DE102019206503A1 - Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs - Google Patents

Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs Download PDF

Info

Publication number
DE102019206503A1
DE102019206503A1 DE102019206503.1A DE102019206503A DE102019206503A1 DE 102019206503 A1 DE102019206503 A1 DE 102019206503A1 DE 102019206503 A DE102019206503 A DE 102019206503A DE 102019206503 A1 DE102019206503 A1 DE 102019206503A1
Authority
DE
Germany
Prior art keywords
control unit
electronic control
reflectors
vehicle
locations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102019206503.1A
Other languages
English (en)
Inventor
Frasher Loshaj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102019206503.1A priority Critical patent/DE102019206503A1/de
Publication of DE102019206503A1 publication Critical patent/DE102019206503A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4086Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

Elektronische Steuereinheit, die konfiguriert ist zum: Empfangen, von einem Umfeldsensor (20), gemessener Orte (xs,i) mehrerer Reflektoren (R1 bis R10), Abrufen vorgegebener Positionsdaten (xw,i) der Reflektoren (R1 bis R10); und Ermitteln einer Fehleinstellung des Umfeldsensoren (20) aus den empfangenen Orten (xw,i) und den gemessenen Orten (xs,i).

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Offenbarung betrifft das Gebiet der Fahrerassistenzsysteme, bzw. autonomen bzw. teilautonomen Fahrzeuge, insbesondere einen Sensor zur Umfelderfassung bei einem Fahrzeug, sowie ein Verfahren zur Kalibrierung des Sensors und eine Steuereinheit zur Durchführung dieses Verfahrens.
  • TECHNISCHER HINTERGRUND
  • Sensoren zur Umfelderfassung sind wichtig für das korrekte Funktionieren von Fahrerassistenzsystemen wie Spurhalte-Assistenten, Abstandsregeltempomat, Bremsassistent, Totwinkel-Überwachung oder automatischer Abstandswarner. Auch Systeme zum Zweck des autonomen Fahrens benötigen korrekt funktionierende Sensoren zur Umfelderfassung.
  • Ein Problem der bekannten Sensoren besteht in der gegebenenfalls schwer zu vermeidenden Fehlausrichtung eines Sensors in Azimut- und Elevationsrichtung, welche die Umfelderfassung verfälscht.
  • GEGENSTAND DER ERFINDUNG
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zu Grunde, eine elektronische Vorrichtung und ein Verfahren für eine Sensorarchitektur bereitzustellen, womit das Verhalten der Radarsensorarchitektur optimiert wird.
  • Diese Aufgabe wird durch den elektronische Steuereinheit nach Anspruch 1 und das Verfahren nach Anspruch 10 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung.
  • Die Ausführungsbeispiele zeigen eine elektronische Steuereinheit, die konfiguriert ist zum: Empfangen, von einem Umfeldsensor, gemessener Orte mehrerer Reflektoren, Abrufen vorgegebener Positionsdaten der Reflektoren; und Ermitteln einer Fehleinstellung des Umfeldsensoren aus den empfangenen Orten und den gemessenen Orten.
  • Die elektronische Steuereinheit kann beispielsweise in einem Fahrzeug eingesetzt werden. Bei dem Fahrzeug kann es sich beispielsweise um. Es kann sich beispielsweise um ein Kraftfahrzeug, ein Land-, Luft- oder Wasserfahrzeug handeln, beispielsweise um ein fahrerloses Transportsystem (FTS), einen autonomen PKW, ein Schienenfahrzeug, eine Drohne oder ein Boot.
  • Die elektronische Steuereinheit weist beispielsweise einen Prozessor auf, der dazu ausgelegt ist, die hier beschriebenen Funktionen auszuführen. Bei dem Prozessor kann es sich beispielsweise um eine Recheneinheit wie eine zentrale Verarbeitungseinheit (CPU = central processing unit) handeln, die Programminstruktionen ausführt.
  • Die elektronische Steuereinheit kann beispielsweise verwendet werden, um die ermittelte Fehleinstellung zur Kalibrierung des Umfeldsensoren zu verwenden. Auf diese Weise können Messfehler des Umfeldsensoren aufgrund der Fehlstellung vermieden werden.
  • Das Abrufen vorgegebener Positionsdaten der Reflektoren kann beispielsweise durch Auslesen der vorgegebenen Positionsdaten aus einem Speicher erfolgen. Die Positionsdaten können der elektronischen Vorrichtung beispielsweise zugeführt werden, indem diese über eine Benutzerschnittstelle oder ein Netzwerk-Interface eingegeben werden. Die vorgebebenen Positionsdaten sind Kalibrierungsdaten die mittels anderer Positionsbestimmungsmethoden bestimmt werden, also nicht mit dem Umfeldsensor, den es zu kalibrieren gilt.
  • Vorzugsweise ist die elektronische Steuereinheit ferner konfiguriert, um aus wenigstens drei der gemessenen Orten der Reflektoren gemessene Relativkoordinaten zu ermitteln und um die Fehleinstellung des Umfeldsensoren aus den gemessenen Relativkoordinaten der gemessenen Orte zu ermitteln, und/oder um aus wenigstens zwei der vorgegebenen Positionsdaten der Reflektoren vorgegebene Relativkoordinaten zu ermitteln und um die Fehleinstellung des Umfeldsensoren aus den vorgegebenen Relativkoordinaten der vorgegebenen Positionsdaten zu ermitteln. Durch Verwendung von Relativkoordinaten kann eine Abhängigkeit von der Position des Sensors bzw. des Fahrzeugs vermieden werden.
  • Gemäß einer Ausführungsform ist die elektronische Steuereinheit ferner konfiguriert zum Ermitteln einer Rotationsmatrix aus den bestimmten Orten und den vorgegebenen Orten, wobei die Rotationsmatrix die Fehleinstellung des Umfeldsensoren beschreibt.
  • Vorzugsweise ist die elektronische Steuereinheit ferner konfiguriert, um eine Fehleinstellung des Umfeldsensoren in azimutaler Richtung und/oder eine Fehleinstellung in Elevationsrichtung zu berechnen.
  • Gemäß einer Ausführungsform ist die elektronische Steuereinheit ferner konfiguriert um, ein Gleichungssystem zu lösen, wobei für mehrere Paare der Reflektoren jeweils die gemessenen Relativkoordinaten und die vorgegebenen Relativkoordinaten über die Rotationsmatrix in Beziehung gesetzt werden, um das Gleichungssystem aufzustellen. Das Gleichungssystem wird insbesondere gelöst, um die Einträge der Rotationsmatrix zu berechnen. Zur Lösung des Gleichungssystems kann beispielsweise auf dem Gaußsche Eliminationsverfahren, Matrixinvertierung oder auf dem endlichen Abbrechen der Neumann-Reihe. Durch Lösen des Gleichungssystems kann die Fehlstellung des Umfeldsensoren berechnet werden.
  • Vorzugsweise beruht das Gleichungssystem auf wenigstens drei Paaren der Reflektoren. Auf diese Weise können neun unabhängige Paare von Reflektoren ausgewählt werden, um neu Gleichungen aufzustellen, aus denen das Gleichungssystem gebildet wird.
  • Die Ausführungsbeispiele zeigen auch ein Verfahren, umfassend: Empfangen, von einem Umfeldsensor, gemessener Orte mehrerer Reflektoren, Abrufen vorgegebener Positionsdaten der Reflektoren; und Ermitteln einer Fehleinstellung des Umfeldsensoren aus den empfangenen Orten und den gemessenen Orten. Das Verfahren kann beispielsweise als ein computer-implementiertes Verfahren realisiert werden.
  • Figurenliste
  • Ausführungsformen werden nun beispielhaft und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, in denen:
    • 1 ein Blockdiagramm zeigt, das schematisch die Konfiguration eines Fahrzeugs gemäß einem Ausführungsbeispiel der vorliegenden Erfindung darstellt,
    • 2 ein Blockdiagramm ist, das eine beispielhafte Konfiguration einer Steuereinheit innerhalb eines Fahrzeugs zeigt,
    • 3 eine typische Fahrsituation eines autonom fahrenden Fahrzeugs zeigt,
    • 4 einen beispielhaften Aufbau für ein Kalibrationsverfahren gemäß der vorliegenden Erfindung zeigt.
    • 5 eine Vergrößerung des in 4 gezeigten Aufbaus zeigt.
    • 6 ein Flussdiagramm zeigt, das schematisch das in 4 und 5 gezeigte Kalibrationsverfahren darstellt.
  • Im Folgenden wird nun das erfindungsgemäße Verfahren anhand einer ausführlichen Beschreibung der einzelnen Figuren beschrieben:
  • 1 zeigt ein Blockdiagramm, das schematisch die Konfiguration eines Fahrzeugs 1 mit einer Steuereinheit für autonomes oder teilautonomes Fahren gemäß einem Ausführungsbeispiel der vorliegenden Erfindung darstellt. Das Fahrzeug 1 umfasst mehrere elektronische Komponenten, welche via ein Fahrzeugkommunikationsnetzwerk 28 miteinander verbunden sind. Das Fahrzeugkommunikationsnetzwerk 28 kann beispielsweise ein im Fahrzeug eingebautes standardgemäßes Fahrzeugkommunikationsnetzwerk wie etwa ein CAN-Bus (controller area network), ein LIN-Bus (local interconnect network), ein LAN-Bus (local area network), ein MOST-Bus und/oder ein FlexRay-Bus (registered trademark) oder dergleichen sein.
  • In dem in 1 dargestellten Beispiel umfasst das Fahrzeug 1 eine Steuereinheit 12 (ECU 1). Diese Steuereinheit 12 steuert ein Lenksystem. Das Lenksystem bezieht sich dabei auf die Komponenten, die eine Richtungssteuerung des Fahrzeugs ermöglichen.
  • Das Fahrzeug 1 umfasst ferner eine Steuereinheit 14 (ECU 2), die ein Bremssystem steuert. Das Bremssystem bezieht sich dabei auf die Komponenten, die ein Bremsen des Fahrzeugs ermöglichen.
  • Das Fahrzeug 1 umfasst ferner eine Steuereinheit 16 (ECU 3), die einen Antriebsstrang steuert. Der Antriebsstrang bezieht sich dabei auf die Antriebskomponenten des Fahrzeugs. Der Antriebsstrang kann einen Motor, ein Getriebe, eine Antriebs-/Propellerwelle, ein Differential und einen Achsantrieb umfassen.
  • Das Fahrzeug 1 umfasst ferner einen oder mehrere Umfeldsensoren 20, die dazu ausgelegt sind, das Umfeld des Fahrzeugs 1 zu erfassen, wobei die Umfeldsensoren 20 am Fahrzeug 1 montiert sind und ggf. autark, d. h. ohne Informationssignale von außen, Objekte oder Zustände im Umfeld des Fahrzeugs erfassen. Hierzu zählen insbesondere Kameras, Radar-Sensoren, Lidar-Sensoren, Ultraschall-Sensoren oder dergleichen. Die Umfeldsensoren 20 können innerhalb des Fahrzeugs oder außerhalb des Fahrzeugs (z. B. an der Außenseite des Fahrzeugs) angeordnet sein. Beispielsweise kann eine Kamera in einem vorderen Bereich des Fahrzeugs 1 zur Aufnahme von Bildern eines vor dem Fahrzeug befindlichen Bereichs eingebaut sein.
  • Fahrzeugsensorik des autonomen Fahrzeugs 1 umfasst auch eine Satellitennavigationseinheit 24 (GPS-Einheit). Es sei darauf hingewiesen, dass im Kontext der vorliegenden Erfindung GPS beispielhaft für sämtliche Globale Navigationssatellitensysteme (GNSS) steht, wie z.B. GPS, A-GPS, Galileo, GLONASS (Russland), Compass (China), IRNSS (Indien) und dergleichen.
  • Das Fahrzeug 1 umfasst ferner eine Steuereinheit für autonomes Fahren 18 (ECU 4). Die Steuereinheit für autonomes Fahren 18 ist dazu ausgelegt, das Fahrzeug 1 so zu steuern, dass dieses ganz oder teilweise ohne Einfluss eines menschlichen Fahrers im Straßenverkehr agieren kann. Die Steuereinheit 18 (ECU 4) ist dazu eingerichtet, Informationen der Umfeldsensorik 20 auszuwerten bzw. die Umfeldsensorik zu steuern. Wenn steuerungsseitig oder fahrerseitig ein Betriebszustand für das autonome Fahren aktiviert ist, bestimmt die Steuereinheit für autonomes Fahren 18, auf Grundlage von zur Verfügung stehenden Daten über eine vorgegebene Fahrtstrecke, von den Umweltsensoren 20 aufgenommenen Umgebungsdaten, sowie von mittels den Fahrzeugsensoren erfassten Fahrzeugbetriebsparametern, die der Steuereinheit 18 von den Steuereinheiten 12, 14 und 16 zugeleitet werden, Parameter für den autonomen Betrieb des Fahrzeugs (beispielsweise Soll-Geschwindigkeit, Soll-Moment, Abstand zum Vorausfahrzeug, Abstand zum Fahrbahnrand, Lenkvorgang und dergleichen).
  • Die Steuereinheit für autonomes Fahren 18 kann beispielsweise für eine Adaptive Geschwindigkeitsregelung (ACC) über die Umfeldsensoren 20 die Position und die Geschwindigkeit des vorausfahrenden Fahrzeugs messen und die Geschwindigkeit des Fahrzeugs sowie den Abstand zu dem Vorausfahrzeug via Antriebs- und Bremseingriff entsprechend anpassen.
  • Das Fahrzeug 1 umfasst ferner eine Benutzerschnittstelle 26 (HMI = Human-Machine-Interface), die einem Fahrzeuginsassen ermöglicht, mit einem oder mehreren Fahrzeugsystemen in Interaktion zu stehen. Diese Benutzerschnittstelle 26 kann eine elektronische Anzeige (beispielsweise eine GUI = graphical user interface) zum Ausgeben einer Graphik, von Symbolen und/oder Inhalt in Textform, und eine Eingabeschnittstelle zum Empfangen einer Eingabe (beispielsweise manuelle Eingabe, Spracheingabe und Eingabe durch Gesten, Kopf- oder Augenbewegungen) umfassen. Die Eingabeschnittstelle kann beispielsweise Tastaturen, Schalter, berührungsempfindliche Bildschirme (Touchscreen), Eye-Tracker und dergleichen umfassen.
  • 2 zeigt ein Blockdiagramm, das eine beispielhafte Konfiguration einer Steuereinheit für autonomes Fahren 18 (ECU 4) darstellt. Bei der Steuereinheit für autonomes Fahren 18 kann es sich beispielsweise um ein Steuergerät (electronic control unit ECU oder electronic control module ECM) handeln. Die Steuereinheit für autonomes Fahren 18 (ECU 4) umfasst einen Prozessor 40. Bei dem Prozessor 40 kann es sich beispielsweise um eine Recheneinheit wie eine zentrale Verarbeitungseinheit (CPU = central processing unit) handeln, die Programminstruktionen ausführt.
  • Der Prozessor der Steuereinheit für autonomes Fahren 18 ist dazu ausgelegt, in Abhängigkeit von einem geplanten Fahrmanöver, basierend auf den Informationen des sensorbasierten Umfeldmodells, eine optimale Fahrposition (Folgeabstand, Lateralversatz) unter Berücksichtigung des zulässigen Fahrspurbereichs zu berechnen. Die errechnete optimale Fahrposition wird zur Steuerung von Aktuatoren der Fahrzeugsubsysteme 12, 14 und 16, beispielsweise von Brems-, Antriebs- und/oder Lenkaktuatoren, verwendet.
  • Die Steuereinheit für autonomes Fahren 18 umfasst ferner einen Speicher und eine Eingabe/ Ausgabe-Schnittstelle. Der Speicher kann aus einem oder mehreren nichtflüchtigen computerlesbaren Medien bestehen und umfasst mindestens einen Programmspeicherbereich und einen Datenspeicherbereich. Der Programmspeicherbereich und der Datenspeicherbereich können Kombinationen von verschiedenen Arten von Speicher umfassen, beispielsweise von einem Nur-Lese-Speicher 43 (ROM = Read-only memory) und einem Direktzugriffsspeicher 42 (RAM = Random Access Memory) (z. B. dynamischer RAM („DRAM“), synchron DRAM („SDRAM“) usw.). Ferner kann die Steuereinheit für autonomes Fahren 18 ein externes Speicherlaufwerk 44, wie beispielsweise ein externes Festplattenlaufwerk (hard disk drive: HDD), ein Flashspeicher-Laufwerk oder ein nicht flüchtiges Festkörperlaufwerk (solid state drive: SSD) umfassen.
  • Die Steuereinheit für autonomes Fahren 18 umfasst ferner eine Kommunikationsschnittstelle 45, über welche die Steuereinheit mit dem Fahrzeugkommunikationsnetzwerk (28 in 1) kommunizieren kann, beispielsweise um Daten von den Umfeldsensoren (20 in 1) zu erhalten.
  • 3 zeigt eine typische Fahrsituation eines autonom oder auch teilautonom fahrenden Fahrzeugs. Ein autonom oder teilautonom fahrendes Fahrzeug 1 fährt auf der rechten Fahrspur 4 einer Straße 5. Das autonome Fahrzeug 1 umfasst eine Steuereinheit für autonomes Fahren (18 in 1), welche auf Grundlage von zur Verfügung stehenden Daten über eine vorgegebene Fahrtstrecke, von Umweltsensoren 20 aufgenommenen Umgebungsdaten, sowie von mittels den Fahrzeugsensoren erfassten Fahrzeugbetriebsparametern, die der Steuereinheit 18 von den Steuereinheiten 12, 14 und 16 zugeleitet werden, Parameter für den autonomen Betrieb des Fahrzeugs (beispielsweise Soll-Geschwindigkeit, Soll-Moment, Abstand zum Vorausfahrzeug, Abstand zum Fahrbahnrand, Lenkvorgang und dergleichen) bestimmt. Wie aus 3 ersichtlich, fährt das autonome Fahrzeug 1 hinter einem Vorausfahrzeug, hier einem LKW 2, das einen Bereich 10 des Erfassungsbereichs 8 der Umfeldsensoren (20 in 1) des Fahrzeugs 1, hier insbesondere einer Frontkamera, verdeckt. Die Steuereinheit für autonomes Fahren (18 in 1) des Fahrzeugs 1 umfasst einen Prozessor, der dazu ausgelegt ist, in Abhängigkeit von einem geplanten Fahrmanöver, basierend auf Informationen eines sensorbasierten Umfeldmodells eine optimale Fahrposition unter Berücksichtigung des zulässigen Fahrspurbereichs zu berechnen, von welcher ein zu erfassender Bereich mit den eingebauten Umfeldsensoren (20 in 1) bestmöglich abgedeckt wird.
  • 4 zeigt schematisch das Prinzip eines Kalibrationsverfahren gemäß der vorliegenden Erfindung. Das Verfahren dient dazu, eine Umfeldsensorik 20 eines Fahrzeugs 1 zu kalibrieren. Das Prinzip des Kalibrationsverfahren wird zur Vereinfachung der Darstellung in zwei Dimensionen, hier x und y dargestellt, so dass 4 einer Draufsicht entspricht. Das Prinzip kann gleichermaßen auch in drei Dimensionen (x, y, z) angewandt werden. Beispielhaft handelt es sich hier bei der Umfeldsensorik um einen Radar-Senso, oder einen Lidar-Sensor. Das Kalibrationsverfahren basiert auf einem absoluten Koordinatensystem KS (Umfeldkoordinatensystem). Für die Kalibrierung werden beispielhaft zehn gut reflektierende Objekte R1 bis R10, deren Positionen im absoluten Koordinatensystem KS bekannt sind, vorgesehen. Ein solches reflektierendes Objekt R1 bis R10 kann an sich jeder vom Fachmann beliebig wählbarer, reflektierender Gegenstand sein, der die Strahlung, welche die zu kalibrierende Umfeldsensorik 20 aussendet (also im Falle des Radar-Sensors Funkwellen im Radiofrequenzbereich und im Falle des Lidar-Sensors Laserlicht), gut reflektiert, sodass die zu kalibrierende Umfeldsensorik 20 die Position des reflektierenden Objekts R1 bis R10 gut bestimmen kann. Um die Umfeldsensorik 20 gemäß dem erfindungsgemäßen Verfahren zu kalibrieren, wird das Fahrzeug 1 an einer beliebigen Position des absoluten Koordinatensystems KS positioniert, wobei die Umfeldsensorik 20 von der Position des Fahrzeugs 1 aus die zehn platzierten reflektierenden Objekte R1 bis R10 sehen kann.
  • 5 zeigt einen Ausschnitt des in 4 gezeigten Aufbaus, welcher zur Vereinfachung der Darstellung lediglich die reflektierenden Objekte R1 und R2 umfasst. Die Darstellung kann entsprechend auf den hier beispielhaft angenommen Fall von zehn Objekten R1 bis R10 erweitert werden. Um die Umfeldsensorik 20 gemäß dem erfindungsgemäßen Verfahren zu kalibrieren, wird das Fahrzeug 1, wie oben bereits erwähnt, an einem beliebigen Punkt im absoluten Koordinatensystem KS platziert, so dass sich das Ego-Fahrzeug bzw. die Umfeldsensorik 20 am Punkt ps befindet, von dem aus die Umfeldsensorik 20 zehn reflektierende Objekte R1 bis R10 (hier dargestellt nur R1 und R2) sehen kann. Die absoluten Positionen xw,1 bis xw,10 der reflektierenden Objekte R1 bis R10 im absoluten Koordinatensystem KS werden in der Kalibrierungsphase als bekannt vorausgesetzt, d.h. sie wurden mittels externer Mittel bestimmt und sie werden dem Prozess als vorbestimmte, bekannte Parameter zugeführt, beispielsweise über die Benutzerschnittstelle (26 in 1) eingegeben.
  • Nun bestimmt die Umfeldsensorik 20 die relativen Positionen xs,1 bis xs,10 der reflektierenden Objekte R1 bis R10 im Relativkoordinatensystem des Sensors. Wie in 5 gezeigt, sind diese Positionsbestimmungen fehlerbehaftet, da die Sensorik 20 eine produktionsbedingte Fehleinstellung aufweisen kann, hier beispielhaft einen Winkelfehler ϕ0 in azimutaler Richtung. Aus diesem Grund weicht der relative Ort xs,1 des Reflektors R1 von seinem realen relativen Ort x's,1 ab. Die Fehleinstellung ϕ0 in azimutaler Richtung wird hier als ein systematischer Fehler der Messung angenommen und ist folglich für alle Messungen gleich. Gleiches gilt für die übrigen Reflektoren.
  • Zu diesem in 5 gezeigten Fehler in azimutaler Richtung ϕ0 kommt in drei Dimensionen ggf. noch ein Fehler θ0 in Elevations-Richtung hinzu, der in 5 nicht abgebildet ist, aber in der folgenden algorithmischen Darstellung mitberücksichtigt wird.
  • Im Folgenden wird der relative, bestimmte Ort des i. Reflektors als xs,i, der reale, relative Ort des i. Reflektors als x's,i und der reale Ort im Koordinatensystem KS des i-ten Reflektors als xw,i bezeichnet. Wie aus 5 ersichtlich wird, gilt die geometrische Gleichung p s + x s , i ' = x w , i
    Figure DE102019206503A1_0001
  • Die Fehleinstellung der Umfeldsensorik 20 kann durch eine 3x3 Rotationsmatrix R beschrieben werden, die von den Fehleinstellungen in Azimut-Richtung ϕ0 und in Elevations-Richtung θ0 abhängt, welche hier genutzt werden, um die Rotationsmatrix R zu parametrisieren (vgl. „Euler-Winkel“): x s , i ' = R ( ϕ 0 , θ 0 ) x s , i = ( r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ) x s , i
    Figure DE102019206503A1_0002
  • Eingesetzt in Gleichung (1) ergibt sich: p s + R ( ϕ 0 , θ 0 ) x s , i = x w , i
    Figure DE102019206503A1_0003
  • Woraus sich umgestellt für die Relativposition ergibt x s , i = R T ( x w , i p S )
    Figure DE102019206503A1_0004
  • Um eine Unabhängigkeit vom Ort ps des Fahrzeugs zu erreichen, wird ps aus der Gleichung eliminiert. Dies gelingt durch die Verwendung von Relativkoordinaten. Beispielhaft werden hier alle Relativkoordinaten relativ zum Ort des ersten Reflektors (xs,1 bzw. xw,1 ) ermittelt: x s ,1 x s , j = R T ( x w ,1 x w , j )
    Figure DE102019206503A1_0005
  • Der Einfachheit halber können wir schreiben: x ¯ s , i = x s ,1 x s , i x ¯ w , i = x w ,1 x w , i
    Figure DE102019206503A1_0006
  • Nun kann eine 3x3 Matrix M definiert werden: M i j = ( x ¯ s , i x ¯ s , j ) ( x ¯ w , i x ¯ w , j ) T
    Figure DE102019206503A1_0007
  • Numerisch kann diese Matrix M in ihre Singulärwertzerlegung UΣVT zerlegt werden: M = U Σ V T
    Figure DE102019206503A1_0008
  • Aus dieser Singulärwertzerlegung kann die gesuchte Rotationsmatrix R berechnet werden: R T = U d i a g ( 1,1, d e t ( U T T ) ) V T
    Figure DE102019206503A1_0009
  • Für den Fall von genau drei Reflektoren und unter Berücksichtigung der Tatsache, dass der Ort des ersten Reflektors bereits zur Bestimmung der Relativkoordinaten verwendet wurde x s,1 = x w,1 = 0 (siehe Gleichung (5)) verbleiben zur Konstruktion der Matrix Mij = (x s,i x s,j) lediglich die beiden verbleibenden Reflektoren i,j ∈ {2,3}. Da für die Bestimmung der Rotationsmatrix gelten muss i ≠ j, ergibt sich in diesem Fall von drei Reflektoren genau eine mögliche Matrix Mij, nämlich: M 23 = ( x ¯ s ,2 x ¯ s ,3 ) ( x ¯ w ,2 x ¯ w ,3 ) T
    Figure DE102019206503A1_0010
  • Im Falle von mehr als drei Reflektoren ergibt sich kombinatorisch eine Anzahl an möglichen Matrizen Mij, aus denen dann eine entsprechende Anzahl an möglichen Rotationsmatrizen Rij berechnet werden kann. In diesem Fall kann dann die zu bestimmende Rotationsmatrix R als Durchschnitt, Median, quadratischem Mittel, o.ä. aller oder einer Auswahl der Rotationsmatrizen Rij bestimmt werden. Auch die Anwendung eines Least-Square Verfahrens zur Bestimmung der Rotationsmatrix R ist denkbar.
  • Da, wie weiter oben bereits erwähnt, die Rotationsmatrix R im dreidimensionalen Raum über R = R(ϕ0)R(θ0 ) von den Fehleinstellungen des Sensors 20 in azimutaler Richtung ϕ0 und in Elevations-Richtung θ0 abhängt, können diese beiden nun aus der Rotationsmatrix R bestimmt werden. Über euklidische Geometrie werden somit die Fehleinstellungen wie folgt ermittelt: ϕ 0 = a r c t a n 2 ( r 12 , r 11 )
    Figure DE102019206503A1_0011
    θ 0 = a r c t a n 2 ( r 31 ,r 11 )
    Figure DE102019206503A1_0012
  • Hierbei bezeichnen r11, r12 und r31 die Einträge der Rotationsmatrix R (siehe Gleichung (2) weiter oben) und arctan2 bezeichnet die dem Fachmann bekannte Erweiterung der inversen Winkelfunktion Arkustangens.
  • Dieses Ergebnis kann nun verwendet werden, um den Sensor 20 zu kalibrieren. Beispielsweise können die durch Kalibrierung nun bekannten Fehleinstellungen ϕ0 und θ0 in einem Speicher abgelegt werden und auf dieser Grundlage dann jede nachfolgende Messung durch Subtraktion der Fehleinstellungen ϕ0 und θ0 korrigiert werden.
  • Vorteilhafter Weise werden, wie oben dargestellt wenigstens zehn Reflektoren für das erfindungsgemäße Verfahren genutzt. Mit weniger als zehn Reflektoren wäre das Gleichungssystem unterbestimmt und die Einträge der Rotationsmatrix R könnten nicht eindeutig bestimmt werden. Im Falle von mehr als zehn Reflektoren ist das Gleichungssystem überbestimmt. In diesem Fall kann das Gleichungssystem mittels statistischer Methoden auf neun linear unabhängige Gleichungen reduziert werden.
  • Die Verwendung von mehr als zehn Reflektoren verbessert das Ergebnis, da sich statistische Messungenauigkeiten im Kalibrierungsprozess herausmittelt.
  • 6 zeigt ein Flussdiagramm, dass schematisch das in 4 und 5 gezeigte Kalibrationsverfahren darstellt. Bei Schritt S1 ruft die elektronische Steuerung vorgegebene Positionsdaten der Reflektoren ab. Bei Schritt S2 empfängt die elektronische Steuerung von einem Umfeldsensor gemessene Orte der Reflektoren. Bei Schritt S3 ermittelt die elektronische Steuerung gemessene Relativkoordinaten und vorgegebene Relativkoordinaten aus wenigstens zwei der vorgegebenen Orte der Reflektoren bzw. gemessenen Orte der Reflektoren, Bei Schritt S4 berechnet die elektronische Steuerung eine Rotationsmatrix durch lösen eines Gleichungssystems, wobei für mehrere Paare der Reflektoren jeweils die gemessenen Relativkoordinaten und die vorgegebenen Relativkoordinaten über eine Rotationsmatrix in Beziehung gesetzt werden, um das Gleichungssystem aufzustellen. Bei Schritt S5 berechnet die elektronische Steuerung eine Fehleinstellung des Umfeldsensoren aus den Elementen der Rotationsmatrix.
  • Bezugszeichenliste
  • 1
    Fahrzeug
    2
    Vorausfahrzeug
    4
    Fahrspur
    5
    Straße
    6
    Fahrbahnmittelmarkierung
    7
    Linkskurve
    8
    Erfassungsbereich
    10
    verdeckter Bereich
    12
    Steuereinheit für Lenksystem
    14
    Steuereinheit für Bremssystem
    16
    Steuereinheit für Antriebstrang
    18
    Steuereinheit für Umfeldsensorik
    20
    Umfeldsensoren
    22
    Bildverarbeitungssystem
    24
    Satellitennavigationseinheit
    26
    Benutzerschnittstelle
    28
    Fahrzeugkommunikationsnetzwerk
    40
    Prozessor
    42
    RAM-Speicher
    43
    ROM-Speicher
    44
    Speicherlaufwerk
    45
    Benutzerschnittstelle
    941
    Interfaceschnittstelle
    KS
    absolutes Koordinatensystem
    1
    Fahrzeug mit Sensor
    20
    Sensor
    R1
    erster Reflektor
    R2
    zweiter Reflektor
    R3
    dritter Reflektor
    R4
    vierter Reflektor
    R5
    fünfter Reflektor
    R6
    sechster Reflektor
    R7
    siebter Reflektor
    R8
    achter Reflektor
    R9
    neunter Reflektor
    R10
    zehnter Reflektor
    ps
    absolute Position des Sensors
    xw,1
    absolute Position des ersten Reflektors
    xw,2
    absolute Position des zweiten Reflektors
    xs,1
    gemessene Position des ersten Reflektors
    xs,2
    gemessene Position des zweiten Reflektors
    ϕ0
    Azimuth-Winkelfehler des Sensors
    θ0
    Elevationswinkelfehler des Sensors

Claims (10)

  1. Elektronische Steuereinheit, die konfiguriert ist zum: Empfangen, von einem Umfeldsensor (20), gemessener Orte (xs,i) mehrerer Reflektoren (R1 bis R10), Abrufen vorgegebener Positionsdaten (xw,i) der Reflektoren (R1 bis R10); und Ermitteln einer Fehleinstellung (ϕ0, θ0) des Umfeldsensoren (20) aus den empfangenen Orten (xw,i) und den gemessenen Orten (xs,i).
  2. Elektronische Steuereinheit nach Anspruch 1, wobei die elektronische Steuereinheit konfiguriert ist, um die ermittelte Fehleinstellung (ϕ0, θ0) zur Kalibrierung des Umfeldsensoren (20) zu verwenden.
  3. Elektronische Steuereinheit gemäß Anspruch 1 oder 2, wobei die elektronische elektronische Steuereinheit konfiguriert ist, um aus wenigstens drei der gemessenen Orten (xs,i) der Reflektoren (R1 bis R10) gemessene Relativkoordinaten (xs,i - xs,j) zu ermitteln und um die Fehleinstellung (ϕ0, θ0) des Umfeldsensoren (20) aus den gemessenen Relativkoordinaten (xs,i - xs,j) der gemessenen Orte (xs,i) zu ermitteln.
  4. Elektronische Steuereinheit gemäß Anspruch 3, wobei die elektronische Steuereinheit konfiguriert ist, um aus wenigstens drei der vorgegebenen Positionsdaten (xw,i) der Reflektoren (R1 bis R10) vorgegebene Relativkoordinaten (xw,i - xw,j) zu ermitteln und um die Fehleinstellung (ϕ0, θ0) des Umfeldsensoren (20) aus den vorgegebenen Relativkoordinaten (xw,i - xw,j) der vorgegebenen Positionsdaten (xw,i) zu ermitteln.
  5. Elektronische Steuereinheit nach einem der vorhergehenden Ansprüche, die ferner konfiguriert ist, zum Ermitteln einer Rotationsmatrix (R) aus den bestimmten Orten (xs,i) und den vorgegebenen Orten (xw,i), wobei die Rotationsmatrix (R) die Fehleinstellung (ϕ0, θ0) des Umfeldsensoren beschreibt.
  6. Elektronische Steuereinheit gemäß einem der vorhergehenden Ansprüche, wobei die elektronische Steuereinheit konfiguriert ist, um eine Fehleinstellung (φ0) des Umfeldsensoren in azimutaler Richtung und/oder eine Fehleinstellung (θ0) in Elevationsrichtung zu berechnen.
  7. Elektronische Steuereinheit gemäß Anspruch 5, soweit rückbezogen auf Anspruch 4, wobei die elektronische Steuereinheit dazu konfiguriert ist, ein Gleichungssystem zu lösen, wobei für mehrere Paare der Reflektoren (R1 bis R10) jeweils die gemessenen Relativkoordinaten (xs,i - xs,j) und die vorgegebenen Relativkoordinaten (xw,i - xs,j) über die Rotationsmatrix (R) in Beziehung gesetzt werden, um das Gleichungssystem aufzustellen.
  8. Elektronische Steuereinheit gemäß Anspruch 7, wobei die elektronische Steuereinheit dazu konfiguriert ist, eine Rotationsmatrix (R) mit Hilfe einer Singulärwertzerlegung (M = UΣVT) zu berechnen.
  9. Elektronische Steuereinheit gemäß Anspruch 8, wobei mehr als drei Reflektoren verwendet werden und ein Lösungsansatz zur Lösung eines überbestimmten Gleichungssystems wie Mittelwertbildung, Medianbildung, oder Least-Square-Abschätzung verwendet wird.
  10. Verfahren, umfassend: Empfangen, von einem Umfeldsensor (20), gemessener Orte (xs,i) mehrerer Reflektoren (R1 bis R10), Abrufen vorgegebener Positionsdaten (xw,i) der Reflektoren (R1 bis R10); und Ermitteln einer Fehleinstellung des Umfeldsensoren (20) aus den empfangenen Orten (xw,i) und den gemessenen Orten (xs,i).
DE102019206503.1A 2019-05-07 2019-05-07 Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs Withdrawn DE102019206503A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019206503.1A DE102019206503A1 (de) 2019-05-07 2019-05-07 Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019206503.1A DE102019206503A1 (de) 2019-05-07 2019-05-07 Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs

Publications (1)

Publication Number Publication Date
DE102019206503A1 true DE102019206503A1 (de) 2020-11-12

Family

ID=72943464

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019206503.1A Withdrawn DE102019206503A1 (de) 2019-05-07 2019-05-07 Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs

Country Status (1)

Country Link
DE (1) DE102019206503A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205527A1 (de) 2022-05-31 2023-11-30 Siemens Mobility GmbH Validierung einer Sensoreinheit eines Schienenfahrzeugs zur Objektlokalisierung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113571A1 (de) * 2012-03-15 2014-09-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren und Vorrichtungen zum Vereinigen von Radar/Kamera-Objektdaten und LiDAR-Absuchpunkten
DE102017111860A1 (de) * 2017-05-31 2018-12-06 Valeo Schalter Und Sensoren Gmbh Verfahren zum Kalibrieren eines Radarsensors eines Kraftfahrzeugs während einer Bewegung des Kraftfahrzeugs, Radarsensor, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017215586A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Abweichung einer Sensorachse eines Umfeldsensors von der Fahrachse eines Fahrzeugs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113571A1 (de) * 2012-03-15 2014-09-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren und Vorrichtungen zum Vereinigen von Radar/Kamera-Objektdaten und LiDAR-Absuchpunkten
DE102017111860A1 (de) * 2017-05-31 2018-12-06 Valeo Schalter Und Sensoren Gmbh Verfahren zum Kalibrieren eines Radarsensors eines Kraftfahrzeugs während einer Bewegung des Kraftfahrzeugs, Radarsensor, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017215586A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Abweichung einer Sensorachse eines Umfeldsensors von der Fahrachse eines Fahrzeugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205527A1 (de) 2022-05-31 2023-11-30 Siemens Mobility GmbH Validierung einer Sensoreinheit eines Schienenfahrzeugs zur Objektlokalisierung
EP4286243A1 (de) * 2022-05-31 2023-12-06 Siemens Mobility GmbH Validierung einer sensoreinheit eines schienenfahrzeugs zur objektlokalisierung

Similar Documents

Publication Publication Date Title
DE102017105305B4 (de) Verfahren zur automatischen bestimmung einer sensorstellung
DE102019121140A1 (de) Sensorfusion
DE102018115813A1 (de) Verfahren und systeme zum lokalisieren eines fahrzeugs
DE102019216071A1 (de) Fahrzeugsensor-feldkalibrierung unter nutzung anderer fahrzeuge
DE102019114511A1 (de) Radar-odometrie für ein fahrzeug
DE102021100101A1 (de) Fahrzeugsensorkalibrierung
DE112019000873T5 (de) System und Verfahren zum Erzeugen eines Zielpfades für ein Fahrzeug
DE102019126542A1 (de) Lokalisierung einer stationären kamera
DE102016209232B4 (de) Verfahren, Vorrichtung und computerlesbares Speichermedium mit Instruktionen zur Bestimmung der lateralen Position eines Fahrzeuges relativ zu den Fahrstreifen einer Fahrbahn
EP3430423B1 (de) Verfahren zur verbesserung einer erfassung zumindest eines objekts in einer umgebung eines kraftfahrzeugs durch eine indirekte messung mit sensoren, steuereinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102012223412A1 (de) Verfahren und System zum Einstellen eines Seitenspiegels
DE102017129501A1 (de) Autonome Kraftfahrzeug-Objekterkennung
DE102018103803A1 (de) System und verfahren für das erkennen einer fehlerhaften sensorinstallation innerhalb eines fahrzeugs, um die mit der objekterkennung verbundenen gefahren zu verringern
DE102019211891A1 (de) Platooning-steuerung, system mit derselben und verfahren derselben
EP3610224B1 (de) Verfahren, vorrichtung und computerlesbares speichermedium mit instruktionen zur schätzung einer pose eines kraftfahrzeugs
DE102016100718A1 (de) Verfahren zum Erkennen von Fahrspuren auf einer Fahrbahn anhand einer Häufigkeitsverteilung von Abstandswerten, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102021105823A1 (de) Dynamische lidar-anpassung
DE102020124331A1 (de) Fahrzeugspurkartierung
DE102019132150A1 (de) Verfahren zum automatischen Kalibrieren eines Umfeldsensors, insbesondere eines Lidar-Sensors, eines Fahrzeugs auf Grundlage von Belegungskarten sowie Recheneinrichtung
DE102019206503A1 (de) Verfahren und Steuereinheit zum Betreiben eines autonomen Fahrzeugs
DE102019213867A1 (de) Hinderniserkennung umfassend ein rekurrentes neuronales Netzwerk
DE102019213929A1 (de) Plausibilitätsprüfung angehaltener vormals dynamischer Objekte mit Hilfe von Belegungsrastern
DE102018217000A1 (de) Verfahren, Computerprogramm und Messsystem für die Auswertung von Bewegungsinformationen
DE102016105022A1 (de) Verfahren zum Erfassen zumindest eines Objekts in einer Umgebung eines Kraftfahrzeugs durch eine indirekte Messung mit Sensoren, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102022212436A1 (de) Autonomes-fahren-assistenzsystem

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee