffzulauf 26 zurückgefördert. Wenn während des Förderhubs des Pumpenkolbens 12 Kraftstoff in den Speicher 30 gefördert werden soll so wird die Magnetspule 64 bestromt, so dass der Magnetanker 68 zum Magnetkern 66 hin in einer zur Stellrichtung B entgegengesetzten Stellrichtung gemäß Pfeil A in 2 gezogen wird. Durch den Magnetanker 68 wird somit keine Kraft mehr auf das Ventilglied 34 ausgeübt, wobei der Magnetanker 68 durch das Magnetfeld in die Stellrichtung A bewegt wird und das Ventilglied 34 unabhängig vom Magnetanker 68 bedingt durch die Ventilfeder 50 und die zwischen dem Pumpenarbeitsraum 18 und dem Kraftstoffzulauf 26 herrschende Druckdifferenz in der Stellrichtung A in seine Schließstellung bewegt wird. Da das Ventilglied 34 aus nichtmagnetischem Stahl hergestellt ist wird dieses während des Betriebs des Einlassventils 24 nicht magnetisiert und es tritt kein magnetisches Haften zwischen Magnetanker 68 und Ventilglied 34 auf.
  • Durch das Öffnen des Einlassventils 24 beim Förderhub des Pumpenkolbens 12 mittels des elektromagnetischen Aktors 60 kann die Fördermenge der Hochdruckpumpe in den Speicher 30 variabel eingestellt werden. Wenn eine geringe Kraftstofffördermenge erforderlich ist so wird das Einlassventil 24 durch den Aktor 60 während eines großen Teils des Förderhubs des Pumpenkolbens 12 offen gehalten und wenn eine große Kraftstofffördermenge erforderlich ist, so wird das Einlassventil 24 nur während eines kleinen Teils oder gar nicht während des Förderhubs des Pumpenkolbens 12 offen gehalten.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102015212390 A1 [0002]

Claims (7)

  1. Elektromagnetisch betätigbares Einlassventil (24) für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, mit einem Ventilglied (34), das zwischen einer Öffnungsstellung und einer Schließstellung bewegbar ist, mit einem elektromagnetischen Aktor (60), durch den das Ventilglied (34) bewegbar ist, wobei der elektromagnetische Aktor (60) eine Magnetspule (64), einen Magnetkern (66) und einen zumindest mittelbar auf das Ventilglied (34) wirkenden Magnetanker (68) aufweist, dadurch gekennzeichnet, dass das Ventilglied (34) aus einem nichtmagnetischen Metall hergestellt ist.
  2. Einlassventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (34) aus einem nichtmagnetischen Stahl, insbesondere einem austenitischen Stahl hergestellt ist.
  3. Einlassventil nach Anspruch 2, dadurch gekennzeichnet, dass das Ventilglied (34) aus einem austenitischen nicht rostenden Stahl hergestellt ist.
  4. Einlassventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Ventilglied (34) eine Dichtfläche (42) aufweist, die mit einem Ventilsitz (40) zusammenwirkt, und dass die Oberfläche des Ventilglieds (34) zumindest im Bereich der Dichtfläche (42) zur Erhöhung der Härte behandelt ist.
  5. Einlassventil nach Anspruch 4, dadurch gekennzeichnet, dass das Ventilglied (34) zumindest im Bereich der Dichtfläche (42) an seiner Oberfläche eine Härte von mindestens 700HV10 aufweist.
  6. Einlassventil nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Oberfläche des Ventilglieds (34) zumindest im Bereich der Dichtfläche (42) eine Diffusionsschicht mit einem erhöhten Kohlenstoff- und/oder Stickstoffgehalt aufweist.
  7. Pumpe, insbesondere Kraftstoffhochdruckpumpe, mit wenigstens einem Pumpenelement (10), das einen einen Pumpenarbeitsraum (18) begrenzenden Pumpenkolben (12) aufweist, wobei der Pumpenarbeitsraum (18) über ein Einlassventil (24) mit einem Zulauf (26) verbindbar ist, dadurch gekennzeichnet, dass das Einlassventil (24) gemäß einem der vorstehenden Ansprüche ausgebildet ist.
DE102019208887.2A 2019-06-19 2019-06-19 Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil Pending DE102019208887A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019208887.2A DE102019208887A1 (de) 2019-06-19 2019-06-19 Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019208887.2A DE102019208887A1 (de) 2019-06-19 2019-06-19 Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil

Publications (1)

Publication Number Publication Date
DE102019208887A1 true DE102019208887A1 (de) 2020-12-24

Family

ID=73654258

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019208887.2A Pending DE102019208887A1 (de) 2019-06-19 2019-06-19 Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil

Country Status (1)

Country Link
DE (1) DE102019208887A1 (de)

Similar Documents

Publication Publication Date Title
DE102016202945A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102011078407A1 (de) Schaltventil zur Steuerung eines Kraftstoffinjektors und Kraftstoffinjektor
WO2015106935A1 (de) Hochdruckpumpe mit einem elektromagnetischen saugventil
DE102011055871A1 (de) Kraftstoffversorgungspumpe und Verfahren zur Herstellung eines Gehäuses für diese
DE102006003484A1 (de) Vorrichtung zum Einspritzen von Kraftstoff
WO2018001626A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE102014217441A1 (de) Elektromagnetisch betätigbares Proportionalventil
DE10334615A1 (de) Druckregelventil für Speicherkraftstoffeinspritzsystem
DE102019208887A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102017211361A1 (de) Ventileinrichtung für eine Kraftstoffhochdruckpumpe
DE102016224722A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
EP3387247B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
EP3365551B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE102017217489A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102017202305A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102015226248A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
EP3423717B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE102018219233A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102020209574A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102018208086A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102018218379A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102017203572A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102018205286A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102017202307A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
DE102016224050A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil